Recurrence following invasive GAS infections in adults: Triumph of virulence or failure of immunity?

. 2025 Dec ; 16 (1) : 2563765. [epub] 20250929

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, kazuistiky

Perzistentní odkaz   https://www.medvik.cz/link/pmid41017571

Since late 2022, an increase in Streptococcus pyogenes (Group A Streptococcus, GAS) infections, both non-invasive and invasive (iGAS), has been reported globally. This study investigates iGAS cases complicated by recurrent infection (rGAS). From January to September 2023, four adults with severe iGAS suffered from rGAS. Clinical and whole-genome sequencing data were analysed. All patients required ICU admission and surgical debridement during their initial iGAS. The median interval between the initial iGAS and rGAS was 25.5 days, with a median duration of antibiotic treatment of 25 and 17.5 days, respectively. Patients A (female, age 69) and B (male, age 46) had upper limb necrotising fasciitis complicated by a subsequent cellulitis at the exact location. GAS emm1.3 (M1UK) was isolated in both patients, but patient A´s isolates carried a type-IV secretion system (T4SS), and this patient had a more severe course of infection. Patient C (male, age 66) had two episodes of bacteremia caused by GAS emm89.0 carrying T4SS and GAS emm12.37 with a frameshift in the rocA gene. Patient D (female, age 69) had upper limb cellulitis with bacteremia during the initial iGAS and upper limb cellulitis with septic gonitis as two concurrent manifestations of rGAS. All three isolates were identical, belonging to emm12.0 and carrying a 79 amino acid deletion in the SclA. Patients B and C had a reduced function of the complement lectin pathway and CD19+ lymphocyte deficiency. A combination of strain virulence factors and host immune deficiencies may predispose patients with iGAS to recurrence.

Zobrazit více v PubMed

Alcolea-Medina A, Snell LB, Alder C, et al. The ongoing PubMed DOI PMC

Gouveia C, Bajanca-Lavado MP, Mamede R, et al. Sustained increase of paediatric invasive PubMed DOI PMC

Guy R, Henderson KL, Coelho J, et al. Increase in invasive group A streptococcal infection notifications, England, 2022. Euro SurveIll. 2023;28(1):2200942. doi: 10.2807/1560-7917.ES.2023.28.1.2200942 PubMed DOI PMC

Johannesen TB, Munkstrup C, Edslev SM, et al. Increase in invasive group A streptococcal infections and emergence of novel, rapidly expanding sub-lineage of the virulent PubMed DOI PMC

Rodriguez-Ruiz JP, Lin Q, Lammens C, et al. Increase in bloodstream infections caused by PubMed DOI PMC

de Arellano ER, Saaverda-Lozano J, Villalón P, et al. Clinical, microbiological, and molecular characterization of pediatric invasive infections by PubMed DOI PMC

Beres SB, Olsen RJ, Long SW, et al. Increase in invasive PubMed DOI PMC

Wolters M, Berinson B, Degel-Brossman N, et al. Population of invasive group A streptococci isolates from a German tertiary care center is dominated by the hypertoxigenic virulent M1UK genotype. Infection. 2024;52(2):667–671. doi: 10.1007/s15010-023-02137-1 PubMed DOI PMC

Lynskey NN, Jauneikaite E, Li HK, et al. Emergence of dominant toxigenic M1T1 PubMed DOI PMC

Davies MR, Keller N, Brouwer S, et al. Detection of PubMed DOI PMC

Li HK, Zhi X, Vieira A, et al. Characterization of emergent toxigenic M1UK PubMed DOI PMC

Li Y, Rivers J, Mathis S, et al. Genomic surveillance of PubMed DOI PMC

Bellés-Bellés A, Prim N, Mormeneo-Bayo S, et al. Changes in group A PubMed DOI PMC

Johnson CM, Grossman AD.. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet. 2015;49(1):577–601. doi: 10.1146/annurev-genet-112414-055018 PubMed DOI PMC

Miller KM, Lamagni T, Cherian T, et al. Standardization of epidemiological surveillance of invasive group A streptococcal infections. Open Forum Infect Dis. 2022;9(Suppl 1):S31–S40. doi: 10.1093/ofid/ofac281 PubMed DOI PMC

Davies HD, McGeer A, Schwartz B, et al. Invasive group A streptococcal infections in Ontario, Canada. Ontario group A streptococcal study group. N Engl J Med. 1996;335(8):547–554. doi: 10.1056/nejm199608223350803 PubMed DOI

