Potential Utility of Combined Urine Lipocalin‑2 and Copper Test in Diagnosing Acute Pyelonephritis or Cystitis
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
41048711
PubMed Central
PMC12489698
DOI
10.1021/acsomega.5c05922
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The noninvasive differentiation of acute pyelonephritis (AP) and complicated urinary tract infections (cUTI), from acute cystitis (AC), represents an important diagnostic challenge in urology and nephrology. In a study of 95 adults, urine from patients with AP (n = 17), cUTI (n = 6), AC (n = 28), and controls (n = 44) was examined using a multidisciplinary approach: enzyme-linked immunosorbent assays for quantitation of acute phase proteins ceruloplasmin (Cp), pentraxin-3 (Ptx3), and lipocalin-2 (Lcn2); inductively coupled plasma mass spectrometry for determination of total copper (Cu), zinc (Zn), and iron (Fe) concentrations; and liquid chromatography coupled to electrospray ionization MS (LC-MS) for identification and quantitation of bacterial metallophores. Markedly elevated levels of human Cp, Ptx3, and Lcn2, all normalized to urine creatinine (Cr), in AC, cUTI, and AP patients compared to controls identified ongoing urinary tract infection without further differentiation between AC and AP. On the contrary, total urine copper normalized to Cr (Cu/Cr index) significantly differentiated AP from AC (p = 0.0209), as well as from the controls. Bacterial metallophores aerobactin and yersiniabactin, but not enterobactin, were indicators of AP, cUTI, and AC caused by Enterobacteriaceae. Importantly, the newly proposed combined test based on the quantitation of Lcn2 normalized to Cr (Lcn2/Cr) and Cu/Cr could noninvasively differentiate AP and cUTIs from AC with a diagnostic accuracy of 78% sensitivity and 65% specificity. The combination of characteristic elemental and molecular biomarkers may represent a future research direction with the potential to improve diagnostics of UTIs.
Department of Urology Bulovka University Hospital Budínova 67 2 Prague 180 81 Czechia
Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 Prague 142 00 Czechia
See more in PubMed
Flores-Mireles A. L., Walker J. N., Caparon M., Hultgren S. J.. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015;13(5):269–284. doi: 10.1038/nrmicro3432. PubMed DOI PMC
Sihra N., Goodman A., Zakri R., Sahai A., Malde S.. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 2018;15(12):750–776. doi: 10.1038/s41585-018-0106-x. PubMed DOI
Medina M., Castillo-Pino E.. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 2019;11:1756287219832172. doi: 10.1177/1756287219832172. PubMed DOI PMC
Hrbacek J., Cermak P., Zachoval R.. Current antibiotic resistance trends of uropathogens in central europe: Survey from a tertiary hospital urology department 2011–2019. Antibiotics. 2020;9(9):630. doi: 10.3390/antibiotics9090630. PubMed DOI PMC
Patil R. H., Luptáková D., Havlíček V.. Infection metallomics for critical care in the post-COVID era. Mass Spectrom. Rev. 2023;42(4):1221–1243. doi: 10.1002/mas.21755. PubMed DOI
Katumba G. L., Tran H., Henderson J. P.. The yersinia high-pathogenicity island encodes a siderophore-dependent copper response system in uropathogenic Escherichia coli . mBio. 2022;13(1):e02391-21. doi: 10.1128/mbio.02391-21. PubMed DOI PMC
Chaturvedi K. S., Hung C. S., Giblin D. E., Urushidani S., Austin A. M., Dinauer M. C., Henderson J. P.. Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem. Biol. 2014;9(2):551–561. doi: 10.1021/cb400658k. PubMed DOI PMC
Bailey D. C., Alexander E., Rice M. R., Drake E. J., Mydy L. S., Aldrich C. C., Gulick A. M.. Structural and functional delineation of aerobactin biosynthesis in hypervirulent Klebsiella pneumoniae . J. Biol. Chem. 2018;293(20):7841–7852. doi: 10.1074/jbc.RA118.002798. PubMed DOI PMC
Holden V. I., Lenio S., Kuick R., Ramakrishnan S. K., Shah Y. M., Bachman M. A.. Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1α and proinflammatory cytokine secretion in cultured respiratory epithelial cells. Infect. Immun. 2014;82(9):3826–3836. doi: 10.1128/IAI.01849-14. PubMed DOI PMC
Luo Z., Lei H., Sun Y., Liu X., Su D. F.. Orosomucoid, an acute response protein with multiple modulating activities. J. Physiol. Biochem. 2015;71(2):329–340. doi: 10.1007/s13105-015-0389-9. PubMed DOI
Pitashny M., Schwartz N., Qing X., Hojaili B., Aranow C., Mackay M., Putterman C.. Urinary lipocalin-2 is associated with renal disease activity in human lupus nephritis. Arthritis Rheum. 2007;56(6):1894–1903. doi: 10.1002/art.22594. PubMed DOI
Valdimarsson S., Jodal U., Barregård L., Hansson S.. Urine neutrophil gelatinase-associated lipocalin and other biomarkers in infants with urinary tract infection and in febrile controls. Pediatr. Nephrol. 2017;32(11):2079–2087. doi: 10.1007/s00467-017-3709-1. PubMed DOI
