Long-Term Biobanked Dental Pulp Stem Cells Retain Angiogenic Potential for Vascularised Tissue Engineering-Laboratory Investigation

. 2026 Jan ; 59 (1) : 105-118. [epub] 20250923

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40988150

Grantová podpora
302043 Norges Forskningsråd
Småforsk Norges Forskningsråd
Erasums+ European Commission
Brno City Municipality

AIM: This study aimed to evaluate whether human dental pulp stem cells (DPSCs), after long-term biobanking (7-8 years), retain their pro-angiogenic properties and can be used to engineer vascularised tissues, addressing their potential for clinical translation in regenerative dentistry. METHODOLOGY: Cryopreserved DPSCs from adolescent donors were recovered from biobanking and characterised for chromosomal integrity, MSC immunophenotype and multipotency. After conditioning in pro-angiogenic conditions in vitro, gene and protein expression were analysed by RT-qPCR array, flow cytometry and high-throughput immunophenotyping. Functional angiogenic capacity was assessed via in vitro tube formation, ex ovo CAM implantation assay, organ-on-chip perfusion model and long-term culture (45 days) in clinical-grade GelMA hydrogels, with and without HUVECs. RESULTS: Biobanked DPSCs retained MSC identity and multi-lineage differentiation potential. Pro-angiogenic/endothelial conditioning enhanced the expression of angiogenic/endothelial genes (PECAM1, VEGFR2, NRP1, ACE), yet most cells maintained a pericyte-like phenotype. Both naive and endothelial-conditioned DPSCs (i.e., naiveDPSCs and endoDPSCs, respectively) significantly enhanced vascular ingrowth in the CAM model. In the organ-on-chip system, naiveDPSCs formed perfusable vasculature with HUVECs and differentiated into perivascular cell types. Most notably, endoDPSCs alone successfully generated vascularised tissue with both CD31(+) and αSMA(+) cells present in GelMA hydrogels after prolonged stimulation. CONCLUSION: Long-term biobanked DPSCs preserve their angiogenic potential and, following extended endothelial induction, can independently generate vascularised tissue in 3D in vitro culture models. This is the first report demonstrating the comprehensive pro-angiogenic characterisation and the feasibility of using biobanked DPSCs for vascularised tissue engineering, highlighting their strong clinical applicability for future regenerative therapies.

Zobrazit více v PubMed

Bahsoun, S. , Coopman K., and Akam E. C.. 2019. “The Impact of Cryopreservation on Bone Marrow‐Derived Mesenchymal Stem Cells: A Systematic Review.” Journal of Translational Medicine 17, no. 1: 397. PubMed PMC

Bento, L. W. , Zhang Z., Imai A., et al. 2013. “Endothelial Differentiation of Shed Requires mek1/Erk Signaling.” Journal of Dental Research 92, no. 1: 51–57. PubMed PMC

Bergamo, M. T. , Zhang Z., Oliveira T. M., and Nör J. E.. 2021. “Vegfr1 Primes a Unique Cohort of Dental Pulp Stem Cells for Vasculogenic Differentiation.” European Cells and Materials 41: 332–344. PubMed PMC

Cui, Y. , Ji W., Gao Y., Xiao Y., Liu H., and Chen Z.. 2021. “Single‐Cell Characterization of Monolayer Cultured Human Dental Pulp Stem Cells With Enhanced Differentiation Capacity.” International Journal of Oral Science 13, no. 1: 44. PubMed PMC

Dominici, M. , Le Blanc K., Mueller I., et al. 2006. “Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement.” Cytotherapy 8, no. 4: 315–317. PubMed

Dunn, C. M. , Kameishi S., Grainger D. W., and Okano T.. 2021. “Strategies to Address Mesenchymal Stem/Stromal Cell Heterogeneity in Immunomodulatory Profiles to Improve Cell‐Based Therapies.” Acta Biomaterialia 133: 114–125. PubMed

Egusa, H. , Sonoyama W., Nishimura M., Atsuta I., and Akiyama K.. 2012. “Stem Cells in Dentistry–Part i: Stem Cell Sources.” Journal of Prosthodontic Research 56, no. 3: 151–165. PubMed

