Martini 3 Limitations in Phospholipid Flip-Flop

. 2025 Oct 14 ; 21 (19) : 9227-9233. [epub] 20250925

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40994263

Phospholipid membranes serve as essential barriers in biological systems, and protein-mediated lipid flip-flop is a crucial process for lipid homeostasis in membranes, which is vital for various cellular functions. These phenomena can be studied using the Martini coarse-grained force field, a valuable tool for membrane simulations that balances computational efficiency with chemical accuracy while capturing key membrane properties. However, the accuracy of the newer Martini 3 force field in describing energetics of phospholipid flip-flop remains unknown. Here, we show dramatic differences in the free energy barriers of lipid flip-flop when simulated with Martini 3, Martini 2.2, and CHARMM36m force fields. Using umbrella sampling simulations of six phospholipids (POPC, DPPA, POPE, POPG, POPS, and DPTAP) in the POPC membrane, we demonstrate that Martini 3 predicts significantly lower flip-flop barriers compared to all-atom simulations and the older Martini 2.2 version, with particularly severe underestimation for the positively charged lipid (DPTAP). For DPTAP, we identified that altered Lennard-Jones parameters between choline and alkyl tail beads likely contribute to this discrepancy, as evidenced by our systematic parameter testing. These findings highlight limitations in the current Martini 3 parametrization that should be considered when studying processes involving molecular transport across membranes and suggest potential refinements to improve the model's accuracy for such phenomena. To complete the picture, we also discuss the energetics of flip-flops of phospholipids with various lipid tail lengths (DLPC, DMPC, DPPC, DSPC) and lipid tail saturation (DOPC).

Zobrazit více v PubMed

Anglin T. C., Cooper M. P., Li H., Chandler K., Conboy J. C.. Free Energy and Entropy of Activation for Phospholipid Flip-Flop in Planar Supported Lipid Bilayers. J. Phys. Chem. B. 2010;114(5):1903–1914. doi: 10.1021/jp909134g. PubMed DOI

Cullis P. R., De Kruijff B.. Lipid Polymorphism and the Functional Roles of Lipids in Biological Membranes. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1979;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. PubMed DOI

Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., de Vries A. H.. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B. 2007;111(27):7812–7824. doi: 10.1021/jp071097f. PubMed DOI

Souza P. C. T., Alessandri R., Barnoud J., Thallmair S., Faustino I., Grünewald F., Patmanidis I., Abdizadeh H., Bruininks B. M. H., Wassenaar T. A., Kroon P. C., Melcr J., Nieto V., Corradi V., Khan H. M., Domański J., Javanainen M., Martinez-Seara H., Reuter N., Best R. B., Vattulainen I., Monticelli L., Periole X., Tieleman D. P., de Vries A. H., Marrink S. J.. Martini 3: A General Purpose Force Field for Coarse-Grained Molecular Dynamics. Nat. Methods. 2021;18(4):382–388. doi: 10.1038/s41592-021-01098-3. PubMed DOI

Thomasen F. E., Skaalum T., Kumar A., Srinivasan S., Vanni S., Lindorff-Larsen K.. Rescaling Protein-Protein Interactions Improves Martini 3 for Flexible Proteins in Solution. Nat. Commun. 2024;15(1):6645. doi: 10.1038/s41467-024-50647-9. PubMed DOI PMC

Kharche S., Yadav M., Hande V., Prakash S., Sengupta D.. Improved Protein Dynamics and Hydration in the Martini3 Coarse-Grain Model. J. Chem. Inf. Model. 2024;64(3):837–850. doi: 10.1021/acs.jcim.3c00802. PubMed DOI

Claveras Cabezudo A., Athanasiou C., Tsengenes A., Wade R. C.. Scaling Protein–Water Interactions in the Martini 3 Coarse-Grained Force Field to Simulate Transmembrane Helix Dimers in Different Lipid Environments. J. Chem. Theory Comput. 2023;19(7):2109–2119. doi: 10.1021/acs.jctc.2c00950. PubMed DOI

