Postoperative speech impairment and cranial nerve deficits in children undergoing posterior fossa tumor surgery with intraoperative MRI - a prospective multinational study
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články, multicentrická studie, pozorovací studie
PubMed
40982141
PubMed Central
PMC12454580
DOI
10.1007/s00701-025-06669-3
PII: 10.1007/s00701-025-06669-3
Knihovny.cz E-zdroje
- Klíčová slova
- Cerebellar mutism syndrome, Cranial Nerve Deficits, Intraoperative Magnetic Resonance Imaging, Pediatric Neurosurgery, Posterior Fossa Tumor, Posterior Fossa syndrome,
- MeSH
- dítě MeSH
- infratentoriální nádory * chirurgie MeSH
- kojenec MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladiství MeSH
- nemoci kraniálních nervů * etiologie epidemiologie MeSH
- neurochirurgické výkony * škodlivé účinky MeSH
- pooperační komplikace * epidemiologie etiologie MeSH
- poruchy řeči * etiologie epidemiologie MeSH
- předškolní dítě MeSH
- prospektivní studie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Postoperative speech impairment (POSI) and cranial nerve deficits (CND) are common complications of pediatric posterior fossa (PF) tumor surgery. Intraoperative MRI (ioMRI) has proven a useful tool in achieving gross total resection. The risk of POSI and CND with ioMRI remains unclear, making it the primary scope of this study. Additionally, we assessed whether POSI was associated with CND. METHODS: We prospectively included pediatric patients undergoing PF tumor surgery in 36 centers across 15 European countries. Neurological status and speech were assessed preoperatively and 1-4 weeks postoperatively. Surgical details, including tumor location and use of ioMRI, were recorded within 72 h of surgery. Postoperative CND were categorized as 0, 1, 2, or ≥ 3 nerves affected; POSI as habitual, reduced speech, or mutism. Proportional odds models estimated odds ratios (OR) for 1) POSI with stepwise adjustment for tumor location and age, and 2) CND with adjustment for preoperative CND and tumor location. Subgroup analyses assessed systematic differences, missing data, center-level effects, and histology adjustment. RESULTS: Of 790 primary PF tumor surgeries, 141 (18%) involved ioMRI. POSI occurred in 183/790 (23%) and postoperative CND in 213/790 (27%). POSI-risk with ioMRI showed non-significant unadjusted OR (95% CI) 0.83 (0.53;1.30); adjusted OR 0.76 (0.43;1.35). Fewer CNDs were observed with ioMRI (unadjusted OR 0.63 (0.40;1.00), adjusted OR 0.58 (0.33;0.94), p = 0.03). POSI-risk was associated with more CNDs (adjusted OR for 1 CND: 2.06 (1.15;3.68); 2 CND: 2.13 (1.02;4.42); ≥ 3 CND: 4.15 (1.98;8.70), p < 0.05). CONCLUSIONS: ioMRI was not associated with increased risk of postoperative complications in this multicenter cohort. The reduction in CND among ioMRI cases may reflect derived effects on surgical decision-making, expertise, case-load and case-mix. Results should be interpreted with caution due to limited intraoperative data. The association between POSI-risk and cumulative CND may indicate extensive brainstem involvement. Our findings highlight the need to further explore how ioMRI-guided strategies affect functional outcomes in pediatric PF tumour surgery. CLINICAL TRIALS ID: NCT02300766 (October 2014).
