Polymer-Assisted Crystallization and Defect Passivation in Planar Wide-Bandgap FAPbBr3 Perovskite Solar Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40978358
PubMed Central
PMC12444675
DOI
10.1021/acsomega.5c04987
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Wide-bandgap lead bromide perovskites such as FAPbBr3 are promising candidates for tandem solar cells and high-voltage optoelectronic applications, yet their performance is limited by surface and bulk defects that induce severe nonradiative recombination and limit stability. In this work, we present a defect passivation and crystallization control strategy by incorporating poly-(methyl methacrylate) (PMMA) into the antisolvent during FAPbBr3 film fabrication. PMMA treatment leads to improved film morphology with larger grains, reduced surface roughness, and enhanced crystallinity. FTIR analysis reveals that the carbonyl groups in PMMA coordinate with undercoordinated Pb2+ ions, effectively passivating electronic trap states. Photothermal deflection spectroscopy (PDS) shows reduced sub-bandgap absorption and lower Urbach energy, indicating suppressed deep-level defects and reduced energetic disorder. Enhanced photoluminescence intensity, prolonged carrier lifetimes, and decreased trap densities further confirm suppressed nonradiative recombination. As a result, PMMA treatment increases Voc by over 100 mV and improves power conversion efficiency by more than 1%, achieving a Voc of up to 1.510 V with reduced hysteresis and improved ambient stability. These findings demonstrate the effectiveness of polymer-assisted strategies for improving both efficiency and stability of wide-bandgap perovskite solar cells, offering a pathway toward high-voltage and tandem photovoltaic applications.
Department of Physical Science Trincomalee Campus Eastern University Trincomalee 31010 Sri Lanka
Department of Physics Faculty of Science University of Jaffna Jaffna 40000 Sri Lanka
Institute of Physics Czech Academy of Sciences v v i Cukrovarnická 10 162 00 Prague Czech Republic
Zobrazit více v PubMed
De Wolf S., Holovsky J., Moon S.-J., Löper P., Niesen B., Ledinsky M., Haug F.-J., Yum J.-H., Ballif C.. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014;5(6):1035–1039. doi: 10.1021/jz500279b. PubMed DOI
Amalathas A. P., Landová L., Hájková Zk., Horák Ls., Ledinsky M., Holovský J.. Controlled growth of large grains in CH3NH3PbI3 perovskite films mediated by an intermediate liquid phase without an antisolvent for efficient solar cells. ACS Appl. Energy Mater. 2020;3(12):12484–12493. doi: 10.1021/acsaem.0c02441. DOI
Jena A. K., Kulkarni A., Miyasaka T.. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019;119(5):3036–3103. doi: 10.1021/acs.chemrev.8b00539. PubMed DOI
Eperon G. E., Stranks S. D., Menelaou C., Johnston M. B., Herz L. M., Snaith H. J.. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014;7(3):982–988. doi: 10.1039/c3ee43822h. DOI
Nie T., Fang Z., Ren X., Duan Y., Liu S.. Recent advances in wide-bandgap organic–inorganic halide perovskite solar cells and tandem application. Nano-Micro Lett. 2023;15(1):70. doi: 10.1007/s40820-023-01040-6. PubMed DOI PMC
Aydin E., Ugur E., Yildirim B. K., Allen T. G., Dally P., Razzaq A., Cao F., Xu L., Vishal B., Yazmaciyan A.. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature. 2023;623(7988):732–738. doi: 10.1038/s41586-023-06667-4. PubMed DOI
Kim K., Moon T., Kim J.. Wide Bandgap Perovskites: A Comprehensive Review of Recent Developments and Innovations. Small. 2025;21:2407007. doi: 10.1002/smll.202407007. PubMed DOI
Ji C., Zhu T., Fan Y., Li Z., Liu X., Li L., Sun Z., Luo J.. Localized Lattice Expansion of FAPbBr3 to Design a 3D Hybrid Perovskite for Sensitive Near-Infrared Photodetection. Angew. Chem. 2022;134(47):e202213294. doi: 10.1002/ange.202213294. PubMed DOI