Soni J., Gupta S., Mandal T.. Recalibration of MARTINI-3 Parameters for Improved Interactions between Peripheral Proteins and Lipid Bilayers. J. Chem. Theory Comput. 2024;20(21):9673–9686. doi: 10.1021/acs.jctc.4c00645. PubMed DOI

Spinti J. K., Neiva Nunes F., Melo M. N.. Room for Improvement in the Initial Martini 3 Parameterization of Peptide Interactions. Chem. Phys. Lett. 2023;819:140436. doi: 10.1016/j.cplett.2023.140436. DOI

Jarin Z., Newhouse J., Voth G. A.. Coarse-Grained Force Fields from the Perspective of Statistical Mechanics: Better Understanding of the Origins of a MARTINI Hangover. J. Chem. Theory Comput. 2021;17(2):1170–1180. doi: 10.1021/acs.jctc.0c00638. PubMed DOI PMC

Loose T. D., Sahrmann P. G., Qu T. S., Voth G. A.. Changing Your Martini Can Still Give You a Hangover. J. Chem. Theory Comput. 2024;20(20):9190–9208. doi: 10.1021/acs.jctc.4c00868. PubMed DOI PMC

Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B. L., Grubmüller H., MacKerell A. D.. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods. 2017;14(1):71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC

de Jong D. H., Singh G., Bennett W. F. D., Arnarez C., Wassenaar T. A., Schäfer L. V., Periole X., Tieleman D. P., Marrink S. J.. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2013;9(1):687–697. doi: 10.1021/ct300646g. PubMed DOI

Pedersen K. B., Ingólfsson H. I., Ramirez-Echemendia D. P., Borges-Araújo L., Andreasen M. D., Empereur-mot C., Melcr J., Ozturk T. N., Bennett W. F. D., Kjølbye L. R., Brasnett C., Corradi V., Khan H. M., Cino E. A., Crowley J., Kim H., Fábián B., Borges-Araújo A. C., Pavan G. M., Launay G., Lolicato F., Wassenaar T. A., Melo M. N., Thallmair S., Carpenter T. S., Monticelli L., Tieleman D. P., Schiøtt B., Souza P. C. T., Marrink S. J.. The Martini 3 Lipidome: Expanded and Refined Parameters Improve Lipid Phase Behavior. ACS Cent. Sci. 2025 doi: 10.1021/acscentsci.5c00755. PubMed DOI PMC

Brown K. L., Conboy J. C.. Lipid Flip-Flop in Binary Membranes Composed of Phosphatidylserine and Phosphatidylcholine. J. Phys. Chem. B. 2013;117(48):15041–15050. doi: 10.1021/jp409672q. PubMed DOI

Brown K. L., Conboy J. C.. Phosphatidylglycerol Flip-Flop Suppression Due to Headgroup Charge Repulsion. J. Phys. Chem. B. 2015;119(32):10252–10260. doi: 10.1021/acs.jpcb.5b05523. PubMed DOI

Homan R., Pownall H. J.. Transbilayer Diffusion of Phospholipids: Dependence on Headgroup Structure and Acyl Chain Length. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1988;938(2):155–166. doi: 10.1016/0005-2736(88)90155-1. PubMed DOI

Volinsky R., Cwiklik L., Jurkiewicz P., Hof M., Jungwirth P., Kinnunen P. K. J.. Oxidized Phosphatidylcholines Facilitate Phospholipid Flip-Flop in Liposomes. Biophys. J. 2011;101(6):1376–1384. doi: 10.1016/j.bpj.2011.07.051. PubMed DOI PMC

Razzokov J., Yusupov M., Vanuytsel S., Neyts E. C., Bogaerts A.. Phosphatidylserine Flip-flop Induced by Oxidation of the Plasma Membrane: A Better Insight by Atomic Scale Modeling. Plasma Processes & Polymers. 2017;14(10):1700013. doi: 10.1002/ppap.201700013. DOI

Post, M. ; Hummer, G. . AI-Guided Transition Path Sampling of Lipid Flip-Flop and Membrane Nanoporation. arXiv Preprint, arXiv:2502.11894, February 17, 2025. 10.48550/arXiv.2502.11894. DOI

