Martini 3 Limitations in Phospholipid Flip-Flop
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40994263
PubMed Central
PMC12529914
DOI
10.1021/acs.jctc.5c00994
Knihovny.cz E-zdroje
- MeSH
- fosfatidylcholiny chemie MeSH
- fosfolipidy * chemie MeSH
- lipidové dvojvrstvy * chemie MeSH
- simulace molekulární dynamiky * MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylphosphatidylcholine MeSH Prohlížeč
- fosfatidylcholiny MeSH
- fosfolipidy * MeSH
- lipidové dvojvrstvy * MeSH
Phospholipid membranes serve as essential barriers in biological systems, and protein-mediated lipid flip-flop is a crucial process for lipid homeostasis in membranes, which is vital for various cellular functions. These phenomena can be studied using the Martini coarse-grained force field, a valuable tool for membrane simulations that balances computational efficiency with chemical accuracy while capturing key membrane properties. However, the accuracy of the newer Martini 3 force field in describing energetics of phospholipid flip-flop remains unknown. Here, we show dramatic differences in the free energy barriers of lipid flip-flop when simulated with Martini 3, Martini 2.2, and CHARMM36m force fields. Using umbrella sampling simulations of six phospholipids (POPC, DPPA, POPE, POPG, POPS, and DPTAP) in the POPC membrane, we demonstrate that Martini 3 predicts significantly lower flip-flop barriers compared to all-atom simulations and the older Martini 2.2 version, with particularly severe underestimation for the positively charged lipid (DPTAP). For DPTAP, we identified that altered Lennard-Jones parameters between choline and alkyl tail beads likely contribute to this discrepancy, as evidenced by our systematic parameter testing. These findings highlight limitations in the current Martini 3 parametrization that should be considered when studying processes involving molecular transport across membranes and suggest potential refinements to improve the model's accuracy for such phenomena. To complete the picture, we also discuss the energetics of flip-flops of phospholipids with various lipid tail lengths (DLPC, DMPC, DPPC, DSPC) and lipid tail saturation (DOPC).
Zobrazit více v PubMed
Anglin T. C., Cooper M. P., Li H., Chandler K., Conboy J. C.. Free Energy and Entropy of Activation for Phospholipid Flip-Flop in Planar Supported Lipid Bilayers. J. Phys. Chem. B. 2010;114(5):1903–1914. doi: 10.1021/jp909134g. PubMed DOI
Cullis P. R., De Kruijff B.. Lipid Polymorphism and the Functional Roles of Lipids in Biological Membranes. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1979;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. PubMed DOI
Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., de Vries A. H.. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B. 2007;111(27):7812–7824. doi: 10.1021/jp071097f. PubMed DOI
Souza P. C. T., Alessandri R., Barnoud J., Thallmair S., Faustino I., Grünewald F., Patmanidis I., Abdizadeh H., Bruininks B. M. H., Wassenaar T. A., Kroon P. C., Melcr J., Nieto V., Corradi V., Khan H. M., Domański J., Javanainen M., Martinez-Seara H., Reuter N., Best R. B., Vattulainen I., Monticelli L., Periole X., Tieleman D. P., de Vries A. H., Marrink S. J.. Martini 3: A General Purpose Force Field for Coarse-Grained Molecular Dynamics. Nat. Methods. 2021;18(4):382–388. doi: 10.1038/s41592-021-01098-3. PubMed DOI
