Polymer-Assisted Crystallization and Defect Passivation in Planar Wide-Bandgap FAPbBr3 Perovskite Solar Cells

. 2025 Sep 16 ; 10 (36) : 41515-41523. [epub] 20250904

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40978358

Wide-bandgap lead bromide perovskites such as FAPbBr3 are promising candidates for tandem solar cells and high-voltage optoelectronic applications, yet their performance is limited by surface and bulk defects that induce severe nonradiative recombination and limit stability. In this work, we present a defect passivation and crystallization control strategy by incorporating poly-(methyl methacrylate) (PMMA) into the antisolvent during FAPbBr3 film fabrication. PMMA treatment leads to improved film morphology with larger grains, reduced surface roughness, and enhanced crystallinity. FTIR analysis reveals that the carbonyl groups in PMMA coordinate with undercoordinated Pb2+ ions, effectively passivating electronic trap states. Photothermal deflection spectroscopy (PDS) shows reduced sub-bandgap absorption and lower Urbach energy, indicating suppressed deep-level defects and reduced energetic disorder. Enhanced photoluminescence intensity, prolonged carrier lifetimes, and decreased trap densities further confirm suppressed nonradiative recombination. As a result, PMMA treatment increases Voc by over 100 mV and improves power conversion efficiency by more than 1%, achieving a Voc of up to 1.510 V with reduced hysteresis and improved ambient stability. These findings demonstrate the effectiveness of polymer-assisted strategies for improving both efficiency and stability of wide-bandgap perovskite solar cells, offering a pathway toward high-voltage and tandem photovoltaic applications.

Zobrazit více v PubMed

De Wolf S., Holovsky J., Moon S.-J., Löper P., Niesen B., Ledinsky M., Haug F.-J., Yum J.-H., Ballif C.. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014;5(6):1035–1039. doi: 10.1021/jz500279b. PubMed DOI

Amalathas A. P., Landová L., Hájková Zk., Horák Ls., Ledinsky M., Holovský J.. Controlled growth of large grains in CH3NH3PbI3 perovskite films mediated by an intermediate liquid phase without an antisolvent for efficient solar cells. ACS Appl. Energy Mater. 2020;3(12):12484–12493. doi: 10.1021/acsaem.0c02441. DOI

Jena A. K., Kulkarni A., Miyasaka T.. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019;119(5):3036–3103. doi: 10.1021/acs.chemrev.8b00539. PubMed DOI

Eperon G. E., Stranks S. D., Menelaou C., Johnston M. B., Herz L. M., Snaith H. J.. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014;7(3):982–988. doi: 10.1039/c3ee43822h. DOI

Nie T., Fang Z., Ren X., Duan Y., Liu S.. Recent advances in wide-bandgap organic–inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 2023;15(1):70. doi: 10.1007/s40820-023-01040-6. PubMed DOI PMC

Aydin E., Ugur E., Yildirim B. K., Allen T. G., Dally P., Razzaq A., Cao F., Xu L., Vishal B., Yazmaciyan A.. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature. 2023;623(7988):732–738. doi: 10.1038/s41586-023-06667-4. PubMed DOI

Kim K., Moon T., Kim J.. Wide Bandgap Perovskites: A Comprehensive Review of Recent Developments and Innovations. Small. 2025;21:2407007. doi: 10.1002/smll.202407007. PubMed DOI

Ji C., Zhu T., Fan Y., Li Z., Liu X., Li L., Sun Z., Luo J.. Localized Lattice Expansion of FAPbBr3 to Design a 3D Hybrid Perovskite for Sensitive Near-Infrared Photodetection. Angew. Chem. 2022;134(47):e202213294. doi: 10.1002/ange.202213294. PubMed DOI

Chen D., Sergeev A. A., Zhang N., Ke L., Wu Y., Tang B., Tao C. K., Liu H., Zou G., Zhu Z.. et al. Ultralow trap density FAPbBr3 perovskite films for efficient light-emitting diodes and amplified spontaneous emission. Nat. Commun. 2025;16(1):2367. doi: 10.1038/s41467-025-56557-8. PubMed DOI PMC

Yun Y., Han G. S., Park G. N., Kim J., Park J., Vidyasagar D., Jung J., Choi W. C., Choi Y. J., Heo K.. et al. A Wide Bandgap Halide Perovskite Based Self-Powered Blue Photodetector with 84.9% of External Quantum Efficiency. Adv. Mater. 2022;34(51):2206932. doi: 10.1002/adma.202206932. PubMed DOI

Liu Y., Ma Z., Zhang J., He Y., Dai J., Li X., Shi Z., Manna L.. Light-Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals. Adv. Mater. 2025;37:2415606. doi: 10.1002/adma.202415606. PubMed DOI PMC