2nd Department of Pediatrics Semmelweis University Budapest Hungary
Clinic of Neurology and Neurosurgery Faculty of Medicine Vilnius University Vilnius Lithuania
Department of Neurosurgery 2nd Medical Faculty Motol University Hospital Prague Czechia
Department of Neurosurgery Aarhus University Hospital Aarhus Denmark
Department of Neurosurgery Alder Hey Children's NHS Foundation Liverpool UK
Department of Neurosurgery Medical University of Vienna Vienna Austria
Department of Neurosurgery Oslo University Hospital Rikshospitalet Oslo Norway
Department of Neurosurgery Rigshospitalet Copenhagen Denmark
Department of Pediatric Hematology and Oncology St Olavs Hospital Trondheim Norway
Department of Pediatrics and Adolescent Medicine Rigshospitalet Copenhagen Denmark
Department of Radiology Alder Hey Children's NHS Foundation Liverpool UK
Neuro Oncology Unit Pediatric Cancer Center Barcelona Hospital Sant Joan de Déu Barcelona Spain
Neurosurgery Unit Bambino Gesù Children's Hospital IRCCS Rome Italy
Pediatric Oncology Department of Oncology KU Leuven Leuven Belgium
Princess Maxima Center for Pediatric Oncology Utrecht Netherlands
Zobrazit více v PubMed
Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27(40):10659–10673. 10.1523/JNEUROSCI.3134-07.2007 PubMed PMC
Albright AL et al (2000) Correlation of neurosurgical subspecialization with outcomes in children with malignant brain tumors. Neurosurgery 47(4):879–85. discussion 885–7. 10.1097/00006123-200010000-00018 PubMed
Avula S et al (2015) Diffusion abnormalities on intraoperative magnetic resonance imaging as an early predictor for the risk of posterior fossa syndrome. Neuro Oncol 17(4):614–622. 10.1093/neuonc/nou299 PubMed PMC
Avula S et al (2015) Posterior fossa syndrome following brain tumour resection: review of pathophysiology and a new hypothesis on its pathogenesis. Childs Nerv Syst 31(10):1859–1867. 10.1007/s00381-015-2797-0 PubMed
Choudhri AF et al (2014) 3T intraoperative MRI for management of pediatric CNS neoplasms. AJNR Am J Neuroradiol 35(12):2382–2387. 10.3174/ajnr.A4040 PubMed PMC
Chu JK et al (2021) Postoperative facial palsy after pediatric posterior fossa tumor resection. J Neurosurg Pediatr 27(5):566–571. 10.3171/2020.9.PEDS20372 PubMed
Damodaran O et al (2014) Cranial nerve assessment: a concise guide to clinical examination. Clin Anat 27(1):25–30. 10.1002/ca.22336 PubMed
Deletis V, Fernandez-Conejero I (2016) Intraoperative monitoring and mapping of the functional integrity of the brainstem. J Clin Neurol 12(3):262–273. 10.3988/jcn.2016.12.3.262 PubMed PMC
Erman AB et al (2009) Disorders of cranial nerves IX and X. Semin Neurol 29(1):85–92. 10.1055/s-0028-1124027 PubMed PMC
Giordano M et al (2017) Intraoperative magnetic resonance imaging in pediatric neurosurgery: safety and utility. J Neurosurg Pediatr 19(1):77–84. 10.3171/2016.8.PEDS15708 PubMed
Gronbaek JK et al (2022) Left-handedness should not be overrated as a risk factor for postoperative speech impairment in children after posterior fossa tumour surgery: a prospective European multicentre study. Childs Nerv Syst 38(8):1479–1485. 10.1007/s00381-022-05567-8 PubMed
Gronbaek JK et al (2022) Postoperative speech impairment and cranial nerve deficits after secondary surgery of posterior fossa tumours in childhood: a prospective European multicentre study. Childs Nerv Syst 38(4):747–758. 10.1007/s00381-022-05464-0 PubMed
Gronbaek JK et al (2021) Postoperative speech impairment and surgical approach to posterior fossa tumours in children: a prospective European multicentre cohort study. Lancet Child Adolesc Health 5(11):814–824. 10.1016/S2352-4642(21)00274-1 PubMed