Steere AC, Lamagni T, Curtis N, et al. Invasive group A streptococcal disease epidemiology, pathogenesis and management. Drugs. 2012;72(9):1213–1227. doi: 10.2165/11634180-000000000-00000 PubMed DOI PMC

Andreoni F, Zürcher C, Tarnutzer A, et al. Clindamycin affects group A PubMed DOI

Thomas KS, Crook AM, Nunn AJ, et al. Penicillin to prevent recurrent leg cellulitis. N Engl J Med. 2013;368(18):1695–1703. doi: 10.1056/nejmoa1206300 PubMed DOI

Verkaeren E, Epelboin L, Epelboin S, et al. Recurrent PubMed DOI

Mazón A, Gil-Setas A, Sota de la Gándara LJ, et al. Transmission of PubMed DOI

Hattori T, Minami M, Narita K. Recurrent bacteremia with different strains of PubMed DOI

Rasmussen M. Recurrent sepsis caused by PubMed DOI PMC

Shaikh N, El-Menyar A, Mudali IN, et al. Clinical presentations and outcomes of necrotizing fasciitis in males and females over a 13-year period. Ann Med Surg. 2015;4(4):355–360. doi: 10.1016/j.amsu.2015.09.005 PubMed DOI PMC

Tkadlec J, Peckova M, Sramkova L, et al. The use of broad-range bacterial PCR in the diagnosis of infectious diseases: a prospective cohort study. Clin Microbiol Infect. 2019;25(6):747–752. doi: 10.1016/j.cmi.2018.10.001 PubMed DOI

Breiman RF, Davis JP, Facklam RR, et al. Defining the group A streptococcal toxic shock syndrome: rationale and consensus definition. JAMA. 1993;269(3):390–391. doi: 10.1001/jama.1993.03500030088038 PubMed DOI

Wick RR, Judd LM, Gorrie CL, et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595. doi: 10.1371/journal.pcbi.1005595 PubMed DOI PMC

Chen S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta. 2023;2(2):e107. doi: 10.1002/imt2.107 PubMed DOI PMC

Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. doi: 10.12688/wellcomeopenres.14826.1 PubMed DOI PMC

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069. doi: 10.1093/bioinformatics/btu153 PubMed DOI

Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3693. doi: 10.1093/bioinformatics/btv421 PubMed DOI PMC

Stamatakis A. RaXml version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC

Letunic I, Bork P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52(W1):W78–W82. doi: 10.1093/nar/gkae268 PubMed DOI PMC

Seemann T. Snippy: rapid haploid variant calling and core SNP phylogeny, 2020. Available from: https://github.com/tseemann/snippy

Darling AE, Mau B, Perna NT. Progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement. PLOS ONE. 2010;5(6):e11147. doi: 10.1371/journal.pone.0011147 PubMed DOI PMC

Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–1010. doi: 10.1093/bioinformatics/btr039 PubMed DOI PMC

Liu B, Zheng D, Zhou S, et al. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50(D1):D912–D917. doi: 10.1093/nar/gkab1107 PubMed DOI PMC

Wang M, Liu G, Liu M, et al. Iceberg 3.0: functional categorization and analysis of the integrative and conjugative elements in bacteria. Nucleic Acids Res. 2024;52(D1):D732–D737. doi: 10.1093/nar/gkad935 PubMed DOI PMC

Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity and composition-based strategies. Nucleic Acids Res. 2012;40(16):e126. doi: 10.1093/nar/gks406 PubMed DOI PMC

Bah SY, Keeley AJ, Armitage EP, et al. Genomic characterization of skin and soft tissue PubMed DOI PMC

Quinlan AR, Hall IM. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033 PubMed DOI PMC

Lao J, Guédon G, Lacroix T, et al. Abundance, diversity and role of ICEs and IMEs in the adaptation of PubMed DOI PMC

Bao YJ, Liang Z, Mayfield JA, et al. Genomic characterization of a pattern D PubMed DOI PMC

Biswas I, Scott JR. Identification of PubMed DOI PMC

Dooling KL, Crist MB, Nguyen DB, et al. Investigation of a prolonged group A streptococcal outbreak among residents of a skilled nursing facility, Georgia, 2009–2012. Clin Infect Dis. 2013;57(11):1562–1567. doi: 10.1093/cid/cit558 PubMed DOI

Gazzaz N, Mailman T, Foster JR. Recurrent invasive group A streptococcal infection with four-limb amputation in an immunocompetent child. BMJ Case Rep. 2018;2018:bcr2018225292. doi: 10.1136/bcr-2018-225292 PubMed DOI PMC

