Intra-Individual Variability of Human Dental Pulp Stem Cell Features Isolated from the Same Donor
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Q40/13 and Q40/06
Charles University's program PROGRES
PubMed
34948330
PubMed Central
PMC8709021
DOI
10.3390/ijms222413515
PII: ijms222413515
Knihovny.cz E-zdroje
- Klíčová slova
- dental stem cells, intra-individual variability, mesenchymal stem cells, regenerative medicine, same donor isolation, stem cell characterization,
- MeSH
- buněčná diferenciace fyziologie MeSH
- buněčné linie MeSH
- buněčný rodokmen fyziologie MeSH
- chondrocyty fyziologie MeSH
- dárci tkání MeSH
- individuální biologická variabilita MeSH
- kmenové buňky fyziologie MeSH
- lidé MeSH
- mladiství MeSH
- osteocyty fyziologie MeSH
- proliferace buněk fyziologie MeSH
- tukové buňky fyziologie MeSH
- zubní dřeň fyziologie MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
It is primarily important to define the standard features and factors that affect dental pulp stem cells (DPSCs) for their broader use in tissue engineering. This study aimed to verify whether DPSCs isolated from various teeth extracted from the same donor exhibit intra-individual variability and what the consequences are for their differentiation potential. The heterogeneity determination was based on studying the proliferative capacity, viability, expression of phenotypic markers, and relative length of telomere chromosomes. The study included 14 teeth (6 molars and 8 premolars) from six different individuals ages 12 to 16. We did not observe any significant intra-individual variability in DPSC size, proliferation rate, viability, or relative telomere length change within lineages isolated from different teeth but the same donor. The minor non-significant variances in phenotype were probably mainly because DPSC cell lines comprised heterogeneous groups of undifferentiated cells independent of the donor. The other variances were seen in DPSC lineages isolated from the same donor, but the teeth were in different stages of root development. We also did not observe any changes in the ability of cells to differentiate into mature cell lines-chondrocytes, osteocytes, and adipocytes. This study is the first to analyze the heterogeneity of DPSC dependent on a donor.
Zobrazit více v PubMed
Zakrzewski W., Dobrzyński M., Szymonowicz M., Rybak Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019;10:68. doi: 10.1186/s13287-019-1165-5. PubMed DOI PMC
Ledesma-Martínez E., Mendoza-Núñez V.M., Santiago-Osorio E. Mesenchymal Stem Cells Derived from Dental Pulp: A Review. Stem Cells Int. 2015;2016:4709572. doi: 10.1155/2016/4709572. PubMed DOI PMC
Nuti N., Corallo C., Chan B.M.F., Ferrari M., Gerami-Naini B. Multipotent Differentiation of Human Dental Pulp Stem Cells: A Literature Review. Stem Cell Rev. Rep. 2016;12:511–523. doi: 10.1007/s12015-016-9661-9. PubMed DOI
Suchanek J., Nasry S.A., Soukup T. The Differentiation Potential of Human Natal Dental Pulp Stem Cells into Insulin-Producing Cells. Folia Biol. 2017;63:132–138. PubMed
Yamada Y., Nakamura-Yamada S., Kusano K., Baba S. Clinical Potential and Current Progress of Dental Pulp Stem Cells for Various Systemic Diseases in Regenerative Medicine: A Concise Review. Int. J. Mol. Sci. 2019;20:1132. doi: 10.3390/ijms20051132. PubMed DOI PMC
Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3:393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x. PubMed DOI
Toma J.G., Akhavan M., Fernandes K.J.L., Barnabé-Heider F., Sadikot A., Kaplan D.R., Miller F.D. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 2001;3:778–784. doi: 10.1038/ncb0901-778. PubMed DOI
Zvaifler N.J., Marinova-Mutafchieva L., Adams G., Edwards C.J., Moss J., Burger J.A., Maini R.N. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2:477–488. doi: 10.1186/ar130. PubMed DOI PMC
Huang G.T.-J., Gronthos S., Shi S. Mesenchymal Stem Cells Derived from Dental Tissues vs. Those from Other Sources: Their Biology and Role in Regenerative Medicine. J. Dent. Res. 2009;88:792–806. doi: 10.1177/0022034509340867. PubMed DOI PMC