Gudrunardottir T et al (2016) Consensus paper on post-operative pediatric cerebellar mutism syndrome: the Iceland delphi results. Childs Nerv Syst 32(7):1195–1203. 10.1007/s00381-016-3093-3 PubMed
Hamilton KM et al (2022) The utility of intraoperative magnetic resonance imaging in the resection of cerebellar hemispheric pilocytic astrocytomas: a cohort study. Oper Neurosurg 22(4):187–191. 10.1227/ONS.0000000000000112 PubMed
Jellema PEJ et al (2023) Advanced intraoperative MRI in pediatric brain tumor surgery. Front Physiol 14:1098959. 10.3389/fphys.2023.1098959 PubMed PMC
Khan RB et al (2021) Clinical features, neurologic recovery, and risk factors of postoperative posterior fossa syndrome and delayed recovery: a prospective study. Neuro Oncol 23(9):1586–1596. 10.1093/neuonc/noab030 PubMed PMC
Kubben PL et al (2012) Implementation of a mobile 0.15-T intraoperative MR system in pediatric neuro-oncological surgery: feasibility and correlation with early postoperative high-field strength MRI. Childs Nerv Syst 28(8):1171–1180. 10.1007/s00381-012-1815-8 PubMed PMC
Levelt WJ, Roelofs A, Meyer AS (1999) A theory of lexical access in speech production. Behav Brain Sci 22(1):1–38. 10.1017/s0140525x99001776 PubMed
Marongiu A, D’Andrea G, Raco A (2017) 1.5-T field intraoperative magnetic resonance imaging improves extent of resection and survival in glioblastoma removal. World Neurosurg 98:578–586. 10.1016/j.wneu.2016.11.013 PubMed
Mei C, Morgan AT (2011) Incidence of mutism, dysarthria and dysphagia associated with childhood posterior fossa tumour. Childs Nerv Syst 27(7):1129–1136. 10.1007/s00381-011-1433-x PubMed
Miller NG et al (2010) Cerebellocerebral diaschisis is the likely mechanism of postsurgical posterior fossa syndrome in pediatric patients with midline cerebellar tumors. AJNR Am J Neuroradiol 31(2):288–294. 10.3174/ajnr.A1821 PubMed PMC
Obdeijn IV et al (2025) Neuroimaging of postoperative pediatric cerebellar mutism syndrome: a systematic review. Neuro-Oncol Adv 7(1):vdae212. 10.1093/noajnl/vdae212 PubMed PMC
Pettersson SD et al (2022) Risk factors for postoperative cerebellar mutism syndrome in pediatric patients: a systematic review and meta-analysis. J Neurosurg Pediatr 29(4):467–475. 10.3171/2021.11.PEDS21445 PubMed
Renne B et al (2020) Cerebellar mutism after posterior fossa tumor resection in children: a multicenter international retrospective study to determine possible modifiable factors. Childs Nerv Syst 36(6):1159–1169. 10.1007/s00381-019-04058-7 PubMed
Schroter-Morasch H, Ziegler W (2005) Rehabilitation of impaired speech function (dysarthria, dysglossia). GMS Curr Top Otorhinolaryngol Head Neck Surg 4:Doc15 PubMed PMC
Swinney C et al (2016) Optimization of tumor resection with intra-operative magnetic resonance imaging. J Clin Neurosci 34:11–14. 10.1016/j.jocn.2016.05.030 PubMed
Tejada S et al (2018) The impact of intraoperative magnetic resonance in routine pediatric neurosurgical practice-a 6-year appraisal. Childs Nerv Syst 34(4):617–626. 10.1007/s00381-018-3751-8 PubMed
Wach J et al (2021) Intraoperative MRI-guided resection in pediatric brain tumor surgery: a meta-analysis of extent of resection and safety outcomes. J Neurol Surg A Cent Eur Neurosurg 82(1):64–74. 10.1055/s-0040-1714413 PubMed
Wibroe M et al (2017) Cerebellar mutism syndrome in children with brain tumours of the posterior fossa. BMC Cancer 17(1):439. 10.1186/s12885-017-3416-0 PubMed PMC
Yousaf J et al (2012) Importance of intraoperative magnetic resonance imaging for pediatric brain tumor surgery. Surg Neurol Int 3(Suppl 2):S65-72. 10.4103/2152-7806.95417 PubMed PMC
ClinicalTrials.gov
NCT02300766