Zhang Y., Chen C., Mitsnefes M., Huang B., Devarajan P.. Evaluation of diagnostic accuracy of urine neutrophil gelatinase-associated lipocalin in patients with symptoms of urinary tract infections: a meta-analysis. Front. Pediatr. 2024;12:1368583. doi: 10.3389/fped.2024.1368583. PubMed DOI PMC
Koh E. I., Henderson J. P.. Microbial copper-binding siderophores at the host-pathogen interface. J. Biol. Chem. 2015;290(31):18967–18974. doi: 10.1074/jbc.R115.644328. PubMed DOI PMC
Dobiáš R., Jaworská P., Skopelidou V., Strakoš J., Višňovská D., Káňová M., Škríba A., Lysková P., Bartek T., Janíčková I., Kozel R., Cwiková L., Vrba Z., Navrátil M., Martinek J., Coufalová P., Krejčí E., Ulmann V., Raška M., Stevens D. A., Havlíček V.. Distinguishing invasive from chronic pulmonaryinfections: host pentraxin 3 and fungal siderophores in bronchoalveolar lavage fluids. J. Fungi. 2022;8(11):1194. doi: 10.3390/jof8111194. PubMed DOI PMC
Robinson A. E., Lowe J. E., Koh E. I., Henderson J. P.. Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel. J. Biol. Chem. 2018;293(39):14953–14961. doi: 10.1074/jbc.RA118.004483. PubMed DOI PMC
Hyre A. N., Kavanagh K., Kock N. D., Donati G. L., Subashchandrabose S.. Copper is a host effector mobilized to urine during urinary tract infection io impair bacterial colonization. Infect. Immun. 2017;85(3):e01041-16. doi: 10.1128/iai.01041-16. PubMed DOI PMC
Koh E. I., Robinson A. E., Bandara N., Rogers B. E., Henderson J. P.. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat. Chem. Biol. 2017;13(9):1016–1021. doi: 10.1038/nchembio.2441. PubMed DOI PMC
Forster C. S., Johnson K., Patel V., Wax R., Rodig N., Barasch J., Bachur R., Lee R. S.. Urinary NGAL deficiency in recurrent urinary tract infections. Pediatr. Nephrol. 2017;32(6):1077–1080. doi: 10.1007/s00467-017-3607-6. PubMed DOI PMC
Gromadzka G., Grycan M., Przybyłkowski A. M.. Monitoring of copper in Wilson disease. Diagnostics. 2023;13(11):1830. doi: 10.3390/diagnostics13111830. PubMed DOI PMC
Martínez-Morillo E., Bauça J. M.. Biochemical diagnosis of Wilson’s disease: an update. Adv. Lab. Med. 2022;3(2):103–113. doi: 10.1515/almed-2022-0020. PubMed DOI PMC
Luptáková D., Patil R. H., Dobiáš R., Stevens D. A., Pluháček T., Palyzová A., Káňová M., Navrátil M., Vrba Z., Hubáček P., Havlíček V.. Siderophore-based noninvasive differentiation of Aspergillus fumigatus colonization and invasion in pulmonary aspergillosis. Microbiol. Spectrum. 2023;11(2):e04068-22. doi: 10.1128/spectrum.04068-22. PubMed DOI PMC
Jiménez-Valverde A.. Sample size for the evaluation of presence-absence models. Ecol. Indic. 2020;114:106289. doi: 10.1016/j.ecolind.2020.106289. DOI
Cohen J. F., Korevaar D. A., Altman D. G., Bruns D. E., Gatsonis C. A., Hooft L., Irwig L., Levine D., Reitsma J. B., de Vet H. C., Bossuyt P. M.. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799. doi: 10.1136/bmjopen-2016-012799. PubMed DOI PMC
Leeflang M. M. G., Allerberger F.. Sample size calculations for diagnostic studies. Clin. Microbiol. Infect. 2019;25(7):777–778. doi: 10.1016/j.cmi.2019.04.011. PubMed DOI
Kalucki S. A., Lardi C., Garessus J., Kfoury A., Grabherr S., Burnier M., Pruijm M.. Reference values and sex differences in absolute and relative kidney size. A Swiss autopsy study. BMC Nephrol. 2020;21(1):289. doi: 10.1186/s12882-020-01946-y. PubMed DOI PMC
Bilsen M. P., Conroy S. P., Schneeberger C., Platteel T. N., van Nieuwkoop C., Mody L., Caterino J. M., Geerlings S. E., Köves B., Wagenlehner F., Kunneman M., Visser L. G., Lambregts M. M. C., Hooton T., Nicolle L., Trautner B., Gupta K., Drekonja D., Huttner A., Schneidewind L., Johansen T. E. B., Medina-Polo J., Kranz J., Ten Doesschate T., Ott A., Kuil S., Pulia M., Nwagwu V., Carpenter C., Russel A., Stalenhoef J., Clark S., Southerland L., Notermans D., Fure B., Baten E., Ninan S., Gerbrandy-Schreuders L., Van Halem K., Blanker M., Naber K., Pilatz A., Heytens S., Vahedi A., Talan D., Kuijper E., Van Dissel J., Cals J., Dubbs S., Veeratterapillay R., Sundvall P.-D., Bertagnolio S., Graber C., Rozemeijer W., Jump R., Gagyor I., Vik I., Waar K., Van der Beek M.. A reference standard for urinary tract infection research: a multidisciplinary Delphi consensus study. Lancet Infect. Dis. 2024;24(8):e513–e521. doi: 10.1016/S1473-3099(23)00778-8. PubMed DOI
Patel R., Polage C. R., Dien Bard J., May L., Lee F. M., Fabre V., Hayden M. K., Doernberg S. D. B., Haake D. A., Trautner B. W., Grigoryan L., Tsalik E. L., Hanson K. E.. Envisioning future urinary tract infection diagnostics. Clin. Infect. Dis. 2021;74(7):1284–1292. doi: 10.1093/cid/ciab749. PubMed DOI PMC
Novak J., Skriba A., Havlicek V.. CycloBranch 2: Molecular formula annotations applied to imzML data sets in bimodal fusion and LC-MS data files. Anal. Chem. 2020;92(10):6844–6849. doi: 10.1021/acs.analchem.0c00170. PubMed DOI