Metal Oxide-Functionalized Photopolymers: A Perspective in 3D Printing
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
41080900
PubMed Central
PMC12511979
DOI
10.1021/acspolymersau.5c00065
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, biocompatibility, dielectric properties, dispersion stability, light absorption and scattering, nanoreinforcement, photocatalytic activity, polymer nanocomposites, thermal stability,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Vat photopolymerization is a widely adopted additive manufacturing technique valued for its high resolution, smooth surface finish, and rapid production speed. Recently, it has gained prominence in the fabrication of polymer nanocomposites, as liquid photopolymer resins allow efficient incorporation and dispersion of nanoparticles. Current research in vat 3D printing of polymer nanocomposites is directed toward creating materials with enhanced functionalities, enabling the development of advanced functional components. Among different nanofillers, semiconducting metal oxide nanoparticles (MOx NPs) such as TiO2, ZnO, Fe3O4, Cu2O, and ZrO2 are of particular interest. These NPs act not only as functional additives but also as photocatalysts, directly influencing photopolymerization kinetics, cross-linking density, and final properties. Mechanical performance is enhanced through nanoreinforcement, provided that homogeneous NP dispersion is achieved. This enables lightweight, high-performance parts for aerospace, automotive, and biomedical engineering. MOx NPs also improve thermal stability, supporting applications in electronics, automotive systems, and energy devices. Adjustments in electrical and dielectric properties open further potential in power electronics, high-voltage insulation, and wearable devices. Incorporation of superparamagnetic Fe3O4 introduces magnetic functionality, useful for microactuators, sensors, and graded materials. Optical properties can likewise be tailored, with MOx/polymer nanocomposites enabling photodetectors, optoelectronic components, and functional thin films. In the biomedical field, biofunctional performanceranging from antimicrobial activity to tissue compatibilityhas been exploited in dentistry, tissue scaffolds, and micromachines for drug delivery. Despite these advances, challenges such as nanoparticle aggregation, viscosity increase, light scattering, and altered reaction kinetics still limit the achievable filler loadings and overall performance of vat-printed nanocomposites. This review therefore emphasizes both the potential and the limitations of incorporating MOx nanoparticles into vat photopolymerization, outlining the current state of knowledge and key challenges that must be addressed to enable application-oriented functional materials.
Zobrazit více v PubMed
Medellin A., Du W., Miao G., Zou J., Pei Z., Ma C.. Vat Photopolymerization 3D Printing of Nanocomposites: A Literature Review. J Micro Nanomanuf. 2019;7(3):031006. doi: 10.1115/1.4044288. DOI
Pagac M., Hajnys J., Ma Q.-P., Jancar L., Jansa J., Stefek P., Mesicek J.. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers. 2021;13(4):598. doi: 10.3390/polym13040598. PubMed DOI PMC
Gibson, I. ; Rosen, D. ; Stucker, B. . Additive Manufacturing Technologies, 2nd ed.; Springer: New York, 2015. 10.1007/978-1-4939-2113-3. DOI
Fiedor P., Ortyl J.. A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology. Materials. 2020;13(13):2951. doi: 10.3390/ma13132951. PubMed DOI PMC
Zhang F., Zhu L., Li Z., Wang S., Shi J., Tang W., Li N., Yang J.. The Recent Development of Vat Photopolymerization: A Review. Addit Manuf. 2021;48:102423. doi: 10.1016/j.addma.2021.102423. DOI
Subedi S., Liu S., Wang W., Naser Shovon S. M. A., Chen X., Ware H. O. T.. Multi-Material Vat Photopolymerization 3D Printing: A Review of Mechanisms and Applications. Advanced Manufacturing. 2024;1(1):9. doi: 10.1038/s44334-024-00005-w. DOI
Bao Y.. Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing. Macromol. Rapid Commun. 2022;43(14):2200202. doi: 10.1002/marc.202200202. PubMed DOI
Shebeeb C. M., Afif M. B., Jacob L., Choi D., Butt H.. Vat Photopolymerisation 3D Printing of Graphene-Based Materials. Virtual and Physical Prototyping. 2023;18(1):e2276250. doi: 10.1080/17452759.2023.2276250. DOI
Maturi M., Locatelli E., Sanz de Leon A., Comes Franchini M., Molina S. I.. Sustainable Approaches in Vat Photopolymerization: Advancements, Limitations, and Future Opportunities. Green Chemistry. 2025;27(14):8710–8754. doi: 10.1039/D5GC02299A. DOI
Saadi O. W., Khan K. A.. Advancements in Vat Photopolymerization for Piezoresistive Sensors: Materials, Mechanisms, and Applications. Virtual and Physical Prototyping. 2025;20(1):e2505994. doi: 10.1080/17452759.2025.2505994. DOI
Li Y., Wang W., Wu F., Kankala R. K.. Vat Polymerization-Based 3D Printing of Nanocomposites: A Mini Review. Front Mater. 2023;9:1118943. doi: 10.3389/fmats.2022.1118943. DOI
Chin K. C. H., Cui J., O’Dea R. M., Epps T. H., Boydston A. J.. Vat 3D Printing of Bioderivable Photoresins – Toward Sustainable and Robust Thermoplastic Parts. ACS Sustain Chem Eng. 2023;11(5):1867–1874. doi: 10.1021/acssuschemeng.2c06313. DOI
Piedra-Cascón W., Krishnamurthy V. R., Att W., Revilla-León M.. 3D Printing Parameters, Supporting Structures, Slicing, and Post-Processing Procedures of Vat-Polymerization Additive Manufacturing Technologies: A Narrative Review. Journal of Dentistry. 2021;109:103630. doi: 10.1016/j.jdent.2021.103630. PubMed DOI
Caussin E., Moussally C., Le Goff S., Fasham T., Troizier-Cheyne M., Tapie L., Dursun E., Attal J. P., François P.. Vat Photopolymerization 3D Printing in Dentistry: A Comprehensive Review of Actual Popular Technologies. Materials. 2024;17(4):950. doi: 10.3390/ma17040950. PubMed DOI PMC
Shokrollahi P., Garg P., Wulff D., Hui A., Phan C. M., Jones L.. Vat Photopolymerization 3D Printing Optimization: Analysis of Print Conditions and Print Quality for Complex Geometries and Ocular Applications. Int. J. Pharm. 2025;668:124999. doi: 10.1016/j.ijpharm.2024.124999. PubMed DOI