Thomasen F. E., Skaalum T., Kumar A., Srinivasan S., Vanni S., Lindorff-Larsen K.. Rescaling Protein-Protein Interactions Improves Martini 3 for Flexible Proteins in Solution. Nat. Commun. 2024;15(1):6645. doi: 10.1038/s41467-024-50647-9. PubMed DOI PMC
Kharche S., Yadav M., Hande V., Prakash S., Sengupta D.. Improved Protein Dynamics and Hydration in the Martini3 Coarse-Grain Model. J. Chem. Inf. Model. 2024;64(3):837–850. doi: 10.1021/acs.jcim.3c00802. PubMed DOI
Claveras Cabezudo A., Athanasiou C., Tsengenes A., Wade R. C.. Scaling Protein–Water Interactions in the Martini 3 Coarse-Grained Force Field to Simulate Transmembrane Helix Dimers in Different Lipid Environments. J. Chem. Theory Comput. 2023;19(7):2109–2119. doi: 10.1021/acs.jctc.2c00950. PubMed DOI
Soni J., Gupta S., Mandal T.. Recalibration of MARTINI-3 Parameters for Improved Interactions between Peripheral Proteins and Lipid Bilayers. J. Chem. Theory Comput. 2024;20(21):9673–9686. doi: 10.1021/acs.jctc.4c00645. PubMed DOI
Spinti J. K., Neiva Nunes F., Melo M. N.. Room for Improvement in the Initial Martini 3 Parameterization of Peptide Interactions. Chem. Phys. Lett. 2023;819:140436. doi: 10.1016/j.cplett.2023.140436. DOI
Jarin Z., Newhouse J., Voth G. A.. Coarse-Grained Force Fields from the Perspective of Statistical Mechanics: Better Understanding of the Origins of a MARTINI Hangover. J. Chem. Theory Comput. 2021;17(2):1170–1180. doi: 10.1021/acs.jctc.0c00638. PubMed DOI PMC
Loose T. D., Sahrmann P. G., Qu T. S., Voth G. A.. Changing Your Martini Can Still Give You a Hangover. J. Chem. Theory Comput. 2024;20(20):9190–9208. doi: 10.1021/acs.jctc.4c00868. PubMed DOI PMC
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B. L., Grubmüller H., MacKerell A. D.. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods. 2017;14(1):71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC
de Jong D. H., Singh G., Bennett W. F. D., Arnarez C., Wassenaar T. A., Schäfer L. V., Periole X., Tieleman D. P., Marrink S. J.. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2013;9(1):687–697. doi: 10.1021/ct300646g. PubMed DOI
Pedersen K. B., Ingólfsson H. I., Ramirez-Echemendia D. P., Borges-Araújo L., Andreasen M. D., Empereur-mot C., Melcr J., Ozturk T. N., Bennett W. F. D., Kjølbye L. R., Brasnett C., Corradi V., Khan H. M., Cino E. A., Crowley J., Kim H., Fábián B., Borges-Araújo A. C., Pavan G. M., Launay G., Lolicato F., Wassenaar T. A., Melo M. N., Thallmair S., Carpenter T. S., Monticelli L., Tieleman D. P., Schiøtt B., Souza P. C. T., Marrink S. J.. The Martini 3 Lipidome: Expanded and Refined Parameters Improve Lipid Phase Behavior. ACS Cent. Sci. 2025 doi: 10.1021/acscentsci.5c00755. PubMed DOI PMC
Brown K. L., Conboy J. C.. Lipid Flip-Flop in Binary Membranes Composed of Phosphatidylserine and Phosphatidylcholine. J. Phys. Chem. B. 2013;117(48):15041–15050. doi: 10.1021/jp409672q. PubMed DOI
Brown K. L., Conboy J. C.. Phosphatidylglycerol Flip-Flop Suppression Due to Headgroup Charge Repulsion. J. Phys. Chem. B. 2015;119(32):10252–10260. doi: 10.1021/acs.jpcb.5b05523. PubMed DOI
Homan R., Pownall H. J.. Transbilayer Diffusion of Phospholipids: Dependence on Headgroup Structure and Acyl Chain Length. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1988;938(2):155–166. doi: 10.1016/0005-2736(88)90155-1. PubMed DOI
Volinsky R., Cwiklik L., Jurkiewicz P., Hof M., Jungwirth P., Kinnunen P. K. J.. Oxidized Phosphatidylcholines Facilitate Phospholipid Flip-Flop in Liposomes. Biophys. J. 2011;101(6):1376–1384. doi: 10.1016/j.bpj.2011.07.051. PubMed DOI PMC