Cerrillo J. G., Distler A., Matteocci F., Forberich K., Wagner M., Basu R., Castriotta L. A., Jafarzadeh F., Brunetti F., Yang F.. et al. Matching the Photocurrent of 2-Terminal Mechanically-Stacked Perovskite/Organic Tandem Solar Modules by Varying the Cell Width. Solar RRL. 2024;8(3):2300767. doi: 10.1002/solr.202300767. DOI

Almora O., Bazan G. C., Cabrera C. I., Castriotta L. A., Erten-Ela S., Forberich K., Fukuda K., Guo F., Hauch J., Ho-Baillie A. W.. et al. Device performance of emerging photovoltaic materials (version 5) Adv. Energy Mater. 2025;15(12):2404386. doi: 10.1002/aenm.202404386. DOI

Ball J. M., Petrozza A.. Defects in perovskite-halides and their effects in solar cells. Nat. Energy. 2016;1(11):1–13. doi: 10.1038/nenergy.2016.149. DOI

Liu C., Cheng Y.-B., Ge Z.. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 2020;49(6):1653–1687. doi: 10.1039/C9CS00711C. PubMed DOI

Odunmbaku G. O., Chen S., Guo B., Zhou Y., Ouedraogo N. A. N., Zheng Y., Li J., Li M., Sun K.. Recombination pathways in perovskite solar cells. Adv. Mater. Interfaces. 2022;9(12):2102137. doi: 10.1002/admi.202102137. DOI

Chen J., Park N. G.. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 2019;31(47):1803019. doi: 10.1002/adma.201803019. PubMed DOI

Duan L., Uddin A.. Defects and stability of perovskite solar cells: a critical analysis. Mater. Chem. Front. 2022;6(4):400–417. doi: 10.1039/D1QM01250A. DOI

Aydin E., De Bastiani M., De Wolf S.. Defect and contact passivation for perovskite solar cells. Adv. Mater. 2019;31(25):1900428. doi: 10.1002/adma.201900428. PubMed DOI

Zhang H., Pfeifer L., Zakeeruddin S. M., Chu J., Grätzel M.. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 2023;7(9):632–652. doi: 10.1038/s41570-023-00510-0. PubMed DOI

Yi C., Kim T., Lee C., Ahn J., Lee M., Son H. J., Ko Y., Jun Y.. Improving FAPbBr3 Perovskite Crystal Quality via Additive Engineering for High Voltage Solar Cell over 1.5 V. ACS Appl. Mater. Interfaces. 2024;16(34):44756–44766. doi: 10.1021/acsami.4c07749. PubMed DOI

Liu Y., Kim B. J., Wu H., Boschloo G., Johansson E. M.. Efficient and stable FAPbBr3 perovskite solar cells via interface modification by a low-dimensional perovskite layer. ACS Appl. Energy Mater. 2021;4(9):9276–9282. doi: 10.1021/acsaem.1c01512. DOI

Li S., Deng C., Tao L., Lu Z., Zhang W., Song W.. Crystallization control and defect passivation via a cross-linking additive for high-performance FAPbBr3 perovskite solar cells. J. Phys. Chem. C. 2021;125(23):12551–12559. doi: 10.1021/acs.jpcc.1c02987. DOI

Xu H., Liang Z., Ye J., Xu S., Wang Z., Zhu L., Chen X., Xiao Z., Pan X., Liu G.. Guanidinium-assisted crystallization modulation and reduction of open-circuit voltage deficit for efficient planar FAPbBr3 perovskite solar cells. Chem. Eng. J. 2022;437:135181. doi: 10.1016/j.cej.2022.135181. DOI

Ochoa-Martinez E., Ochoa M., Ortuso R. D., Ferdowsi P., Carron R., Tiwari A. N., Steiner U., Saliba M.. Physical passivation of grain boundaries and defects in perovskite solar cells by an isolating thin polymer. ACS Energy Lett. 2021;6(7):2626–2634. doi: 10.1021/acsenergylett.1c01187. DOI

Zeng Z., Wang Y., Ding S., Li Y., Xiang C., Lee C. S., Cheng Y., Tsang S. W.. Imbalanced Surface Charge Induced Phase Segregation in Mixed Halide Perovskites. Adv. Funct. Mater. 2024:2404255. doi: 10.1002/adfm.202404255. DOI

Ma Y., Ge J., Jen A. K. Y., You J., Liu S.. Polymer Boosts High Performance Perovskite Solar Cells: A Review. Adv. Opt. Mater. 2024;12(1):2301623. doi: 10.1002/adom.202301623. DOI

