Long-Term Biobanked Dental Pulp Stem Cells Retain Angiogenic Potential for Vascularised Tissue Engineering-Laboratory Investigation
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
302043
Norges Forskningsråd
Småforsk
Norges Forskningsråd
Erasums+
European Commission
Brno City Municipality
PubMed
40988150
PubMed Central
PMC12701750
DOI
10.1111/iej.70036
Knihovny.cz E-zdroje
- Klíčová slova
- angiogenesis, dental pulp, dental research, mesenchymal stem cells, regenerative medicine, tissue engineering,
- MeSH
- banky biologického materiálu * MeSH
- buněčná diferenciace MeSH
- fyziologická neovaskularizace * fyziologie MeSH
- kmenové buňky * fyziologie cytologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky fyziologie MeSH
- mladiství MeSH
- průtoková cytometrie MeSH
- tkáňové inženýrství * metody MeSH
- zubní dřeň * cytologie MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
AIM: This study aimed to evaluate whether human dental pulp stem cells (DPSCs), after long-term biobanking (7-8 years), retain their pro-angiogenic properties and can be used to engineer vascularised tissues, addressing their potential for clinical translation in regenerative dentistry. METHODOLOGY: Cryopreserved DPSCs from adolescent donors were recovered from biobanking and characterised for chromosomal integrity, MSC immunophenotype and multipotency. After conditioning in pro-angiogenic conditions in vitro, gene and protein expression were analysed by RT-qPCR array, flow cytometry and high-throughput immunophenotyping. Functional angiogenic capacity was assessed via in vitro tube formation, ex ovo CAM implantation assay, organ-on-chip perfusion model and long-term culture (45 days) in clinical-grade GelMA hydrogels, with and without HUVECs. RESULTS: Biobanked DPSCs retained MSC identity and multi-lineage differentiation potential. Pro-angiogenic/endothelial conditioning enhanced the expression of angiogenic/endothelial genes (PECAM1, VEGFR2, NRP1, ACE), yet most cells maintained a pericyte-like phenotype. Both naive and endothelial-conditioned DPSCs (i.e., naiveDPSCs and endoDPSCs, respectively) significantly enhanced vascular ingrowth in the CAM model. In the organ-on-chip system, naiveDPSCs formed perfusable vasculature with HUVECs and differentiated into perivascular cell types. Most notably, endoDPSCs alone successfully generated vascularised tissue with both CD31(+) and αSMA(+) cells present in GelMA hydrogels after prolonged stimulation. CONCLUSION: Long-term biobanked DPSCs preserve their angiogenic potential and, following extended endothelial induction, can independently generate vascularised tissue in 3D in vitro culture models. This is the first report demonstrating the comprehensive pro-angiogenic characterisation and the feasibility of using biobanked DPSCs for vascularised tissue engineering, highlighting their strong clinical applicability for future regenerative therapies.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czechia
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Bahsoun, S. , Coopman K., and Akam E. C.. 2019. “The Impact of Cryopreservation on Bone Marrow‐Derived Mesenchymal Stem Cells: A Systematic Review.” Journal of Translational Medicine 17, no. 1: 397. PubMed PMC
Bento, L. W. , Zhang Z., Imai A., et al. 2013. “Endothelial Differentiation of Shed Requires mek1/Erk Signaling.” Journal of Dental Research 92, no. 1: 51–57. PubMed PMC
Bergamo, M. T. , Zhang Z., Oliveira T. M., and Nör J. E.. 2021. “Vegfr1 Primes a Unique Cohort of Dental Pulp Stem Cells for Vasculogenic Differentiation.” European Cells and Materials 41: 332–344. PubMed PMC
Cui, Y. , Ji W., Gao Y., Xiao Y., Liu H., and Chen Z.. 2021. “Single‐Cell Characterization of Monolayer Cultured Human Dental Pulp Stem Cells With Enhanced Differentiation Capacity.” International Journal of Oral Science 13, no. 1: 44. PubMed PMC