Anitua E., Troya M., Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy. 2018;20:479–498. doi: 10.1016/j.jcyt.2017.12.011. PubMed DOI
Verma K., Bains R., Bains V.K., Rawtiya M., Loomba K., Srivastava S.C. Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview. Dent. Res. J. 2014;11:302–308. PubMed PMC
Al-Zer H., Apel C., Heiland M., Friedrich R.E., Jung O., Kroeger N., Eichhorn W., Smeets R. Enrichment and Schwann Cell Differentiation of Neural Crest-derived Dental Pulp Stem Cells. In Vivo. 2015;29:319–326. PubMed
Zhang J., Lu X., Feng G., Gu Z., Sun Y., Bao G., Xu G., Lu Y., Chen J., Xu L., et al. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: Potential roles for spinal cord injury therapy. Cell Tissue Res. 2016;366:129–142. doi: 10.1007/s00441-016-2402-1. PubMed DOI
Askari N., Yaghoobi M.M., Shamsara M., Mahani S.E. Human Dental Pulp Stem Cells Differentiate into Oligodendrocyte Progenitors Using the Expression of Olig2 Transcription Factor. Cells Tissues Organs. 2015;200:93–103. doi: 10.1159/000381668. PubMed DOI
Chang C.-C., Chang K.-C., Tsai S.-J., Chang H.-H., Lin C.-P. Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. J. Formos. Med. Assoc. 2014;113:956–965. doi: 10.1016/j.jfma.2014.09.003. PubMed DOI
Chun S.Y., Soker S., Jang Y.-J., Kwon T.G., Yoo E.S. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro. J. Korean Med. Sci. 2016;31:171–177. doi: 10.3346/jkms.2016.31.2.171. PubMed DOI PMC
Kushnerev E., Shawcross S.G., Sothirachagan S., Carley F., Brahma A., Yates J.M., Hillarby M.C. Regeneration of Corneal Epithelium With Dental Pulp Stem Cells Using a Contact Lens Delivery System. Investig. Opthalmol. Vis. Sci. 2016;57:5192–5199. doi: 10.1167/iovs.15-17953. PubMed DOI
Mead B., Logan A., Berry M., Leadbeater W., Scheven B.A. Paracrine-Mediated Neuroprotection and Neuritogenesis of Axotomised Retinal Ganglion Cells by Human Dental Pulp Stem Cells: Comparison with Human Bone Marrow and Adipose-Derived Mesenchymal Stem Cells. PLoS ONE. 2014;9:e109305. doi: 10.1371/journal.pone.0109305. PubMed DOI PMC
Mead B., Logan A., Berry M., Leadbeater W., Scheven B.A. Intravitreally Transplanted Dental Pulp Stem Cells Promote Neuroprotection and Axon Regeneration of Retinal Ganglion Cells After Optic Nerve Injury. Investig. Opthalmol. Vis. Sci. 2013;54:7544–7556. doi: 10.1167/iovs.13-13045. PubMed DOI
Siebert H.C., André S., Asensio J.L., Cañada F.J., Dong X., Espinosa J.F., Frank M., Gilleron M., Kaltner H., Kozár T., et al. A new combined computational and NMR-spectroscopical strategy for the identification of additional conformational constraints of the bound ligand in an aprotic solvent. Chembiochem. 2000;1:181–195. doi: 10.1002/1439-7633(20001002)1:3<181::AID-CBIC181>3.0.CO;2-9. PubMed DOI
Monaco M.L., Gervois P., Beaumont J., Clegg P., Bronckaers A., Vandeweerd J.-M., Lambrichts I. Therapeutic Potential of Dental Pulp Stem Cells and Leukocyte- and Platelet-Rich Fibrin for Osteoarthritis. Cells. 2020;9:980. doi: 10.3390/cells9040980. PubMed DOI PMC
Petridis X., Diamanti E., Trigas G.C., Kalyvas D., Kitraki E. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold. J. Cranio-Maxillofac. Surg. 2015;43:483–490. doi: 10.1016/j.jcms.2015.02.003. PubMed DOI
Wongsupa N., Nuntanaranont T., Kamolmattayakul S., Thuaksuban N. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. J. Mater. Sci. Mater. Med. 2017;28:77. doi: 10.1007/s10856-017-5883-x. PubMed DOI
Hirata M., Ishigami M., Matsushita Y., Ito T., Hattori H., Hibi H., Goto H., Ueda M., Yamamoto A. Multifaceted Therapeutic Benefits of Factors Derived From Dental Pulp Stem Cells for Mouse Liver Fibrosis. Stem Cells Transl. Med. 2016;5:1416–1424. doi: 10.5966/sctm.2015-0353. PubMed DOI PMC
D’Aquino R., De Rosa A., Laino G., Caruso F., Guida L., Rullo R., Checchi V., Laino L., Tirino V., Papaccio G. Human dental pulp stem cells: From biology to clinical applications. J. Exp. Zool. Part B Mol. Dev. Evol. 2008;312:408–415. doi: 10.1002/jez.b.21263. PubMed DOI