Hu Y., Luo Z., Bao Y.. Trends in Photopolymerization 3D Printing for Advanced Drug Delivery Applications. Biomacromolecules. 2025;26(1):85–117. doi: 10.1021/acs.biomac.4c01004. PubMed DOI PMC
Shaukat U., Rossegger E., Schlögl S.. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers. 2022;14(12):2449. doi: 10.3390/polym14122449. PubMed DOI PMC
Zhang Y., Xu Y., Simon-Masseron A., Lalevée J.. Radical Photoinitiation with LEDs and Applications in the 3D Printing of Composites. Chem Soc Rev. 2021;50(6):3824–3841. doi: 10.1039/D0CS01411G. PubMed DOI
Al Rashid A., Ahmed W., Khalid M. Y., Koç M.. Vat Photopolymerization of Polymers and Polymer Composites: Processes and Applications. Addit Manuf. 2021;47:102279. doi: 10.1016/j.addma.2021.102279. DOI
Bao Y., Paunović N., Leroux J.. Challenges and Opportunities in 3D Printing of Biodegradable Medical Devices by Emerging Photopolymerization Techniques. Adv Funct Mater. 2022;32(15):2109864. doi: 10.1002/adfm.202109864. DOI
Graça A., Bom S., Martins A. M., Ribeiro H. M., Marto J.. Vat-Based Photopolymerization 3D Printing: From Materials to Topical and Transdermal Applications. Asian Journal of Pharmaceutical Sciences. 2024;19(4):100940. doi: 10.1016/j.ajps.2024.100940. PubMed DOI PMC
Lu Z., Gao W., Liu F., Cui J., Feng S., Liang C., Guo Y., Wang Z., Mao Z., Zhang B.. Vat Photopolymerization Based Digital Light Processing 3D Printing Hydrogels in Biomedical Fields: Key Parameters and Perspective. Additive Manufacturing. 2024;94:104443. doi: 10.1016/j.addma.2024.104443. DOI
Sachdeva I., Ramesh S., Chadha U., Punugoti H., Selvaraj S. K.. Computational AI Models in VAT Photopolymerization: A Review, Current Trends, Open Issues, and Future Opportunities. Neural Computing and Applications. 2022;34(22):17207–17229. doi: 10.1007/s00521-022-07694-4. DOI
Chekkaramkodi D., Jacob L., C M. S., Umer R., Butt H.. Review of Vat Photopolymerization 3D Printing of Photonic Devices. Additive Manufacturing. 2024;86:104189. doi: 10.1016/j.addma.2024.104189. DOI
Ahmad K. H., Mohamad Z., Khan Z. I.. Influence of Graphene Nanoplatelets and Post-Curing Conditions on the Mechanical and Viscoelastic Properties of Stereolithography 3D-Printed Nanocomposites. Polymers. 2024;16(19):2721. doi: 10.3390/polym16192721. PubMed DOI PMC
Garcia G. E. S., de Sousa Junior R. R., Gouveia J. R., dos Santos D. J.. Graphene Oxide-Based Nanocomposites for Stereolithography (SLA) 3D Printing: Comprehensive Mechanical Characterization under Combined Loading Modes. Polymers. 2024;16(9):1261. doi: 10.3390/polym16091261. PubMed DOI PMC
Huang G., Chen W., Wu T., Guo H., Fu C., Xue Y., Wang K., Song P.. Multifunctional Graphene-Based Nano-Additives toward High-Performance Polymer Nanocomposites with Enhanced Mechanical, Thermal, Flame Retardancy and Smoke Suppressive Properties. Chemical Engineering Journal. 2021;410:127590. doi: 10.1016/j.cej.2020.127590. DOI
Dong M., Sun Y., Dunstan D. J., Young R. J., Papageorgiou D. G.. Mechanical Reinforcement from Two-Dimensional Nanofillers: Model, Bulk and Hybrid Polymer Nanocomposites. Nanoscale. 2024;16:13247–13299. doi: 10.1039/D4NR01356E. PubMed DOI
Khalifa M., Lammer H., Gadad M. S., Varsavas S. D., Weng Z.. Recent Advances on Copper/Polymer Nanocomposites: Processing Strategies, Mechanisms, and Antibacterial Efficacy. Eur. Polym. J. 2025;223:113637. doi: 10.1016/j.eurpolymj.2024.113637. DOI
Kumar A., Sharma K., Dixit A. R.. A Review of the Mechanical and Thermal Properties of Graphene and Its Hybrid Polymer Nanocomposites for Structural Applications. J. Mater. Sci. 2019;54:5992–6026. doi: 10.1007/s10853-018-03244-3. DOI
Lin Y., Li P., Liu W., Chen J., Liu X., Jiang P., Huang X.. Application-Driven High-Thermal-Conductivity Polymer Nanocomposites. ACS Nano. 2024;18(5):3851–3870. doi: 10.1021/acsnano.3c08467. PubMed DOI
Jiang H., Cai Q., Mateti S., Bhattacharjee A., Yu Y., Zeng X., Sun R., Huang S., Chen Y. I.. Recent Research Advances in Hexagonal Boron Nitride/Polymer Nanocomposites with Isotropic Thermal Conductivity. Advanced Nanocomposites. 2024;1(1):144–156. doi: 10.1016/j.adna.2024.03.004. DOI
Yang M., Guo M., Xu E., Ren W., Wang D., Li S., Zhang S., Nan C. W., Shen Y.. Polymer Nanocomposite Dielectrics for Capacitive Energy Storage. Nature Nanotechnology. 2024;19:588–603. doi: 10.1038/s41565-023-01541-w. PubMed DOI
Dhayal V., Hashmi S. Z., Kumar U., Choudhary B. L., Dalela S., Dolia S. N., Alvi P. A.. Optical and Electrical Properties of Biocompatible and Novel (CS–GO) Polymer Nanocomposites. Opt Quantum Electron. 2021;53(1):53. doi: 10.1007/s11082-020-02723-9. DOI
Shameem M. M., Sasikanth S. M., Annamalai R., Ganapathi Raman R. G.. A Brief Review on Polymer Nanocomposites and Its Applications. Materials Today: Proceedings. 2021;45:2536–2539. doi: 10.1016/j.matpr.2020.11.254. DOI
Lalire T., Longuet C., Taguet A.. Electrical Properties of Graphene/Multiphase Polymer Nanocomposites: A Review. Carbon. 2024;225:119055. doi: 10.1016/j.carbon.2024.119055. DOI
Rahman M. M., Khan K. H., Parvez M. M. H., Irizarry N., Uddin M. N.. Polymer Nanocomposites with Optimized Nanoparticle Dispersion and Enhanced Functionalities for Industrial Applications. Processes. 2025;13(4):994. doi: 10.3390/pr13040994. DOI
Pathak J., Joshi U., Jain P., Joshi A., Thakor S., Parikh S., Rathore M. S.. Dielectric Properties of Green Synthesized Ag-Doped ZnO NPs in Epoxy Resin Polymer Nanocomposites. Journal of Polymer Research. 2025;32(4):103. doi: 10.1007/s10965-025-04334-y. DOI
Bustamante-Torres M., Romero-Fierro D., Arcentales-Vera B., Pardo S., Bucio E.. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers. 2021;13(17):2998. doi: 10.3390/polym13172998. PubMed DOI PMC
Al Rashid A., Al-Maslamani N. A., Abutaha A., Hossain M., Koç M.. Cobalt Iron Oxide (CoFe2O4) Reinforced Polyvinyl Alcohol (PVA) Based Magnetoactive Polymer Nanocomposites for Remote Actuation. Materials Science and Engineering: B. 2025;311:117838. doi: 10.1016/j.mseb.2024.117838. DOI
Ahmaruzzaman M., Roy S., Khanikar L., Sillanpää M., Rtimi S.. Magnetic Nanocomposites as Emerging Paradigm for Mitigation of Arsenic from Aqueous Sources. Journal of Inorganic and Organometallic Polymers and Materials. 2025;35(4):2213–2244. doi: 10.1007/s10904-024-03422-8. DOI