Dominici, M. , Le Blanc K., Mueller I., et al. 2006. “Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement.” Cytotherapy 8, no. 4: 315–317. PubMed
Dunn, C. M. , Kameishi S., Grainger D. W., and Okano T.. 2021. “Strategies to Address Mesenchymal Stem/Stromal Cell Heterogeneity in Immunomodulatory Profiles to Improve Cell‐Based Therapies.” Acta Biomaterialia 133: 114–125. PubMed
Egusa, H. , Sonoyama W., Nishimura M., Atsuta I., and Akiyama K.. 2012. “Stem Cells in Dentistry–Part i: Stem Cell Sources.” Journal of Prosthodontic Research 56, no. 3: 151–165. PubMed
Faruangsaeng, T. , Thaweesapphitak S., Khamwachirapitak C., Porntaveetus T., and Shotelersuk V.. 2022. “Comparative Transcriptome Profiles of Human Dental Pulp Stem Cells From Maxillary and Mandibular Teeth.” Scientific Reports 12, no. 1: 8860. PubMed PMC
Ganapathy, A. , Narayanan K., Chen Y., Villani C., and George A.. 2024. “Dentin Matrix Protein 1 and Huvec‐Ecm Scaffold Promote the Differentiation of Human Dental Pulp Stem Cells Into Endothelial Lineage: Implications in Regenerative Medicine.” Frontiers in Physiology 15: 1429247. PubMed PMC
Huang, J. , Guo J., Zhou L., et al. 2021. “Advanced Nanomaterials‐Assisted Cell Cryopreservation: A Mini Review.” ACS Applied Bio Materials 4, no. 4: 2996–3014. PubMed
Ishikawa, Y. , Ida‐Yonemochi H., Nakakura‐Ohshima K., and Ohshima H.. 2012. “The Relationship Between Cell Proliferation and Differentiation and Mapping of Putative Dental Pulp Stem/Progenitor Cells During Mouse Molar Development by Chasing Brdu‐Labeling.” Cell and Tissue Research 348, no. 1: 95–107. PubMed
Ishizaka, R. , Hayashi Y., Iohara K., et al. 2013. “Stimulation of Angiogenesis, Neurogenesis and Regeneration by Side Population Cells From Dental Pulp.” Biomaterials 34, no. 8: 1888–1897. PubMed
Itoh, Y. , Sasaki J. I., Hashimoto M., Katata C., Hayashi M., and Imazato S.. 2018. “Pulp Regeneration by 3‐Dimensional Dental Pulp Stem Cell Constructs.” Journal of Dental Research 97, no. 10: 1137–1143. PubMed
Izaguirre‐Pérez, N. , Ligero G., Aguilar‐Solana P. A., et al. 2024. “Trehalose Cryopreservation of Human Mesenchymal Stem Cells From Cord Tissue.” Biopreservation and Biobanking 23, no. 4: 374–382. PubMed
Janebodin, K. , Zeng Y., Buranaphatthana W., Ieronimakis N., and Reyes M.. 2013. “Vegfr2‐Dependent Angiogenic Capacity of Pericyte‐Like Dental Pulp Stem Cells.” Journal of Dental Research 92, no. 6: 524–531. PubMed
Joshi, P. , Vijaykumar A., Enkhmandakh B., Shin D. G., Mina M., and Bayarsaihan D.. 2022. “The Chromatin Accessibility Landscape in the Dental Pulp of Mouse Molars and Incisors.” Acta Biochimica Polonica 69, no. 1: 131–138. PubMed
Katata, C. , Sasaki J. I., Li A., et al. 2021. “Fabrication of Vascularized Dpsc Constructs for Efficient Pulp Regeneration.” Journal of Dental Research 100, no. 12: 1351–1358. PubMed PMC
Krivanek, J. , Soldatov R. A., Kastriti M. E., et al. 2020. “Dental Cell Type Atlas Reveals Stem and Differentiated Cell Types in Mouse and Human Teeth.” Nature Communications 11, no. 1: 4816. PubMed PMC
Li, A. , Sasaki J. I., Inubushi T., et al. 2023. “Role of Heparan Sulfate in Vasculogenesis of Dental Pulp Stem Cells.” Journal of Dental Research 102, no. 2: 207–216. PubMed PMC
Liu, Y. , Gan L., Cui D. X., et al. 2021. “Epigenetic Regulation of Dental Pulp Stem Cells and Its Potential in Regenerative Endodontics.” World Journal of Stem Cells 13, no. 11: 1647–1666. PubMed PMC
Lott, K. , Collier P., Ringor M., et al. 2022. “Assessment and Analysis of Dental Pulp Stem Cells (Dpscs) Biomarkers and Viability Following Cryopreser‐Vation Reveals Novel Association With Mir‐218 Expression.” EC Dental Science 21: 115–128.