Ferrúa C.P., Centeno E.G.Z., da Rosa L.C., Amaral C.C.D., Severo R.F., Sarkis-Onofre R., Nascimento G.G., Cordenonzi G., Bast R.K., Demarco F.F., et al. How has dental pulp stem cells isolation been conducted? A scoping review. Braz. Oral Res. 2017;31:e87. doi: 10.1590/1807-3107bor-2017.vol31.0087. PubMed DOI
Vallone V.B.F., Romaniuk M., Choi H., Labovsky V., Otaegui J., Chasseing N. Mesenchymal stem cells and their use in therapy: What has been achieved? Differentiation. 2013;85:1–10. doi: 10.1016/j.diff.2012.08.004. PubMed DOI
Jang J.-H., Lee H.-W., Cho K.M., Shin H.-W., Kang M.K., Park S.H., Kim E. In vitrocharacterization of human dental pulp stem cells isolated by three different methods. Restor. Dent. Endod. 2016;41:283–295. doi: 10.5395/rde.2016.41.4.283. PubMed DOI PMC
Bressan E., Ferroni L., Gardin C., Pinton P., Stellini E., Botticelli D., Sivolella S., Zavan B. Donor Age-Related Biological Properties of Human Dental Pulp Stem Cells Change in Nanostructured Scaffolds. PLoS ONE. 2012;7:e49146. doi: 10.1371/journal.pone.0049146. PubMed DOI PMC
Kellner M., Steindorff M.M., Strempel J.F., Winkel A., Kühnel M.P., Stiesch M. Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement. Arch. Oral Biol. 2014;59:559–567. doi: 10.1016/j.archoralbio.2014.02.014. PubMed DOI
Kunimatsu R., Nakajima K., Awada T., Tsuka Y., Abe T., Ando K., Hiraki T., Kimura A., Tanimoto K. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow–derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2018;501:193–198. doi: 10.1016/j.bbrc.2018.04.213. PubMed DOI
Isobe Y., Koyama N., Nakao K., Osawa K., Ikeno M., Yamanaka S., Okubo Y., Fujimura K., Bessho K. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int. J. Oral Maxillofac. Surg. 2015;45:124–131. doi: 10.1016/j.ijom.2015.06.022. PubMed DOI
Genova T., Cavagnetto D., Tasinato F., Petrillo S., Ruffinatti F., Mela L., Carossa M., Munaron L., Roato I., Mussano F. Isolation and Characterization of Buccal Fat Pad and Dental Pulp MSCs from the Same Donor. Biomedicines. 2021;9:265. doi: 10.3390/biomedicines9030265. PubMed DOI PMC
Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Hilkens P., Gervois P., Fanton Y., Vanormelingen J., Martens W., Struys T., Politis C., Lambrichts I., Bronckaers A. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res. 2013;353:65–78. doi: 10.1007/s00441-013-1630-x. PubMed DOI
Karamzadeh R., Eslaminejad M.B., Aflatoonian R. Isolation, Characterization and Comparative Differentiation of Human Dental Pulp Stem Cells Derived from Permanent Teeth by Using Two Different Methods. J. Vis. Exp. 2012:4372. doi: 10.3791/4372. PubMed DOI PMC
Wang X., Sha X.-J., Li G.-H., Yang F.-S., Ji K., Wen L.-Y., Liu S.-Y., Chen L., Ding Y., Xuan K. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch. Oral Biol. 2012;57:1231–1240. doi: 10.1016/j.archoralbio.2012.02.014. PubMed DOI
Mehrabani D., Mahdiyar P., Torabi K., Robati R., Zare S., Dianatpour M., Tamadon A. Growth kinetics and characterization of human dental pulp stem cells: Comparison between third molar and first premolar teeth. J. Clin. Exp. Dent. 2017;9:e172–e177. doi: 10.4317/jced.52824. PubMed DOI PMC
Mokry J., Soukup T., Micuda S., Karbanova J., Visek B., Brcakova E., Suchanek J., Bouchal J., Vokurkova D., Ivancakova R. Telomere Attrition Occurs during Ex Vivo Expansion of Human Dental Pulp Stem Cells. J. Biomed. Biotechnol. 2010;2010:673513. doi: 10.1155/2010/673513. PubMed DOI PMC
Pilbauerova N., Soukup T., Kleplova T.S., Schmidt J., Suchanek J. The Effect of Cultivation Passaging on the Relative Telomere Length and Proliferation Capacity of Dental Pulp Stem Cells. Biomolecules. 2021;11:464. doi: 10.3390/biom11030464. PubMed DOI PMC
Suchánek J., Visek B., Soukup T., El-Din Mohamed S.K., Ivancakova R., Mokrý J., Aboul-Ezz E.H.A., Omran A. Stem Cells from Human Exfoliated Deciduous Teeth–Isolation, Long Term Cultivation and Phenotypical Analysis. Acta Med. 2010;53:93–99. doi: 10.14712/18059694.2016.66. PubMed DOI