Ahmer M. F., Ullah Q., Uddin M. K.. Magnetic Metal Oxide Assisted Conducting Polymer Nanocomposites as Eco-Friendly Electrode Materials for Supercapacitor Applications: A Review. Journal of Polymer Engineering. 2025;45:1–41. doi: 10.1515/polyeng-2024-0101. DOI
Alshammari A. H.. Structural, Optical, and Thermal Properties of PVA/SrTiO3/CNT Polymer Nanocomposites. Polymers. 2024;16(10):1392. doi: 10.3390/polym16101392. PubMed DOI PMC
Sulu S. S., Kalladi A. J., Abdulla A. C. L., Ramesan M. T.. Integrating the Optical, Conductivity, Dielectric and Thermal Properties of Silicon Dioxide/Polyindole Nanocomposites for Optoelectronic Devices. Journal of Materials Science: Materials in Electronics. 2024;35(2):177. doi: 10.1007/s10854-024-11934-9. DOI
Alhussain H., Alghamdi A. M., Elamin N. Y., Rajeh A.. Recent Progress in Enhanced Optical, Mechanical, Thermal Properties, and Antibacterial Activity of the Chitosan/Polyvinylalcohol/Co3O4 Nanocomposites for Optoelectronics and Biological Applications. J Polym Environ. 2024;32(8):3735–3748. doi: 10.1007/s10924-024-03191-y. DOI
Dananjaya V., Marimuthu S., Yang R., Grace A. N., Abeykoon C.. Synthesis, Properties, Applications, 3D Printing and Machine Learning of Graphene Quantum Dots in Polymer Nanocomposites. Progress in Materials Science. 2024;144:101282. doi: 10.1016/j.pmatsci.2024.101282. DOI
Azizi-Lalabadi M., Hashemi H., Feng J., Jafari S. M.. Carbon Nanomaterials against Pathogens; the Antimicrobial Activity of Carbon Nanotubes, Graphene/Graphene Oxide, Fullerenes, and Their Nanocomposites. Adv. Colloid Interface Sci. 2020;284:102250. doi: 10.1016/j.cis.2020.102250. PubMed DOI
Vieira I. R. S., de Carvalho A. P. A. de, Conte-Junior C. A.. Recent Advances in Biobased and Biodegradable Polymer Nanocomposites, Nanoparticles, and Natural Antioxidants for Antibacterial and Antioxidant Food Packaging Applications. Comprehensive Reviews in Food Science and Food Safety. 2022;21(4):3673–3716. doi: 10.1111/1541-4337.12990. PubMed DOI
Jayakumar A., Mathew S., Radoor S., Kim J. T., Rhim J. W., Siengchin S.. Recent Advances in Two-Dimensional Nanomaterials: Properties, Antimicrobial, and Drug Delivery Application of Nanocomposites. Materials Today Chemistry. 2023;30:101492. doi: 10.1016/j.mtchem.2023.101492. DOI
Binaymotlagh R., Chronopoulou L., Palocci C.. An Overview of Biopolymer-Based Graphene Nanocomposites for Biotechnological Applications. Materials. 2025;18(13):2978. doi: 10.3390/ma18132978. PubMed DOI PMC
Khan S. B., Chen S., Sun X.. Advancements in Polymer Nanocomposite Manufacturing: Revolutionizing Medical Breakthroughs via Additive Manufacturing. Polymer Bulletin. 2024;81:9465–9517. doi: 10.1007/s00289-024-05154-8. DOI
Maghimaa M., Sagadevan S., E B., Fatimah I., Lett J. A., Moharana S., Garg S., Al-Anber M. A.. Enhancing Biocompatibility and Functionality: Carbon Nanotube-Polymer Nanocomposites for Improved Biomedical Applications. Journal of Drug Delivery Science and Technology. 2024;99:105958. doi: 10.1016/j.jddst.2024.105958. DOI
Hassan T., Salam A., Khan A., Khan S. U., Khanzada H., Wasim M., Khan M. Q., Kim I. S.. Functional Nanocomposites and Their Potential Applications: A Review. Journal of Polymer Research. 2021;28:36. doi: 10.1007/s10965-021-02408-1. DOI
Keledi G., Hári J., Pukánszky B.. Polymer Nanocomposites: Structure, Interaction, and Functionality. Nanoscale. 2012;4(6):1919–1938. doi: 10.1039/c2nr11442a. PubMed DOI
Begley M. R., Gianola D. S., Ray T. R.. Bridging Functional Nanocomposites to Robust Macroscale Devices. Science. 2019;364(6447):eaav4299. doi: 10.1126/science.aav4299. PubMed DOI
Hiremath, A. ; Murthy, A. A. ; Thipperudrappa, S. ; Bharath, K. N. . Nanoparticles Filled Polymer Nanocomposites: A Technological Review. Cogent Eng 2021, 8 (1), 10.1080/23311916.2021.1991229. DOI
Peng X., Zhang J., Xiao P.. Photopolymerization Approach to Advanced Polymer Composites: Integration of Surface-Modified Nanofillers for Enhanced Properties. Adv. Mater. 2024;36(33):2400178. doi: 10.1002/adma.202400178. PubMed DOI
Palucci Rosa R., Rosace G.. Nanomaterials for 3D Printing of Polymers via Stereolithography: Concept, Technologies, and Applications. Macromolecular Materials and Engineering. 2021;306(10):2100345. doi: 10.1002/mame.202100345. DOI
Tomal W., Świergosz T., Pilch M., Kasprzyk W., Ortyl J.. New Horizons for Carbon Dots: Quantum Nano-Photoinitiating Catalysts for Cationic Photopolymerization and Three-Dimensional (3D) Printing under Visible Light. Polym Chem. 2021;12(25):3661–3676. doi: 10.1039/D1PY00228G. DOI
Krok D., Tomal W., Knight A. J., Tartakovskii A. I., Farr N. T. H., Kasprzyk W., Ortyl J.. Highly Efficient Carbon Dot-Based Photoinitiating Systems for 3D-VAT Printing. Polym Chem. 2023;14(38):4429–4444. doi: 10.1039/D3PY00726J. DOI
Flesch M. F., Funke J. A.. The Influence of Multifunctional Dendritic Oligomers on Material Properties for Vat Polymerization. Progress in Additive Manufacturing. 2025;10(3):1763–1770. doi: 10.1007/s40964-025-00976-y. DOI
Ondreas F., Lepcio P., Zboncak M., Zarybnicka K., Govaert L. E., Jancar J.. Effect of Nanoparticle Organization on Molecular Mobility and Mechanical Properties of Polymer Nanocomposites. Macromolecules. 2019;52(16):6250–6259. doi: 10.1021/acs.macromol.9b01197. DOI
Jancar J., Ondreas F., Lepcio P., Zboncak M., Zarybnicka K.. Mechanical Properties of Glassy Polymers with Controlled NP Spatial Organization. Polym Test. 2020;90:106640. doi: 10.1016/j.polymertesting.2020.106640. DOI
Lepcio P., Ondreas F., Zarybnicka K., Zboncak M., Caha O., Jancar J.. Bulk Polymer Nanocomposites with Preparation Protocol Governed Nanostructure: The Origin and Properties of Aggregates and Polymer Bound Clusters. Soft Matter. 2018;14(11):2094–2103. doi: 10.1039/C8SM00150B. PubMed DOI
Štaffová M., Ondreáš F., Svatík J., Zbončák M., Jančář J., Lepcio P.. 3D Printing and Post-Curing Optimization of Photopolymerized Structures: Basic Concepts and Effective Tools for Improved Thermomechanical Properties. Polym Test. 2022;108:107499. doi: 10.1016/j.polymertesting.2022.107499. DOI