Ma, X. , Zhao B., Wang C., et al. 2024. “Anxa1 Enhances the Proangiogenic Potential of Human Dental Pulp Stem Cells.” Stem Cells International 2024, no. 1: 7045341. PubMed PMC
Macrin, D. , Alghadeer A., Zhao Y. T., et al. 2019. “Metabolism as an Early Predictor of Dpscs Aging.” Scientific Reports 9, no. 1: 2195. PubMed PMC
Marchionni, C. , Bonsi L., Alviano F., et al. 2009. “Angiogenic Potential of Human Dental Pulp Stromal (Stem) Cells.” International Journal of Immunopathology and Pharmacology 22, no. 3: 699–706. PubMed
Matsumura, K. , and Hyon S. H.. 2009. “Polyampholytes as Low Toxic Efficient Cryoprotective Agents With Antifreeze Protein Properties.” Biomaterials 30, no. 27: 4842–4849. PubMed
Mitsiadis, T. , Catón J., Pagella P., Orsini G., and Jimenez‐Rojo L.. 2017. “Monitoring Notch Signaling‐Associated Activation of Stem Cell Niches Within Injured Dental Pulp.” Frontiers in Physiology 8: 372. PubMed PMC
Mustafa, K. , Yamada S., Sanchez N., Mayol M., Gjerde C., and Sanz M.. 2025. “Cell Therapy for Periodontal, Soft‐Tissue, and Craniofacial Regeneration.” Journal of Periodontal Research: 1–26. PubMed
Nagendrababu, V. , Murray P. E., Ordinola‐Zapata R., et al. 2021. “Prile 2021 Guidelines for Reporting Laboratory Studies in Endodontology: A Consensus‐Based Development.” International Endodontic Journal 54, no. 9: 1482–1490. PubMed
Pagella, P. , de Vargas Roditi L., Stadlinger B., Moor A. E., and Mitsiadis T. A.. 2021a. “Notch Signaling in the Dynamics of Perivascular Stem Cells and Their Niches.” Stem Cells Translational Medicine 10, no. 10: 1433–1445. PubMed PMC
Pagella, P. , de Vargas Roditi L., Stadlinger B., Moor A. E., and Mitsiadis T. A.. 2021b. “A Single‐Cell Atlas of Human Teeth.” iScience 24, no. 5: 102405. PubMed PMC
Pilbauerova, N. , Schmidt J., Soukup T., Duska J., and Suchanek J.. 2021. “Intra‐Individual Variability of Human Dental Pulp Stem Cell Features Isolated From the Same Donor.” International Journal of Molecular Sciences 22, no. 24: 13515. PubMed PMC
Redaelli, S. , Bentivegna A., Foudah D., et al. 2012. “From Cytogenomic to Epigenomic Profiles: Monitoring the Biologic Behavior of In Vitro Cultured Human Bone Marrow Mesenchymal Stem Cells.” Stem Cell Research & Therapy 3, no. 6: 47. PubMed PMC
Sasaki, J. I. , Zhang Z., Oh M., et al. 2020. “Ve‐Cadherin and Anastomosis of Blood Vessels Formed by Dental Stem Cells.” Journal of Dental Research 99, no. 4: 437–445. PubMed PMC
Shaik, S. , Wu X., Gimble J., and Devireddy R.. 2018. “Effects of Decade Long Freezing Storage on Adipose Derived Stem Cells Functionality.” Scientific Reports 8, no. 1: 8162. PubMed PMC
Shorokhova, M. , Pugovkina N., Zemelko V., Lyublinskaya O., and Grinchuk T.. 2024. “Long‐Term Cryopreservation May Cause Genomic Instability and the Premature Senescence of Cells.” International Journal of Molecular Sciences 25, no. 3: 1467. PubMed PMC