Faruangsaeng, T. , Thaweesapphitak S., Khamwachirapitak C., Porntaveetus T., and Shotelersuk V.. 2022. “Comparative Transcriptome Profiles of Human Dental Pulp Stem Cells From Maxillary and Mandibular Teeth.” Scientific Reports 12, no. 1: 8860. PubMed PMC

Ganapathy, A. , Narayanan K., Chen Y., Villani C., and George A.. 2024. “Dentin Matrix Protein 1 and Huvec‐Ecm Scaffold Promote the Differentiation of Human Dental Pulp Stem Cells Into Endothelial Lineage: Implications in Regenerative Medicine.” Frontiers in Physiology 15: 1429247. PubMed PMC

Huang, J. , Guo J., Zhou L., et al. 2021. “Advanced Nanomaterials‐Assisted Cell Cryopreservation: A Mini Review.” ACS Applied Bio Materials 4, no. 4: 2996–3014. PubMed

Ishikawa, Y. , Ida‐Yonemochi H., Nakakura‐Ohshima K., and Ohshima H.. 2012. “The Relationship Between Cell Proliferation and Differentiation and Mapping of Putative Dental Pulp Stem/Progenitor Cells During Mouse Molar Development by Chasing Brdu‐Labeling.” Cell and Tissue Research 348, no. 1: 95–107. PubMed

Ishizaka, R. , Hayashi Y., Iohara K., et al. 2013. “Stimulation of Angiogenesis, Neurogenesis and Regeneration by Side Population Cells From Dental Pulp.” Biomaterials 34, no. 8: 1888–1897. PubMed

Itoh, Y. , Sasaki J. I., Hashimoto M., Katata C., Hayashi M., and Imazato S.. 2018. “Pulp Regeneration by 3‐Dimensional Dental Pulp Stem Cell Constructs.” Journal of Dental Research 97, no. 10: 1137–1143. PubMed

Izaguirre‐Pérez, N. , Ligero G., Aguilar‐Solana P. A., et al. 2024. “Trehalose Cryopreservation of Human Mesenchymal Stem Cells From Cord Tissue.” Biopreservation and Biobanking 23, no. 4: 374–382. PubMed

Janebodin, K. , Zeng Y., Buranaphatthana W., Ieronimakis N., and Reyes M.. 2013. “Vegfr2‐Dependent Angiogenic Capacity of Pericyte‐Like Dental Pulp Stem Cells.” Journal of Dental Research 92, no. 6: 524–531. PubMed

Joshi, P. , Vijaykumar A., Enkhmandakh B., Shin D. G., Mina M., and Bayarsaihan D.. 2022. “The Chromatin Accessibility Landscape in the Dental Pulp of Mouse Molars and Incisors.” Acta Biochimica Polonica 69, no. 1: 131–138. PubMed

Katata, C. , Sasaki J. I., Li A., et al. 2021. “Fabrication of Vascularized Dpsc Constructs for Efficient Pulp Regeneration.” Journal of Dental Research 100, no. 12: 1351–1358. PubMed PMC

Krivanek, J. , Soldatov R. A., Kastriti M. E., et al. 2020. “Dental Cell Type Atlas Reveals Stem and Differentiated Cell Types in Mouse and Human Teeth.” Nature Communications 11, no. 1: 4816. PubMed PMC

Li, A. , Sasaki J. I., Inubushi T., et al. 2023. “Role of Heparan Sulfate in Vasculogenesis of Dental Pulp Stem Cells.” Journal of Dental Research 102, no. 2: 207–216. PubMed PMC

Liu, Y. , Gan L., Cui D. X., et al. 2021. “Epigenetic Regulation of Dental Pulp Stem Cells and Its Potential in Regenerative Endodontics.” World Journal of Stem Cells 13, no. 11: 1647–1666. PubMed PMC

Lott, K. , Collier P., Ringor M., et al. 2022. “Assessment and Analysis of Dental Pulp Stem Cells (Dpscs) Biomarkers and Viability Following Cryopreser‐Vation Reveals Novel Association With Mir‐218 Expression.” EC Dental Science 21: 115–128.