Korčušková M., Sevriugina V., Ondreáš F., Svatík J., Tomal W., Vishakha V., Ortyl J., Lepcio P.. Photoactivity, Conversion Kinetics, Nanoreinforcement, Post-Curing, and Electric/Dielectric Properties of Functional 3D Printable Photopolymer Resin Filled with Bare and Alumina-Doped ZnO Nanoparticles. Polym Test. 2022;116:107798. doi: 10.1016/j.polymertesting.2022.107798. DOI
Ávila-López M. A., Bonilla-Cruz J., Méndez-Nonell J., Lara-Ceniceros T. E.. Strong and Lightweight Stereolithographically 3D-Printed Polymer Nanocomposites with Low Friction and High Toughness. Polymers. 2022;14(17):3628. doi: 10.3390/polym14173628. PubMed DOI PMC
Clarissa W. H. Y., Chia C. H., Zakaria S., Evyan Y. C. Y.. Recent Advancement in 3-D Printing: Nanocomposites with Added Functionality. Progress in Additive Manufacturing. 2022;7:325–350. doi: 10.1007/s40964-021-00232-z. PubMed DOI PMC
Zare Y.. Study of Nanoparticles Aggregation/Agglomeration in Polymer Particulate Nanocomposites by Mechanical Properties. Compos Part A Appl Sci Manuf. 2016;84:158–164. doi: 10.1016/j.compositesa.2016.01.020. DOI
Manapat J. Z., Chen Q., Ye P., Advincula R. C.. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol Mater Eng. 2017;302(9):1600553. doi: 10.1002/mame.201600553. DOI
Zhang L., Huang X., Liu L., Nasar N. K. A., Gu X., Davis T. P., Zheng X., Wang L., Qiao R.. Fabrication of Organic/Inorganic Nanocomposites: From Traditional Synthesis to Additive Manufacturing. Adv. Mater. 2025;37:2505504. doi: 10.1002/adma.202505504. PubMed DOI PMC
Shamsuri A. A., Jamil S. N. A. Md.. A Short Review on the Effect of Surfactants on the Mechanico-Thermal Properties of Polymer Nanocomposites. Applied Sciences. 2020;10(14):4867. doi: 10.3390/app10144867. DOI
Ma P. C., Siddiqui N. A., Marom G., Kim J. K.. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Composites Part A: Applied Science and Manufacturing. 2010;41(10):1345–1367. doi: 10.1016/j.compositesa.2010.07.003. DOI
Shah M., Ullah A., Azher K., Rehman A. U., Juan W., Aktürk N., Tüfekci C. S., Salamci M. U.. Vat Photopolymerization-Based 3D Printing of Polymer Nanocomposites: Current Trends and Applications. RSC Advances. 2023;13:1456–1496. doi: 10.1039/D2RA06522C. PubMed DOI PMC
Mendes-Felipe C., Oliveira J., Etxebarria I., Vilas-Vilela J. L., Lanceros-Mendez S.. State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies. Adv Mater Technol. 2019;4(3):1800618. doi: 10.1002/admt.201800618. DOI
Sevriugina V., Pavliňák D., Ondreáš F., Jašek O., Štaffová M., Lepcio P.. Matching Low Viscosity with Enhanced Conductivity in Vat Photopolymerization 3D Printing: Disparity in the Electric and Rheological Percolation Thresholds of Carbon-Based Nanofillers Is Controlled by the Matrix Type and Filler Dispersion. ACS Omega. 2023;8(48):45566–45577. doi: 10.1021/acsomega.3c05683. PubMed DOI PMC
Javed A., Shah O. ur R., Ahmad S., Ahmed D.. Optimization of Viscosity and Composition of Mixture of Cu Powder and Acrylate Based Resin for Vat Photopolymerization of Metal Components. Results in Engineering. 2023;19:101307. doi: 10.1016/j.rineng.2023.101307. DOI
Stansbury J. W., Idacavage M. J.. 3D Printing with Polymers: Challenges among Expanding Options and Opportunities. Dental Materials. 2016;32:54–64. doi: 10.1016/j.dental.2015.09.018. PubMed DOI
Tomeckova V., Torres-Garibay C., Love B. J., Halloran J. W.. Sedimentation of Particles in Photopolymerizable Suspensions. Int J Appl Ceram Technol. 2025;22(5):e15163. doi: 10.1111/ijac.15163. DOI
Plüisch C. S., Stuckert R., Wittemann A.. Direct Measurement of Sedimentation Coefficient Distributions in Multimodal Nanoparticle Mixtures. Nanomaterials. 2021;11(4):1027. doi: 10.3390/nano11041027. PubMed DOI PMC
Hassan Y. M., Guan B. H., Chuan L. K., Sikiru S., Hamza M. F., Halilu A., Adam A. A., Abdulkadir B. A., Ayub S.. Stability and Viscosity of Zinc Oxide–Silicon Dioxide Nanocomposite in Synthetic Seawater Supported by Surfactant for Enhanced Oil Recovery. Nano-Structures and Nano-Objects. 2022;31:100902. doi: 10.1016/j.nanoso.2022.100902. DOI
Upadhyay A. K., Goyat M. S., Kumar A.. A Review on the Effect of Oxide Nanoparticles, Carbon Nanotubes, and Their Hybrid Structure on the Toughening of Epoxy Nanocomposites. J. Mater. Sci. 2022;57:13202–13232. doi: 10.1007/s10853-022-07496-y. DOI
Lepcio P., Ondreáš F., Zárybnická K., Zbončák M., Svatík J., Jančář J.. Phase Diagram of Bare Particles in Polymer Nanocomposites: Uniting Solution and Melt Blending. Polymer. 2021;230:124033. doi: 10.1016/j.polymer.2021.124033. DOI
Genix A. C., Bocharova V., Carroll B., Dieudonné-George P., Chauveau E., Sokolov A. P., Oberdisse J.. How Tuning Interfaces Impacts the Dynamics and Structure of Polymer Nanocomposites Simultaneously. ACS Appl Mater Interfaces. 2023;15(5):7496–7510. doi: 10.1021/acsami.2c18083. PubMed DOI
Genix A. C., Schmitt-Pauly C., Alauzun J. G., Bizien T., Mutin P. H., Oberdisse J.. Tuning Local Nanoparticle Arrangements in TiO2-Polymer Nanocomposites by Grafting of Phosphonic Acids. Macromolecules. 2017;50(19):7721–7729. doi: 10.1021/acs.macromol.7b01371. DOI
Korčušková M., Svatík J., Tomal W., Šikyňová A., Vishakha V., Petko F., Galek M., Stalmach P., Ortyl J., Lepcio P.. Anatase and Rutile Nanoparticles in Photopolymer 3D-Printed Nanocomposites: Band Gap-Controlled Electron Interactions in Free-Radical and Cationic Photocuring. React Funct Polym. 2024;200:105923. doi: 10.1016/j.reactfunctpolym.2024.105923. DOI
Gong Y., Wang R., Pan S., Ma Z., Zhu X., Song Y., Song H., Tao L., Cao D., Lin W.. Exploring Inorganic Particle-Inclusive RAFT-Controlled Radical Polymerization: Advancing Precision in Ceramic 3D Printing. Addit Manuf. 2025;103:104757. doi: 10.1016/j.addma.2025.104757. DOI
Tomeckova V., Halloran J. W.. Predictive Models for the Photopolymerization of Ceramic Suspensions. J Eur Ceram Soc. 2010;30(14):2833–2840. doi: 10.1016/j.jeurceramsoc.2010.01.027. DOI
Lopez de Armentia S., Abenojar J., Ballesteros Y., del Real J. C., Dunne N., Paz E.. Polymerization Kinetics of Acrylic Photopolymer Loaded with Graphene-Based Nanomaterials for Additive Manufacturing. Nanomaterials. 2022;12(24):4498. doi: 10.3390/nano12244498. PubMed DOI PMC