Sugimoto, Y. , Yamazaki Y., Moriyama K., et al. 2021. “Differentiation and Proliferation Potencies of Human Bone Tissue‐Derived Mesenchymal Stromal Cells (Hbt‐Mscs) After Long‐Term Cryopreservation ‐Comparison Among Cells Stored for 1, 5, 10, 15, and 20 Years.” Regenerative Therapy 18: 363–371. PubMed PMC
Tenyi, A. , Milutinović A., and Nemeth L.. 2023. “Expression of cd31, cd34, and Smooth Muscle Actin (Sma) in Endothelial Cells of Dental Pulp Vessels.” Biomolecules & Biomedicine 24, no. 4: 821–826. PubMed PMC
Thaler, R. , Spitzer S., Karlic H., Klaushofer K., and Varga F.. 2012. “Dmso Is a Strong Inducer of DNA Hydroxymethylation in Pre‐Osteoblastic mc3t3‐e1 Cells.” Epigenetics 7, no. 6: 635–651. PubMed PMC
Tripathy, S. , Singh S., and Das S. K.. 2022. “Chapter 19 ‐ Cryopreservation of Mesenchymal Stem Cells (Mscs) Derived From Bone Marrow With Carbohydrate Additive Sucrose and Dimethyl Sulfoxide (Dmso).” In Contemporary Medical Biotechnology Research for Human Health, edited by Joshi S., Mukherjee S., and Nag M., 177–186. Academic Press.
Verheijen, M. , Lienhard M., Schrooders Y., et al. 2019. “Dmso Induces Drastic Changes in Human Cellular Processes and Epigenetic Landscape In Vitro.” Scientific Reports 9, no. 1: 4641. PubMed PMC
Wang, H. Y. , Lun Z. R., and Lu S. S.. 2011. “Cryopreservation of Umbilical Cord Blood‐Derived Mesenchymal Stem Cells Without Dimethyl Sulfoxide.” Cryo Letters 32, no. 1: 81–88. PubMed
Wang, J. , and Li R.. 2024. “Effects, Methods and Limits of the Cryopreservation on Mesenchymal Stem Cells.” Stem Cell Research & Therapy 15, no. 1: 337. PubMed PMC
Wang, J. , Wei X., Ling J., Huang Y., Gong Q., and Huo Y.. 2012. “Identification and Characterization of Side Population Cells From Adult Human Dental Pulp After Ischemic Culture.” Journal of Endodontics 38, no. 11: 1489–1497. PubMed
Wang, X. , Wang E., and Zhao G.. 2023. “Advanced Cryopreservation Engineering Strategies: The Critical Step to Utilize Stem Cell Products.” Cell Regeneration 12, no. 1: 28. PubMed PMC
Xu, X. , Fu J., Yang G., Chen Z., Chen S., and Yuan G.. 2025. “Dentin Sialoprotein Promotes Endothelial Differentiation of Dental Pulp Stem Cells Through Dsp(aa34‐50)‐Endoglin‐akt1 Axis.” Journal of Biological Chemistry 301, no. 4: 108380. PubMed PMC
Yamada, S. , Al‐Sharabi N., Torelli F., et al. 2024. “Harnessing the Antioxidative Potential of Dental Pulp Stem Cell‐Conditioned Medium in Photopolymerized Gelma Hydrogels.” Biomaterials Research 28: 0084. PubMed PMC
Yamada, S. , Malkmus C., Aasebø E., Mustafa K., Egusa H., and Volponi A. A.. 2025. “Production and Biobanking of Dental Stem Cells for Clinical Applications in Regenerative Dentistry: Current Practices and Future Perspectives ‐ a Narrative Review.” Journal of Dentistry 161: 105934. PubMed
Yu, J. , He H., Tang C., et al. 2010. “Differentiation Potential of Stro‐1+ Dental Pulp Stem Cells Changes During Cell Passaging.” BMC Cell Biology 11, no. 1: 32. PubMed PMC
Zhang, Z. , Oh M., Sasaki J.‐I., and Nör J. E.. 2021. “Inverse and Reciprocal Regulation of p53/p21 and Bmi‐1 Modulates Vasculogenic Differentiation of Dental Pulp Stem Cells.” Cell Death & Disease 12, no. 7: 644. PubMed PMC