Ma, X. , Zhao B., Wang C., et al. 2024. “Anxa1 Enhances the Proangiogenic Potential of Human Dental Pulp Stem Cells.” Stem Cells International 2024, no. 1: 7045341. PubMed PMC

Macrin, D. , Alghadeer A., Zhao Y. T., et al. 2019. “Metabolism as an Early Predictor of Dpscs Aging.” Scientific Reports 9, no. 1: 2195. PubMed PMC

Marchionni, C. , Bonsi L., Alviano F., et al. 2009. “Angiogenic Potential of Human Dental Pulp Stromal (Stem) Cells.” International Journal of Immunopathology and Pharmacology 22, no. 3: 699–706. PubMed

Matsumura, K. , and Hyon S. H.. 2009. “Polyampholytes as Low Toxic Efficient Cryoprotective Agents With Antifreeze Protein Properties.” Biomaterials 30, no. 27: 4842–4849. PubMed

Mitsiadis, T. , Catón J., Pagella P., Orsini G., and Jimenez‐Rojo L.. 2017. “Monitoring Notch Signaling‐Associated Activation of Stem Cell Niches Within Injured Dental Pulp.” Frontiers in Physiology 8: 372. PubMed PMC

Mustafa, K. , Yamada S., Sanchez N., Mayol M., Gjerde C., and Sanz M.. 2025. “Cell Therapy for Periodontal, Soft‐Tissue, and Craniofacial Regeneration.” Journal of Periodontal Research: 1–26. PubMed

Nagendrababu, V. , Murray P. E., Ordinola‐Zapata R., et al. 2021. “Prile 2021 Guidelines for Reporting Laboratory Studies in Endodontology: A Consensus‐Based Development.” International Endodontic Journal 54, no. 9: 1482–1490. PubMed

Pagella, P. , de Vargas Roditi L., Stadlinger B., Moor A. E., and Mitsiadis T. A.. 2021a. “Notch Signaling in the Dynamics of Perivascular Stem Cells and Their Niches.” Stem Cells Translational Medicine 10, no. 10: 1433–1445. PubMed PMC

Pagella, P. , de Vargas Roditi L., Stadlinger B., Moor A. E., and Mitsiadis T. A.. 2021b. “A Single‐Cell Atlas of Human Teeth.” iScience 24, no. 5: 102405. PubMed PMC

Pilbauerova, N. , Schmidt J., Soukup T., Duska J., and Suchanek J.. 2021. “Intra‐Individual Variability of Human Dental Pulp Stem Cell Features Isolated From the Same Donor.” International Journal of Molecular Sciences 22, no. 24: 13515. PubMed PMC

Redaelli, S. , Bentivegna A., Foudah D., et al. 2012. “From Cytogenomic to Epigenomic Profiles: Monitoring the Biologic Behavior of In Vitro Cultured Human Bone Marrow Mesenchymal Stem Cells.” Stem Cell Research & Therapy 3, no. 6: 47. PubMed PMC

Sasaki, J. I. , Zhang Z., Oh M., et al. 2020. “Ve‐Cadherin and Anastomosis of Blood Vessels Formed by Dental Stem Cells.” Journal of Dental Research 99, no. 4: 437–445. PubMed PMC

Shaik, S. , Wu X., Gimble J., and Devireddy R.. 2018. “Effects of Decade Long Freezing Storage on Adipose Derived Stem Cells Functionality.” Scientific Reports 8, no. 1: 8162. PubMed PMC

Shorokhova, M. , Pugovkina N., Zemelko V., Lyublinskaya O., and Grinchuk T.. 2024. “Long‐Term Cryopreservation May Cause Genomic Instability and the Premature Senescence of Cells.” International Journal of Molecular Sciences 25, no. 3: 1467. PubMed PMC