Yosef Tal N., Dodiuk H., Farran S., Carmieli R., Pinkas I., Kenig S., Tenne R.. Accelerated Photocuring of Acrylate Resins with WS2 Nanoparticles. ACS Appl Polym Mater. 2024;6(6):3303–3315. doi: 10.1021/acsapm.3c03119. DOI
Check C., Chartoff R., Chang S.. Effects of Nanoparticles on Photopolymerization of Acrylate Monomers in Forming Nano-Composites. Eur. Polym. J. 2015;70:166–172. doi: 10.1016/j.eurpolymj.2015.07.003. DOI
Hassan T., Salam A., Khan A., Khan S. U., Khanzada H., Wasim M., Khan M. Q., Kim I. S.. Functional Nanocomposites and Their Potential Applications: A Review. Journal of Polymer Research. 2021;28(2):36. doi: 10.1007/s10965-021-02408-1. DOI
Mohd Shuhairi D. N., Abdul Malek N. S., Mohd Ghazali M. I., Md Sin N. D., Bonnia N. N., Yamada K., Rosman N., Hajar N., Omar H., Asli N. A.. Nanofillers in Vat Photopolymerisation Additive Manufacturing: Mechanical Properties of Graphene and Acrylate-Based Composites. Progress in Additive Manufacturing. 2025 doi: 10.1007/s40964-025-01289-w. DOI
Tilve-Martinez D., Poulin P.. Vat Photopolymerization 3D Printing of Conductive Nanocomposites. Acc Mater Res. 2025;6(5):661–671. doi: 10.1021/accountsmr.5c00060. DOI
Nowacki B., Kowol P., Kozioł M., Olesik P., Wieczorek J., Wacławiak K.. Effect of Post-Process Curing and Washing Time on Mechanical Properties of mSLA Printouts. Materials. 2021;14(17):4856. doi: 10.3390/ma14174856. PubMed DOI PMC
Prasanna S. R. V. S., Balaji K., Pandey S., Rana S.. Metal Oxide Based Nanomaterials and Their Polymer Nanocomposites. Nanomaterials and Polymer Nanocomposites. 2019:123–144. doi: 10.1016/B978-0-12-814615-6.00004-7. DOI
Yan J., Lai H., Zeng B., Wang L., Xing F., Xiao P.. Photoinduced Free Radical-Releasing Systems and Their Anticancer Properties. Photochemical and Photobiological Sciences. 2022;21(8):1405–1417. doi: 10.1007/s43630-022-00231-1. PubMed DOI
Ren X., Liu W., Yao Q., Wang S., Liu W., Gu H., Wang D., Fan J., Peng X.. A UV-LED Excited Photoinitiator with Low Toxicity and Low Migration for Photocurable Inks. Dyes and Pigments. 2022;200:110133. doi: 10.1016/j.dyepig.2022.110133. DOI
Popal M., Volk J., Leyhausen G., Geurtsen W.. Cytotoxic and Genotoxic Potential of the Type I Photoinitiators BAPO and TPO on Human Oral Keratinocytes and V79 Fibroblasts. Dental Materials. 2018;34(12):1783–1796. doi: 10.1016/j.dental.2018.09.015. PubMed DOI
Naor T., Gigi S., Waiskopf N., Jacobi G., Shoshani S., Kam D., Magdassi S., Banin E., Banin U.. ZnO Quantum Photoinitiators as an All-in-One Solution for Multifunctional Photopolymer Nanocomposites. ACS Nano. 2023;17(20):20366–20375. doi: 10.1021/acsnano.3c06518. PubMed DOI PMC
Matějka V., Tokarský J.. Photocatalytical Nanocomposites: A Review. J Nanosci Nanotechnol. 2014;14(2):1597–1616. doi: 10.1166/jnn.2014.9081. PubMed DOI
Furka D., Furka S., Naftaly M., Rakovský E., Čaplovičová M., Janek M.. ZnO Nanoparticles as Photodegradation Agent Controlled by Morphology and Boron Doping. Catal Sci Technol. 2021;11(6):2167–2185. doi: 10.1039/D0CY01802C. DOI
Dadashi-Silab S., Yar Y., Yagci Acar H., Yagci Y.. Magnetic Iron Oxide Nanoparticles as Long Wavelength Photoinitiators for Free Radical Polymerization. Polym Chem. 2015;6(11):1918–1922. doi: 10.1039/C4PY01658K. DOI
Damm C., Herrmann R., Israel G., Müller F. W.. Acrylate Photopolymerization on Heterostructured TiO2 Photocatalysts. Dyes and Pigments. 2007;74(2):335–342. doi: 10.1016/j.dyepig.2006.02.012. DOI
Mamba G., Mishra A. K.. Graphitic Carbon Nitride (g-C3N4) Nanocomposites: A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation. Appl. Catal., B. 2016;198:347–377. doi: 10.1016/j.apcatb.2016.05.052. DOI
Bogdan J., Pławińska-Czarnak J., Zarzyńska J.. Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: A Review. Nanoscale Res Lett. 2017;12(1):225. doi: 10.1186/s11671-017-2007-y. PubMed DOI PMC
Peiris S., de Silva H. B., Ranasinghe K. N., Bandara S. V., Perera I. R.. Recent Development and Future Prospects of TiO2 Photocatalysis. Journal of the Chinese Chemical Society. 2021;68(5):738–769. doi: 10.1002/jccs.202000465. DOI
Al-Mamun M. R., Kader S., Islam M. S., Khan M. Z. H.. Photocatalytic Activity Improvement and Application of UV-TiO2 Photocatalysis in Textile Wastewater Treatment: A Review. Journal of Environmental Chemical Engineering. 2019;7(5):103248. doi: 10.1016/j.jece.2019.103248. DOI
Zhao X., Zhang G., Zhang Z.. TiO2-Based Catalysts for Photocatalytic Reduction of Aqueous Oxyanions: State-of-the-Art and Future Prospects. Environment International. 2020;136:105453. doi: 10.1016/j.envint.2019.105453. PubMed DOI
Quan H., Zhang T., Xu H., Luo S., Nie J., Zhu X.. Photo-Curing 3D Printing Technique and Its Challenges. Bioact Mater. 2020;5(1):110–115. doi: 10.1016/j.bioactmat.2019.12.003. PubMed DOI PMC
Riente P., Noël T.. Application of Metal Oxide Semiconductors in Light-Driven Organic Transformations. Catal Sci Technol. 2019;9(19):5186–5232. doi: 10.1039/C9CY01170F. DOI
Kessler A., Hedberg J., Blomberg E., Odnevall I.. Reactive Oxygen Species Formed by Metal and Metal Oxide Nanoparticles in Physiological MediaA Review of Reactions of Importance to Nanotoxicity and Proposal for Categorization. Nanomaterials. 2022;12(11):1922. doi: 10.3390/nano12111922. PubMed DOI PMC
Li Y., Zhang W., Niu J., Chen Y.. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles. ACS Nano. 2012;6(6):5164–5173. doi: 10.1021/nn300934k. PubMed DOI
Balamurugan B., Aruna I., Mehta B. R., Shivaprasad S. M.. Size-Dependent Conductivity Type Inversion in Cu2O Nanoparticles. Phys Rev B Condens Matter Mater Phys. 2004;69(16):165419. doi: 10.1103/PhysRevB.69.165419. DOI
Nosaka Y., Nosaka A. Y.. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews. 2017;117(17):11302–11336. doi: 10.1021/acs.chemrev.7b00161. PubMed DOI
Li F., Zhou S., You B., Wu L.. Kinetic Study on the UV-Induced Photopolymerization of Epoxy Acrylate/TiO2 Nanocomposites by FTIR Spectroscopy. J. Appl. Polym. Sci. 2006;99(6):3281–3287. doi: 10.1002/app.22573. DOI
Becker-Willinger C., Schmitz-Stöwe S., Bentz D., Veith M.. Kinetic Investigations on TiO2 Nanoparticles as Photo Initiators for UV-Polymerization in Acrylic Matrix. Proceedings of SPIE, Regular series. 2010;7590:75900I. doi: 10.1117/12.841647. DOI