Razzokov J., Yusupov M., Vanuytsel S., Neyts E. C., Bogaerts A.. Phosphatidylserine Flip-flop Induced by Oxidation of the Plasma Membrane: A Better Insight by Atomic Scale Modeling. Plasma Processes & Polymers. 2017;14(10):1700013. doi: 10.1002/ppap.201700013. DOI
Post, M. ; Hummer, G. . AI-Guided Transition Path Sampling of Lipid Flip-Flop and Membrane Nanoporation. arXiv Preprint, arXiv:2502.11894, February 17, 2025. 10.48550/arXiv.2502.11894. DOI
Sapay N., Bennett W. F. D., Tieleman D. P.. Molecular Simulations of Lipid Flip-Flop in the Presence of Model Transmembrane Helices. Biochemistry. 2010;49(35):7665–7673. doi: 10.1021/bi100878q. PubMed DOI
Bennett W. F. D., Tieleman D. P.. Water Defect and Pore Formation in Atomistic and Coarse-Grained Lipid Membranes: Pushing the Limits of Coarse Graining. J. Chem. Theory Comput. 2011;7(9):2981–2988. doi: 10.1021/ct200291v. PubMed DOI
Yesylevskyy S. O., Schäfer L. V., Sengupta D., Marrink S. J.. Polarizable Water Model for the Coarse-Grained MARTINI Force Field. PLOS Computational Biology. 2010;6(6):e1000810. doi: 10.1371/journal.pcbi.1000810. PubMed DOI PMC
Sajadi F., Rowley C. N.. Simulations of Lipid Bilayers Using the CHARMM36 Force Field with the TIP3P-FB and TIP4P-FB Water Models. PeerJ. 2018;6:e5472. doi: 10.7717/peerj.5472. PubMed DOI PMC
Schamberger J., Clarke R. J.. Hydrophobic Ion Hydration and the Magnitude of the Dipole Potential. Biophys. J. 2002;82(6):3081–3088. doi: 10.1016/S0006-3495(02)75649-X. PubMed DOI PMC
Peterson U., Mannock D. A., Lewis R. N. A. H., Pohl P., McElhaney R. N., Pohl E. E.. Origin of Membrane Dipole Potential: Contribution of the Phospholipid Fatty Acid Chains. Chem. Phys. Lipids. 2002;117(1):19–27. doi: 10.1016/S0009-3084(02)00013-0. PubMed DOI
Li D., Rocha-Roa C., Schilling M. A., Reinisch K. M., Vanni S.. Lipid Scrambling Is a General Feature of Protein Insertases. Proc. Natl. Acad. Sci. U. S. A. 2024;121(17):e2319476121. doi: 10.1073/pnas.2319476121. PubMed DOI PMC
Jahn H., Bartoš L., Dearden G. I., Dittman J. S., Holthuis J. C. M., Vácha R., Menon A. K.. Phospholipids Are Imported into Mitochondria by VDAC, a Dimeric Beta Barrel Scramblase. Nat. Commun. 2023;14(1):8115. doi: 10.1038/s41467-023-43570-y. PubMed DOI PMC
Bartoš L., Menon A. K., Vácha R.. Insertases Scramble Lipids: Molecular Simulations of MTCH2. Structure. 2024;32(4):505–510.e4. doi: 10.1016/j.str.2024.01.012. PubMed DOI PMC
Gao J., Franzkoch R., Rocha-Roa C., Psathaki O. E., Hensel M., Vanni S., Ungermann C.. Any1 Is a Phospholipid Scramblase Involved in Endosome Biogenesis. J. Cell Biol. 2025;224(4):e202410013. doi: 10.1083/jcb.202410013. PubMed DOI PMC
Javanainen M., Šimek J., Tranter D., O’Keefe S., Karki S., Biriukov D., Šachl R., Paavilainen V. O.. Lipid Scrambling Pathways in the Sec61 Translocon Complex. J. Am. Chem. Soc. 2025;147(19):15970–15984. doi: 10.1021/jacs.4c11142. PubMed DOI PMC
Jo S., Kim T., Iyer V. G., Im W.. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008;29(11):1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Tieleman D. P., Marrink S.-J.. Lipids Out of Equilibrium: Energetics of Desorption and Pore Mediated Flip-Flop. J. Am. Chem. Soc. 2006;128(38):12462–12467. doi: 10.1021/ja0624321. PubMed DOI
Hub J. S., de Groot B. L., van der Spoel D.. G_whamA Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem. Theory Comput. 2010;6(12):3713–3720. doi: 10.1021/ct100494z. DOI