Chen D., Sergeev A. A., Zhang N., Ke L., Wu Y., Tang B., Tao C. K., Liu H., Zou G., Zhu Z.. et al. Ultralow trap density FAPbBr3 perovskite films for efficient light-emitting diodes and amplified spontaneous emission. Nat. Commun. 2025;16(1):2367. doi: 10.1038/s41467-025-56557-8. PubMed DOI PMC
Yun Y., Han G. S., Park G. N., Kim J., Park J., Vidyasagar D., Jung J., Choi W. C., Choi Y. J., Heo K.. et al. A Wide Bandgap Halide Perovskite Based Self-Powered Blue Photodetector with 84.9% of External Quantum Efficiency. Adv. Mater. 2022;34(51):2206932. doi: 10.1002/adma.202206932. PubMed DOI
Liu Y., Ma Z., Zhang J., He Y., Dai J., Li X., Shi Z., Manna L.. Light-Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals. Adv. Mater. 2025;37:2415606. doi: 10.1002/adma.202415606. PubMed DOI PMC
Cerrillo J. G., Distler A., Matteocci F., Forberich K., Wagner M., Basu R., Castriotta L. A., Jafarzadeh F., Brunetti F., Yang F.. et al. Matching the Photocurrent of 2-Terminal Mechanically-Stacked Perovskite/Organic Tandem Solar Modules by Varying the Cell Width. Solar RRL. 2024;8(3):2300767. doi: 10.1002/solr.202300767. DOI
Almora O., Bazan G. C., Cabrera C. I., Castriotta L. A., Erten-Ela S., Forberich K., Fukuda K., Guo F., Hauch J., Ho-Baillie A. W.. et al. Device performance of emerging photovoltaic materials (version 5) Adv. Energy Mater. 2025;15(12):2404386. doi: 10.1002/aenm.202404386. DOI
Ball J. M., Petrozza A.. Defects in perovskite-halides and their effects in solar cells. Nat. Energy. 2016;1(11):1–13. doi: 10.1038/nenergy.2016.149. DOI
Liu C., Cheng Y.-B., Ge Z.. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chem. Soc. Rev. 2020;49(6):1653–1687. doi: 10.1039/C9CS00711C. PubMed DOI
Odunmbaku G. O., Chen S., Guo B., Zhou Y., Ouedraogo N. A. N., Zheng Y., Li J., Li M., Sun K.. Recombination pathways in perovskite solar cells. Adv. Mater. Interfaces. 2022;9(12):2102137. doi: 10.1002/admi.202102137. DOI
Chen J., Park N. G.. Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 2019;31(47):1803019. doi: 10.1002/adma.201803019. PubMed DOI
Duan L., Uddin A.. Defects and stability of perovskite solar cells: a critical analysis. Mater. Chem. Front. 2022;6(4):400–417. doi: 10.1039/D1QM01250A. DOI
Aydin E., De Bastiani M., De Wolf S.. Defect and contact passivation for perovskite solar cells. Adv. Mater. 2019;31(25):1900428. doi: 10.1002/adma.201900428. PubMed DOI
Zhang H., Pfeifer L., Zakeeruddin S. M., Chu J., Grätzel M.. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 2023;7(9):632–652. doi: 10.1038/s41570-023-00510-0. PubMed DOI
Yi C., Kim T., Lee C., Ahn J., Lee M., Son H. J., Ko Y., Jun Y.. Improving FAPbBr3 Perovskite Crystal Quality via Additive Engineering for High Voltage Solar Cell over 1.5 V. ACS Appl. Mater. Interfaces. 2024;16(34):44756–44766. doi: 10.1021/acsami.4c07749. PubMed DOI
Liu Y., Kim B. J., Wu H., Boschloo G., Johansson E. M.. Efficient and stable FAPbBr3 perovskite solar cells via interface modification by a low-dimensional perovskite layer. ACS Appl. Energy Mater. 2021;4(9):9276–9282. doi: 10.1021/acsaem.1c01512. DOI
Li S., Deng C., Tao L., Lu Z., Zhang W., Song W.. Crystallization control and defect passivation via a cross-linking additive for high-performance FAPbBr3 perovskite solar cells. J. Phys. Chem. C. 2021;125(23):12551–12559. doi: 10.1021/acs.jpcc.1c02987. DOI
Xu H., Liang Z., Ye J., Xu S., Wang Z., Zhu L., Chen X., Xiao Z., Pan X., Liu G.. Guanidinium-assisted crystallization modulation and reduction of open-circuit voltage deficit for efficient planar FAPbBr3 perovskite solar cells. Chem. Eng. J. 2022;437:135181. doi: 10.1016/j.cej.2022.135181. DOI
Ochoa-Martinez E., Ochoa M., Ortuso R. D., Ferdowsi P., Carron R., Tiwari A. N., Steiner U., Saliba M.. Physical passivation of grain boundaries and defects in perovskite solar cells by an isolating thin polymer. ACS Energy Lett. 2021;6(7):2626–2634. doi: 10.1021/acsenergylett.1c01187. DOI
Zeng Z., Wang Y., Ding S., Li Y., Xiang C., Lee C. S., Cheng Y., Tsang S. W.. Imbalanced Surface Charge Induced Phase Segregation in Mixed Halide Perovskites. Adv. Funct. Mater. 2024:2404255. doi: 10.1002/adfm.202404255. DOI