Luu T. T. H., Jia Z., Kanaev A., Museur L.. Photopolymerization of TiO2-Based Hybrid Materials: Effect of Nanoparticles Loading and Photosensitive 1D Microstructures Fabrication. J. Mater. Sci. 2023;58(3):1127–1138. doi: 10.1007/s10853-022-08090-y. DOI
Riad K. B., Arnold A. A., Claverie J. P., Hoa S. V., Wood-Adams P. M.. Photopolymerization Using Metal Oxide Semiconducting Nanoparticles for Epoxy-Based Coatings and Patterned Films. ACS Appl Nano Mater. 2020;3(3):2875–2880. doi: 10.1021/acsanm.0c00147. DOI
Mendes-Felipe C., Garcia A., Salazar D., Vilas-Vilela J. L., Lanceros-Mendez S.. Photocurable Magnetic Materials with Tailored Functional Properties. Composites Part C: Open Access. 2021;5:100143. doi: 10.1016/j.jcomc.2021.100143. DOI
Su Q., Zuo C., Liu M., Tai X.. A Review on Cu2O-Based Composites in Photocatalysis: Synthesis, Modification, and Applications. Molecules. 2023;28(14):5576. doi: 10.3390/molecules28145576. PubMed DOI PMC
Nguyen T. V., Do T. V., Ha M. H., Le H. K., Le T. T., Linh Nguyen T. N., Dam X. T., Lu L. T., Tran D. L., Vu Q. T., Dinh D. A., Dang T. C., Nguyen-Tri P.. Crosslinking Process, Mechanical and Antibacterial Properties of UV-Curable Acrylate/Fe3O4-Ag Nanocomposite Coating. Prog Org Coat. 2020;139:105325. doi: 10.1016/j.porgcoat.2019.105325. DOI
Kumar A., Kumar N.. Advances in Transparent Polymer Nanocomposites and Their Applications: A Comprehensive Review. Polymer-Plastics Technology and Materials. 2022;61(9):937–974. doi: 10.1080/25740881.2022.2029892. DOI
Pasha A., Khasim S., Darwish A. A. A., Hamdalla T. A., Al-Ghamdi S. A., Alfadhli S.. Flexible, Stretchable and Electrically Conductive PDMS Decorated with Polypyrrole/Manganese-Iron Oxide Nanocomposite as a Multifunctional Material for High Performance EMI Shielding Applications. Synth. Met. 2022;283:116984. doi: 10.1016/j.synthmet.2021.116984. DOI
Patil P. H., Kulkarni V. V., Jadhav S. A.. An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application. Journal of Composites Science. 2022;6(12):363. doi: 10.3390/jcs6120363. DOI
Shiv J. K., Kumar K., Jayapalan S.. Recent Advances in Polymer Using Metal Oxides Nanocomposite and Its Hybrid Fillers for Tribological Application. Advances in Materials and Processing Technologies. 2024;10(4):2720. doi: 10.1080/2374068X.2023.2171673. DOI
Eray S.. Application of Metal Oxides in Composites. Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications. 2020:101–119. doi: 10.1016/B978-0-12-817505-7.00006-3. DOI
Wang N., Fuh J. Y. H., Dheen S. T., Senthil Kumar A.. Functions and Applications of Metallic and Metallic Oxide Nanoparticles in Orthopedic Implants and Scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials. 2021;109(2):160–179. doi: 10.1002/jbm.b.34688. PubMed DOI
Mosas K. K. A., Chandrasekar A. R., Dasan A., Pakseresht A., Galusek D.. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels. 2022;8(5):323. doi: 10.3390/gels8050323. PubMed DOI PMC
Ramezani M., Ripin Z. M.. An Overview of Enhancing the Performance of Medical Implants with Nanocomposites. Journal of Composites Science. 2023;7(5):199. doi: 10.3390/jcs7050199. DOI
Jancar J., Douglas J. F., Starr F. W., Kumar S. K., Cassagnau P., Lesser A. J., Sternstein S. S., Buehler M. J.. Current Issues in Research on Structure–Property Relationships in Polymer Nanocomposites. Polymer. 2010;51(15):3321–3343. doi: 10.1016/j.polymer.2010.04.074. DOI
Ghanekarade A., Phan A. D., Schweizer K. S., Simmons D. S.. Nature of Dynamic Gradients, Glass Formation, and Collective Effects in Ultrathin Freestanding Films. Proceedings of the National Academy of Sciences. 2021;118(31):e2104398118. doi: 10.1073/pnas.2104398118. PubMed DOI PMC
Shannon A., Guttridge C., O’Sullivan A., O’Sullivan K. J., Clifford S., Schmalenberger A., O’Sullivan L.. Comparing Digital Light Processing and Stereolithography Vat Polymerization Technologies for Antimicrobial 3D Printing Using Silver Oxide as an Antimicrobial Filler. J. Appl. Polym. Sci. 2024;141(12):e55122. doi: 10.1002/app.55122. DOI
Ng C. S., Subramanian A. S., Su P. C.. Zinc Oxide Nanoparticles as Additives for Improved Dimensional Accuracy in Vat Photopolymerization. Addit Manuf. 2022;59:103118. doi: 10.1016/j.addma.2022.103118. DOI
Aktitiz İ., Aydın K., Darıcık F., Topcu A.. Production of Different Metal Oxide Nanoparticle Embedded Polymer Matrix Composite Structures by the Additive Manufacturing Technology and Investigation of Their Properties. Polym Compos. 2022;43(11):7826–7835. doi: 10.1002/pc.26894. DOI
Soytaş S. H., Oğuz O., Menceloğlu Y. Z.. Polymer Nanocomposites With Decorated Metal Oxides. Polymer Composites with Functionalized Nanoparticles. 2019:287–323. doi: 10.1016/B978-0-12-814064-2.00009-3. DOI
Zboncak M., Ondreas F., Uhlir V., Lepcio P., Michalicka J., Jancar J.. Translation of Segment Scale Stiffening into Macroscale Reinforcement in Polymer Nanocomposites. Polym. Eng. Sci. 2020;60(3):587–596. doi: 10.1002/pen.25317. DOI
Mubarak S., Dhamodharan D., Kale M. B., Divakaran N., Senthil T., P S., Wu L., Wang J.. A Novel Approach to Enhance Mechanical and Thermal Properties of SLA 3D Printed Structure by Incorporation of Metal–Metal Oxide Nanoparticles. Nanomaterials. 2020;10(2):217. doi: 10.3390/nano10020217. PubMed DOI PMC
Trembecka-Wójciga K., Jankowska M., Lepcio P., Sevriugina V., Korčušková M., Czeppe T., Zubrzycka P., Ortyl J.. Optimization of Zirconium Oxide Nanoparticle-Enhanced Photocurable Resins for High-Resolution 3D Printing Ceramic Parts. Adv Mater Interfaces. 2025;12(11):2400951. doi: 10.1002/admi.202400951. DOI
Mubarak S., Dhamodharan D., Divakaran N., Kale M. B., Senthil T., Wu L., Wang J.. Enhanced Mechanical and Thermal Properties of Stereolithography 3D Printed Structures by the Effects of Incorporated Controllably Annealed Anatase TiO2 Nanoparticles. Nanomaterials. 2020;10(1):79. doi: 10.3390/nano10010079. PubMed DOI PMC
Yugang D., Yuan Z., Yiping T., Dichen L.. Nano-TiO2-Modified Photosensitive Resin for RP. Rapid Prototyp J. 2011;17(4):247–252. doi: 10.1108/13552541111138360. DOI