Sugimoto, Y. , Yamazaki Y., Moriyama K., et al. 2021. “Differentiation and Proliferation Potencies of Human Bone Tissue‐Derived Mesenchymal Stromal Cells (Hbt‐Mscs) After Long‐Term Cryopreservation ‐Comparison Among Cells Stored for 1, 5, 10, 15, and 20 Years.” Regenerative Therapy 18: 363–371. PubMed PMC

Tenyi, A. , Milutinović A., and Nemeth L.. 2023. “Expression of cd31, cd34, and Smooth Muscle Actin (Sma) in Endothelial Cells of Dental Pulp Vessels.” Biomolecules & Biomedicine 24, no. 4: 821–826. PubMed PMC

Thaler, R. , Spitzer S., Karlic H., Klaushofer K., and Varga F.. 2012. “Dmso Is a Strong Inducer of DNA Hydroxymethylation in Pre‐Osteoblastic mc3t3‐e1 Cells.” Epigenetics 7, no. 6: 635–651. PubMed PMC

Tripathy, S. , Singh S., and Das S. K.. 2022. “Chapter 19 ‐ Cryopreservation of Mesenchymal Stem Cells (Mscs) Derived From Bone Marrow With Carbohydrate Additive Sucrose and Dimethyl Sulfoxide (Dmso).” In Contemporary Medical Biotechnology Research for Human Health, edited by Joshi S., Mukherjee S., and Nag M., 177–186. Academic Press.

Verheijen, M. , Lienhard M., Schrooders Y., et al. 2019. “Dmso Induces Drastic Changes in Human Cellular Processes and Epigenetic Landscape In Vitro.” Scientific Reports 9, no. 1: 4641. PubMed PMC

Wang, H. Y. , Lun Z. R., and Lu S. S.. 2011. “Cryopreservation of Umbilical Cord Blood‐Derived Mesenchymal Stem Cells Without Dimethyl Sulfoxide.” Cryo Letters 32, no. 1: 81–88. PubMed

Wang, J. , and Li R.. 2024. “Effects, Methods and Limits of the Cryopreservation on Mesenchymal Stem Cells.” Stem Cell Research & Therapy 15, no. 1: 337. PubMed PMC

Wang, J. , Wei X., Ling J., Huang Y., Gong Q., and Huo Y.. 2012. “Identification and Characterization of Side Population Cells From Adult Human Dental Pulp After Ischemic Culture.” Journal of Endodontics 38, no. 11: 1489–1497. PubMed

Wang, X. , Wang E., and Zhao G.. 2023. “Advanced Cryopreservation Engineering Strategies: The Critical Step to Utilize Stem Cell Products.” Cell Regeneration 12, no. 1: 28. PubMed PMC

Xu, X. , Fu J., Yang G., Chen Z., Chen S., and Yuan G.. 2025. “Dentin Sialoprotein Promotes Endothelial Differentiation of Dental Pulp Stem Cells Through Dsp(aa34‐50)‐Endoglin‐akt1 Axis.” Journal of Biological Chemistry 301, no. 4: 108380. PubMed PMC

Yamada, S. , Al‐Sharabi N., Torelli F., et al. 2024. “Harnessing the Antioxidative Potential of Dental Pulp Stem Cell‐Conditioned Medium in Photopolymerized Gelma Hydrogels.” Biomaterials Research 28: 0084. PubMed PMC

Yamada, S. , Malkmus C., Aasebø E., Mustafa K., Egusa H., and Volponi A. A.. 2025. “Production and Biobanking of Dental Stem Cells for Clinical Applications in Regenerative Dentistry: Current Practices and Future Perspectives ‐ a Narrative Review.” Journal of Dentistry 161: 105934. PubMed

Yu, J. , He H., Tang C., et al. 2010. “Differentiation Potential of Stro‐1+ Dental Pulp Stem Cells Changes During Cell Passaging.” BMC Cell Biology 11, no. 1: 32. PubMed PMC

Zhang, Z. , Oh M., Sasaki J.‐I., and Nör J. E.. 2021. “Inverse and Reciprocal Regulation of p53/p21 and Bmi‐1 Modulates Vasculogenic Differentiation of Dental Pulp Stem Cells.” Cell Death & Disease 12, no. 7: 644. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...