Traineau H, Charpentier C, Lepeule R, et al. First-year recurrence rate of skin and soft tissue infections following an initial necrotizing soft tissue infection of the lower extremities: a retrospective cohort study of 93 patients. J Am Acad Dermatol. 2023;88(6):1360–1363. doi: 10.1016/j.jaad.2022.12.044 PubMed DOI

Kuzdan C, Soysal A, Altinkanat G, et al. Recurrent fatal necrotizing fasciitis due to PubMed DOI

Björck V, Påhlman LI, Bodelsson M, et al. Morbidity and mortality in critically ill patients with invasive group A PubMed DOI PMC

Orieux A, Prevel R, Dumery M, et al. Invasive group A streptococcal infections requiring admission to ICU: a nationwide, multicenter, retrospective study (ISTRE study). Crit Care. 2024;28(1):4. doi: 10.1186/s13054-023-04774-2 PubMed DOI PMC

Johnson AF, LaRock CN. Antibiotic treatment, mechanisms for failure, and adjunctive therapies for infections by group A PubMed DOI PMC

Dalal A, Eskin-Schwartz M, Mimouni D, et al. Interventions for the prevention of recurrent erysipelas and cellulitis. Cochrane Database Syst Rev. 2017;2017(6):CD009758. doi: 10.1002/14651858.cd009758.pub2 PubMed DOI PMC

Brodszki N, Frazer-Abel A, Grumach AS, et al. European society for immunodeficiencies (ESID) and European reference network on rare primary immunodeficiency, autoinflammatory and autoimmune diseases (ERN RITA) complement guideline: deficiencies, diagnosis, and management. J Clin Immunol. 2020;40(4):576–591. doi: 10.1007/s10875-020-00754-1 PubMed DOI PMC

Ali YM, Lynch NJ, Haleem KS, et al. The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection. PLoS Pathog. 2012;8(7):e1002793. doi: 10.1371/journal.ppat.1002793 PubMed DOI PMC

Smith T, Cunningham-Rundles C. Primary B-cell immunodeficiencies. Hum Immunol. 2019;80(6):351–362. doi: 10.1016/j.humimm.2018.10.015 PubMed DOI PMC

Stabler S, Giovannelli J, Launay D, et al. Serious infectious events and immunoglobulin replacement therapy in patients with autoimmune disease receiving rituximab: a retrospective cohort study. Clin Infect Dis. 2021;72(5):727–737. doi: 10.1093/cid/ciaa127 PubMed DOI

Wudhikarn K, Palomba MR, Pennisi M, et al. Infection during the first year in patients treated with CD19 CAR T cells for diffuse large B cell lymphoma. Blood Cancer J. 2020;10(8):79. doi: 10.1038/s41408-020-00346-7 PubMed DOI PMC

Brouwer S, Rivera-Hernandez T, Curren BF, et al. Pathogenesis, epidemiology and control of group A PubMed DOI PMC

Unoarumhi Y, Davis ML, Rowe LA, et al. A novel invasive PubMed DOI PMC

Zhang W, Rong C, Chen C, et al. Type-IVC secretion system: a novel subclass of type IV secretion system (T4SS) common existing in Gram-positive genus PubMed DOI PMC

Lukomski S, Bachert B, Squeglia F, et al. Collagen-like proteins of pathogenic streptococci. Mol microbiol. 2017;103(6):919–930. doi: 10.1111/mmi.13604 PubMed DOI PMC

Oliver-Kozup HA, Elliott M, Bachert BA, et al. The streptococcal collagen-like protein-1 (Scl1) is a significant determinant for biofilm formation by group A PubMed DOI PMC

Flores AR, Jewell BA, Versalovic EM, et al. Natural variant of collagen-like protein a in serotype M3 group A PubMed DOI PMC

Lynskey NN, Goulding D, Gierula M, et al. RocA truncation underpins hyper-encapsulation, carriage longevity and transmissibility of serotype M18 group A streptococci. PLoS Pathog. 2013;9(12):e1003842. doi: 10.1371/journal.ppat.1003842 PubMed DOI PMC

Parks T, Wilson C, Curtis N, et al. Polyspecific intravenous immunoglobulin in clindamycin-treated patients with streptococcal toxic shock syndrome: a systematic review and meta-analysis. Clin Infect Dis. 2018;67(9):1434–1436. doi: 10.1093/cid/ciy401 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...