Garcia V. J., Cheng X., Rong L., Lara-Ceniceros T. E., Ricohermoso E., Bonilla-Cruz J., Espiritu R. D., Advincula R. C.. Thermomechanical Properties of Stereolithographic 3D-Printed Zinc Oxide Nanocomposites. MRS Commun. 2024;14:676–685. doi: 10.1557/s43579-024-00602-y. DOI
Petousis M., Vidakis N., Velidakis E., Kechagias J. D., David C. N., Papadakis S., Mountakis N.. Affordable Biocidal Ultraviolet Cured Cuprous Oxide Filled Vat Photopolymerization Resin Nanocomposites with Enhanced Mechanical Properties. Biomimetics. 2022;7(1):12. doi: 10.3390/biomimetics7010012. PubMed DOI PMC
Raj R., Dixit A. R., Singh S. S., Paul S.. Print Parameter Optimization and Mechanical Deformation Analysis of Alumina-Nanoparticle Doped Photocurable Nanocomposites Fabricated Using Vat-Photopolymerization Based Additive Technology. Addit Manuf. 2022;60:103201. doi: 10.1016/j.addma.2022.103201. DOI
Huang Y., Ellingford C., Bowen C., McNally T., Wu D., Wan C.. Tailoring the Electrical and Thermal Conductivity of Multi-Component and Multi-Phase Polymer Composites. International Materials Reviews. 2020;65(3):129–163. doi: 10.1080/09506608.2019.1582180. DOI
Gupta N., Kumar A., Dhasmana H., Kumar V., Kumar A., Shukla P., Verma A., Nutan G. V., Dhawan S. K., Jain V. K.. Enhanced Thermophysical Properties of Metal Oxide Nanoparticles Embedded Magnesium Nitrate Hexahydrate Based Nanocomposite for Thermal Energy Storage Applications. J Energy Storage. 2020;32:101773. doi: 10.1016/j.est.2020.101773. DOI
Pezzana L., Riccucci G., Spriano S., Battegazzore D., Sangermano M., Chiappone A.. 3D Printing of Pdms-like Polymer Nanocomposites with Enhanced Thermal Conductivity: Boron Nitride Based Photocuring System. Nanomaterials. 2021;11(2):373. doi: 10.3390/nano11020373. PubMed DOI PMC
Vo D. K., Do T. D., Nguyen B. T., Tran C. K., Nguyen T. A., Nguyen D. M., Pham L. H., Nguyen T. D., Nguyen T. D., Hoang D. Q.. Effect of Metal Oxide Nanoparticles and Aluminum Hydroxide on the Physicochemical Properties and Flame-Retardant Behavior of Rigid Polyurethane Foam. Constr Build Mater. 2022;356:129268. doi: 10.1016/j.conbuildmat.2022.129268. DOI
Lee S., Kim Y., Park D., Kim J.. The Thermal Properties of a UV Curable Acrylate Composite Prepared by Digital Light Processing 3D Printing. Composites Communications. 2021;26:100796. doi: 10.1016/j.coco.2021.100796. DOI
Lepcio P., Daguerre-Bradford J., Cristadoro A. M., Schuette M., Lesser A. J.. Frontally Polymerized Foams: Thermodynamic and Kinetical Aspects of Front Hindrance by Particles. Mater Horiz. 2023;10(8):2989–2996. doi: 10.1039/D2MH01553F. PubMed DOI
Huang C., Qian X., Yang R.. Thermal Conductivity of Polymers and Polymer Nanocomposites. Materials Science and Engineering R: Reports. 2018;132:1–22. doi: 10.1016/j.mser.2018.06.002. DOI
Bikiaris D.. Can Nanoparticles Really Enhance Thermal Stability of Polymers? Part II: An Overview on Thermal Decomposition of Polycondensation Polymers. Thermochim. Acta. 2011;523(1–2):25–45. doi: 10.1016/j.tca.2011.06.012. DOI
Shimoga G., Kim S. Y.. High-k Polymer Nanocomposite Materials for Technological Applications. Applied Sciences. 2020;10(12):4249. doi: 10.3390/app10124249. DOI
Bafna, M. ; Bafna, N. ; Deeba, F. ; Jain, A. . Metal and Metal-Oxide-Based Polymeric Nanodielectrics for Energy Storage: Opportunities and Challenges. Emerging Nanodielectric Materials for Energy Storage; 2024; pp 189–212 10.1007/978-3-031-40938-7_7. DOI
Tundwal A., Kumar H., Binoj B. J., Sharma R., Kumar G., Kumari R., Dhayal A., Yadav A., Singh D., Kumar P.. Developments in Conducting Polymer-, Metal Oxide-, and Carbon Nanotube-Based Composite Electrode Materials for Supercapacitors: A Review. RSC Advances. 2024;14:9406–9439. doi: 10.1039/D3RA08312H. PubMed DOI PMC
Saleem M. Z., Akbar M.. Review of the Performance of High-Voltage Composite Insulators. Polymers. 2022;14(3):431. doi: 10.3390/polym14030431. PubMed DOI PMC
Jeong J. W., Hwang H. S., Choi D., Ma B. C., Jung J., Chang M.. Hybrid Polymer/Metal Oxide Thin Films for High Performance, Flexible Transistors. Micromachines. 2020;11(3):264. doi: 10.3390/mi11030264. PubMed DOI PMC
Kim J. H., Hwang B. U., Kim D. Il, Kim J. S., Seol Y. G., Kim T. W., Lee N. E.. Nanocomposites of Polyimide and Mixed Oxide Nanoparticles for High Performance Nanohybrid Gate Dielectrics in Flexible Thin Film Transistors. Electronic Materials Letters. 2017;13(3):214–221. doi: 10.1007/s13391-017-6345-9. DOI
Sajjad, H. , Adnan, H. , Eds. Renewable Polymers and Polymer-Metal Oxide Composites; Elsevier, 2022. 10.1016/C2020-0-01691-9. DOI
Zhang Z., Hu L., Wang R., Zhang S., Fu L., Li M., Xiao Q.. Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling. Polymers. 2024;16(4):545. doi: 10.3390/polym16040545. PubMed DOI PMC
Rahman M. T., Asadul Hoque Md., Rahman G. T., Gafur M. A., Khan R. A., Hossain M. K.. Study on the Mechanical, Electrical and Optical Properties of Metal-Oxide Nanoparticles Dispersed Unsaturated Polyester Resin Nanocomposites. Results Phys. 2019;13:102264. doi: 10.1016/j.rinp.2019.102264. DOI
Sampreeth T., Al-Maghrabi M. A., Bahuleyan B. K., Ramesan M. T.. Synthesis, Characterization, Thermal Properties, Conductivity and Sensor Application Study of Polyaniline/Cerium-Doped Titanium Dioxide Nanocomposites. J. Mater. Sci. 2018;53(1):591–603. doi: 10.1007/s10853-017-1505-8. DOI
Hong J. I., Schadler L. S., Siegel R. W., Mårtensson E.. Rescaled Electrical Properties of ZnO/Low Density Polyethylene Nanocomposites. Appl. Phys. Lett. 2003;82(12):1956–1958. doi: 10.1063/1.1563306. DOI
Uricar, J. ; Minar, J. . Stereolithography Resins with Conductive Fillers: An Effective Way to Enhance Their Electrical Properties. 2021 44th International Spring Seminar on Electronics Technology 2021; Vol. 2021; pp 1–4 10.1109/ISSE51996.2021.9467669. DOI
Zadehnazari A.. Metal Oxide/Polymer Nanocomposites: A Review on Recent Advances in Fabrication and Applications. Polymer-Plastics Technology and Materials. 2023;62(5):655–700. doi: 10.1080/25740881.2022.2129387. DOI
Singha S., Thomas M. J.. Influence of Filler Loading on Dielectric Properties of Epoxy-ZnO Nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation. 2009;16(2):531–542. doi: 10.1109/TDEI.2009.4815189. DOI