Sapay N., Bennett W. F. D., Tieleman D. P.. Molecular Simulations of Lipid Flip-Flop in the Presence of Model Transmembrane Helices. Biochemistry. 2010;49(35):7665–7673. doi: 10.1021/bi100878q. PubMed DOI

Bennett W. F. D., Tieleman D. P.. Water Defect and Pore Formation in Atomistic and Coarse-Grained Lipid Membranes: Pushing the Limits of Coarse Graining. J. Chem. Theory Comput. 2011;7(9):2981–2988. doi: 10.1021/ct200291v. PubMed DOI

Yesylevskyy S. O., Schäfer L. V., Sengupta D., Marrink S. J.. Polarizable Water Model for the Coarse-Grained MARTINI Force Field. PLOS Computational Biology. 2010;6(6):e1000810. doi: 10.1371/journal.pcbi.1000810. PubMed DOI PMC

Sajadi F., Rowley C. N.. Simulations of Lipid Bilayers Using the CHARMM36 Force Field with the TIP3P-FB and TIP4P-FB Water Models. PeerJ. 2018;6:e5472. doi: 10.7717/peerj.5472. PubMed DOI PMC

Schamberger J., Clarke R. J.. Hydrophobic Ion Hydration and the Magnitude of the Dipole Potential. Biophys. J. 2002;82(6):3081–3088. doi: 10.1016/S0006-3495(02)75649-X. PubMed DOI PMC

Peterson U., Mannock D. A., Lewis R. N. A. H., Pohl P., McElhaney R. N., Pohl E. E.. Origin of Membrane Dipole Potential: Contribution of the Phospholipid Fatty Acid Chains. Chem. Phys. Lipids. 2002;117(1):19–27. doi: 10.1016/S0009-3084(02)00013-0. PubMed DOI

Li D., Rocha-Roa C., Schilling M. A., Reinisch K. M., Vanni S.. Lipid Scrambling Is a General Feature of Protein Insertases. Proc. Natl. Acad. Sci. U. S. A. 2024;121(17):e2319476121. doi: 10.1073/pnas.2319476121. PubMed DOI PMC

Jahn H., Bartoš L., Dearden G. I., Dittman J. S., Holthuis J. C. M., Vácha R., Menon A. K.. Phospholipids Are Imported into Mitochondria by VDAC, a Dimeric Beta Barrel Scramblase. Nat. Commun. 2023;14(1):8115. doi: 10.1038/s41467-023-43570-y. PubMed DOI PMC

Bartoš L., Menon A. K., Vácha R.. Insertases Scramble Lipids: Molecular Simulations of MTCH2. Structure. 2024;32(4):505–510.e4. doi: 10.1016/j.str.2024.01.012. PubMed DOI PMC

Gao J., Franzkoch R., Rocha-Roa C., Psathaki O. E., Hensel M., Vanni S., Ungermann C.. Any1 Is a Phospholipid Scramblase Involved in Endosome Biogenesis. J. Cell Biol. 2025;224(4):e202410013. doi: 10.1083/jcb.202410013. PubMed DOI PMC

Javanainen M., Šimek J., Tranter D., O’Keefe S., Karki S., Biriukov D., Šachl R., Paavilainen V. O.. Lipid Scrambling Pathways in the Sec61 Translocon Complex. J. Am. Chem. Soc. 2025;147(19):15970–15984. doi: 10.1021/jacs.4c11142. PubMed DOI PMC

Jo S., Kim T., Iyer V. G., Im W.. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008;29(11):1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Tieleman D. P., Marrink S.-J.. Lipids Out of Equilibrium: Energetics of Desorption and Pore Mediated Flip-Flop. J. Am. Chem. Soc. 2006;128(38):12462–12467. doi: 10.1021/ja0624321. PubMed DOI

Hub J. S., de Groot B. L., van der Spoel D.. G_whamA Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem. Theory Comput. 2010;6(12):3713–3720. doi: 10.1021/ct100494z. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...