Ma Y., Ge J., Jen A. K. Y., You J., Liu S.. Polymer Boosts High Performance Perovskite Solar Cells: A Review. Adv. Opt. Mater. 2024;12(1):2301623. doi: 10.1002/adom.202301623. DOI
Bi D., Yi C., Luo J., Décoppet J.-D., Zhang F., Zakeeruddin S. M., Li X., Hagfeldt A., Grätzel M.. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21% Nat. Energy. 2016;1(10):16142. doi: 10.1038/nenergy.2016.142. DOI
Kim H., Lee K. S., Paik M. J., Lee D. Y., Lee S. U., Choi E., Yun J. S., Seok S. I.. Polymethyl methacrylate as an interlayer between the halide perovskite and copper phthalocyanine layers for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2022;32(13):2110473. doi: 10.1002/adfm.202110473. DOI
Peng J., Khan J. I., Liu W., Ugur E., Duong T., Wu Y., Shen H., Wang K., Dang H., Aydin E., Yang X., Wan Y., Weber K. J., Catchpole K. R., Laquai F., De Wolf S., White T. P.. A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate) Adv. Energy Mater. 2018;8(30):1801208. doi: 10.1002/aenm.201801208. DOI
Wang S., Gong X.-Y., Li M.-X., Li M.-H., Hu J.-S.. Polymers for Perovskite Solar Cells. JACS Au. 2024;4(9):3400–3412. doi: 10.1021/jacsau.4c00615. PubMed DOI PMC
Tailor N. K., Abdi-Jalebi M., Gupta V., Hu H., Dar M. I., Li G., Satapathi S.. Recent progress in morphology optimization in perovskite solar cell. J. Mater. Chem. A. 2020;8(41):21356–21386. doi: 10.1039/D0TA00143K. DOI
Di Girolamo D., Vidon G., Barichello J., Di Giacomo F., Jafarzadeh F., Paci B., Generosi A., Kim M., Castriotta L. A., Frégnaux M.. et al. Breaking 1.7 V open circuit voltage in large area transparent perovskite solar cells using interfaces passivation. Adv. Energy Mater. 2024;14(30):2400663. doi: 10.1002/aenm.202400663. DOI
Dequilettes D. W., Frohna K., Emin D., Kirchartz T., Bulovic V., Ginger D. S., Stranks S. D.. Charge-carrier recombination in halide perovskites: Focus review. Chem. Rev. 2019;119(20):11007–11019. doi: 10.1021/acs.chemrev.9b00169. PubMed DOI
Zhang Z., Yang Y., Huang Z., Xu Q., Zhu S., Li M., Zhao P., Cui H., Li S., Jin X.. et al. Coordination engineering with crown ethers for perovskite precursor stabilization and defect passivation. Energy Environ. Sci. 2024;17(19):7182–7192. doi: 10.1039/D4EE02124J. DOI
Tao J., Zhao C., Wang Z., Chen Y., Zang L., Yang G., Bai Y., Chu J.. Suppressing non-radiative recombination for efficient and stable perovskite solar cells. Energy Environ. Sci. 2025;18(2):509–544. doi: 10.1039/D4EE02917H. DOI
Urbach F.. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953;92(5):1324. doi: 10.1103/PhysRev.92.1324. DOI
Horynová E., Romanyuk O., Horák L., Remeš Z., Conrad B., Amalathas P. A., Landová L., Houdková J., Jiříček P., Finsterle T., Holovský J.. Optical characterization of low temperature amorphous MoOx, WOX, and VOx prepared by pulsed laser deposition. Thin Solid Films. 2020;693:137690. doi: 10.1016/j.tsf.2019.137690. DOI
Bube R. H.. Trap density determination by space-charge-limited currents. J. Appl. Phys. 1962;33(5):1733–1737. doi: 10.1063/1.1728818. DOI
Amalathas A. P., Landová L., Ridzonova K., Horak L., Bauerova P., Holovský J.. Unveiling the effect of potassium treatment on the mesoporous TiO2/perovskite interface in perovskite solar cells. ACS Appl. Energy Mater. 2021;4(10):11488–11495. doi: 10.1021/acsaem.1c02229. DOI
Yue W., Yang H., Cai H., Xiong Y., Zhou T., Liu Y., Zhao J., Huang F., Cheng Y. B., Zhong J.. Printable high-efficiency and stable FAPbBr3 perovskite solar cells for multifunctional building-integrated photovoltaics. Adv. Mater. 2023;35(36):2301548. doi: 10.1002/adma.202301548. PubMed DOI
Zhu H., Xu Z., Zhang Z., Lian S., Wu Y., Zhang D., Zhan H., Wang L., Han L., Qin C.. Improved Hole-Selective Contact Enables Highly Efficient and Stable FAPbBr3 Perovskite Solar Cells and Semitransparent Modules. Adv. Mater. 2024;36(33):2406872. doi: 10.1002/adma.202406872. PubMed DOI