Bi D., Yi C., Luo J., Décoppet J.-D., Zhang F., Zakeeruddin S. M., Li X., Hagfeldt A., Grätzel M.. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% Nat. Energy. 2016;1(10):16142. doi: 10.1038/nenergy.2016.142. DOI

Kim H., Lee K. S., Paik M. J., Lee D. Y., Lee S. U., Choi E., Yun J. S., Seok S. I.. Polymethyl methacrylate as an interlayer between the halide perovskite and copper phthalocyanine layers for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2022;32(13):2110473. doi: 10.1002/adfm.202110473. DOI

Peng J., Khan J. I., Liu W., Ugur E., Duong T., Wu Y., Shen H., Wang K., Dang H., Aydin E., Yang X., Wan Y., Weber K. J., Catchpole K. R., Laquai F., De Wolf S., White T. P.. A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly­(methyl methacrylate) Adv. Energy Mater. 2018;8(30):1801208. doi: 10.1002/aenm.201801208. DOI

Wang S., Gong X.-Y., Li M.-X., Li M.-H., Hu J.-S.. Polymers for Perovskite Solar Cells. JACS Au. 2024;4(9):3400–3412. doi: 10.1021/jacsau.4c00615. PubMed DOI PMC

Tailor N. K., Abdi-Jalebi M., Gupta V., Hu H., Dar M. I., Li G., Satapathi S.. Recent progress in morphology optimization in perovskite solar cell. J. Mater. Chem. A. 2020;8(41):21356–21386. doi: 10.1039/D0TA00143K. DOI

Di Girolamo D., Vidon G., Barichello J., Di Giacomo F., Jafarzadeh F., Paci B., Generosi A., Kim M., Castriotta L. A., Frégnaux M.. et al. Breaking 1.7 V open circuit voltage in large area transparent perovskite solar cells using interfaces passivation. Adv. Energy Mater. 2024;14(30):2400663. doi: 10.1002/aenm.202400663. DOI

Dequilettes D. W., Frohna K., Emin D., Kirchartz T., Bulovic V., Ginger D. S., Stranks S. D.. Charge-carrier recombination in halide perovskites: Focus review. Chem. Rev. 2019;119(20):11007–11019. doi: 10.1021/acs.chemrev.9b00169. PubMed DOI

Zhang Z., Yang Y., Huang Z., Xu Q., Zhu S., Li M., Zhao P., Cui H., Li S., Jin X.. et al. Coordination engineering with crown ethers for perovskite precursor stabilization and defect passivation. Energy Environ. Sci. 2024;17(19):7182–7192. doi: 10.1039/D4EE02124J. DOI

Tao J., Zhao C., Wang Z., Chen Y., Zang L., Yang G., Bai Y., Chu J.. Suppressing non-radiative recombination for efficient and stable perovskite solar cells. Energy Environ. Sci. 2025;18(2):509–544. doi: 10.1039/D4EE02917H. DOI

Urbach F.. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953;92(5):1324. doi: 10.1103/PhysRev.92.1324. DOI

Horynová E., Romanyuk O., Horák L., Remeš Z., Conrad B., Amalathas P. A., Landová L., Houdková J., Jiříček P., Finsterle T., Holovský J.. Optical characterization of low temperature amorphous MoOx, WOX, and VOx prepared by pulsed laser deposition. Thin Solid Films. 2020;693:137690. doi: 10.1016/j.tsf.2019.137690. DOI

Bube R. H.. Trap density determination by space-charge-limited currents. J. Appl. Phys. 1962;33(5):1733–1737. doi: 10.1063/1.1728818. DOI

Amalathas A. P., Landová L., Ridzonova K., Horak L., Bauerova P., Holovský J.. Unveiling the effect of potassium treatment on the mesoporous TiO2/perovskite interface in perovskite solar cells. ACS Appl. Energy Mater. 2021;4(10):11488–11495. doi: 10.1021/acsaem.1c02229. DOI

Yue W., Yang H., Cai H., Xiong Y., Zhou T., Liu Y., Zhao J., Huang F., Cheng Y. B., Zhong J.. Printable high-efficiency and stable FAPbBr3 perovskite solar cells for multifunctional building-integrated photovoltaics. Adv. Mater. 2023;35(36):2301548. doi: 10.1002/adma.202301548. PubMed DOI

Zhu H., Xu Z., Zhang Z., Lian S., Wu Y., Zhang D., Zhan H., Wang L., Han L., Qin C.. Improved Hole-Selective Contact Enables Highly Efficient and Stable FAPbBr3 Perovskite Solar Cells and Semitransparent Modules. Adv. Mater. 2024;36(33):2406872. doi: 10.1002/adma.202406872. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...