Lepcio P., Svatík J., Štaffová M., Lesser A. J., Ondreáš F.. Revealing the Combined Nanoconfinement Effect by Soft and Stiff Inclusions in PMMA/Silica CO2 Blown Foams. Macromol. Mater. Eng. 2022;307:2200403. doi: 10.1002/mame.202200403. DOI
Malas A., Isakov D., Couling K., Gibbons G. J.. Fabrication of High Permittivity Resin Composite for Vat Photopolymerization 3D Printing: Morphology, Thermal, Dynamic Mechanical and Dielectric Properties. Materials. 2019;12(23):3818. doi: 10.3390/ma12233818. PubMed DOI PMC
Kim K., Zhu W., Qu X., Aaronson C., McCall W. R., Chen S., Sirbuly D. J.. 3D Optical Printing of Piezoelectric Nanoparticle-Polymer Composite Materials. ACS Nano. 2014;8(10):9799–9806. doi: 10.1021/nn503268f. PubMed DOI
Nohut S., Schwentenwein M.. Vat Photopolymerization Additive Manufacturing of Functionally Graded Materials: A Review. Journal of Manufacturing and Materials Processing. 2022;6(1):17. doi: 10.3390/jmmp6010017. DOI
Khurram R., Wang Z., Fahad Ehsan M.. α-Fe2O3-Based Nanocomposites: Synthesis, Characterization, and Photocatalytic Response towards Wastewater Treatment. Environmental Science and Pollution Research. 2021;28:17697–17711. doi: 10.1007/s11356-020-11778-w. PubMed DOI
Pourmadadi M., Rahmani E., Shamsabadipour A., Mahtabian S., Ahmadi M., Rahdar A., Díez-Pascual A. M.. Role of Iron Oxide (Fe2O3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. Nanomaterials. 2022;12(21):3873. doi: 10.3390/nano12213873. PubMed DOI PMC
Bajpai O. P., Setua D. K., Chattopadhyay S.. View of A Brief Overview on Ferrite (Fe3O4) Based Polymeric Nanocomposites: Recent Developments and Challenges. Journal of Research Updates in Polymer Science. 2015;3:184–204. doi: 10.6000/1929-5995.2014.03.04.1. DOI
Yang, Y. ; Teng, P. ; Yu, S. ; Meng, Y. ; Zuo, J. ; Guo, H. ; Liu, G. . A Review of Combined Imaging and Therapeutic Applications Based on MNMs. Frontiers in Chemistry 2025, 13, 10.3389/fchem.2025.1595376. PubMed DOI PMC
Zhao Y., Liu Y., Xu H., Fan Q., Zhu C., Liu J., Zhu M., Wang X., Niu A.. Preparation and Application of Magnetic Composites Using Controllable Assembly for Use in Water Treatment: A Review. Molecules. 2023;28(15):5799. doi: 10.3390/molecules28155799. PubMed DOI PMC
Aslinjensipriya A., Reena R. S., Ragu R., Infantiya S. G., Mangalam G., Raj C. J., Das S. J.. Exploring the Influence of Tin in Micro-Structural, Magneto-Optical and Antimicrobial Traits of Nickel Oxide Nanoparticles. Surfaces and Interfaces. 2022;28:101605. doi: 10.1016/j.surfin.2021.101605. DOI
Lantean S., Barrera G., Pirri C. F., Tiberto P., Sangermano M., Roppolo I., Rizza G.. 3D Printing of Magnetoresponsive Polymeric Materials with Tunable Mechanical and Magnetic Properties by Digital Light Processing. Adv Mater Technol. 2019;4(11):1900505. doi: 10.1002/admt.201900505. DOI
Credi C., Fiorese A., Tironi M., Bernasconi R., Magagnin L., Levi M., Turri S.. 3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers. ACS Appl Mater Interfaces. 2016;8(39):26332–26342. doi: 10.1021/acsami.6b08880. PubMed DOI
Safaee S., Chen R.. Investigation of a Magnetic Field-Assisted Digital-Light-Processing Stereolithography for Functionally Graded Materials. Procedia Manufacturing. 2019;34:731–737. doi: 10.1016/j.promfg.2019.06.229. DOI
Löwa N., Fabert J. M., Gutkelch D., Paysen H., Kosch O., Wiekhorst F.. 3D-Printing of Novel Magnetic Composites Based on Magnetic Nanoparticles and Photopolymers. J Magn Magn Mater. 2019;469:456–460. doi: 10.1016/j.jmmm.2018.08.073. DOI
Lu L., Guo P., Pan Y.. Magnetic-Field-Assisted Projection Stereolithography for Three-Dimensional Printing of Smart Structures. Journal of Manufacturing Science and Engineering. 2017;139(7):071008. doi: 10.1115/1.4035964. DOI
Safaee S., Chen R. K.. Development of a Design and Characterization Framework for Fabrication of Functionally Graded Materials Using Magnetic Field-Assisted Digital Light Processing Stereolithography. J Manuf Process. 2021;67:314–324. doi: 10.1016/j.jmapro.2021.04.058. DOI
Aktitiz İ., Delibaş H., Topcu A., Aydın K.. Morphological, Mechanical, Magnetic, and Thermal Properties of 3D Printed Functional Polymeric Structures Modified with Fe2O3 Nanoparticles. Polym Compos. 2021;42(12):6839–6846. doi: 10.1002/pc.26344. DOI
Colorado H. A., Gutierrez-Velasquez E. I., Gil L. D., de Camargo I. L.. Exploring the Advantages and Applications of Nanocomposites Produced via Vat Photopolymerization in Additive Manufacturing: A Review. Advanced Composites and Hybrid Materials. 2024;7:1. doi: 10.1007/s42114-023-00808-z. DOI
Jain N., Kumar D., Bhardwaj K., Sharma R. K., Holovsky J., Mishra M., Mishra Y. K., Sharma S. K.. Heterostructured Core-Shell Metal Oxide-Based Nanobrushes for Ultrafast UV Photodetectors. Materials Science and Engineering R: Reports. 2024;160:100826. doi: 10.1016/j.mser.2024.100826. DOI
Yoo H., Lee I. S., Jung S., Rho S. M., Kang B. H., Kim H. J.. A Review of Phototransistors Using Metal Oxide Semiconductors: Research Progress and Future Directions. Adv. Mater. 2021;33(47):2006091. doi: 10.1002/adma.202006091. PubMed DOI
Saleem S., Ashiq M. N., Manzoor S., Ali U., Liaqat R., Algahtani A., Mujtaba S., Tirth V., Alsuhaibani A. M., Refat M. S., Ali A., Aslam M., Zaman A.. Analysis and Characterization of Opto-Electronic Properties of Iron Oxide (Fe2O3) with Transition Metals (Co, Ni) for the Use in the Photodetector Application. Journal of Materials Research and Technology. 2023;25:6150–6166. doi: 10.1016/j.jmrt.2023.07.065. DOI
Zargar, R. A. , Ed. Metal Oxide Nanocomposite Thin Films for Optoelectronic Device Applications; John Wiley & Sons: Hoboken, NJ, 2023.
Moumen A., Kumarage G. C. W., Comini E.. P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. Sensors. 2022;22(4):1359. doi: 10.3390/s22041359. PubMed DOI PMC
Bisht B. P., Toutam V., Dhakate S. R., Subhedar K. M., Srivastava S., Yadav A., Gupta G.. 3D Printed ZnO-Polyurethane Acrylate Resin Composite for Wide Spectral Photo Response Optical Detectors. Sens Actuators A Phys. 2023;351:114165. doi: 10.1016/j.sna.2023.114165. DOI
Gonzalez-Ocegueda P. A., Herrera-Saucedo A., Quiñones-Galvan J. G., Valero-Luna C., Alvarado-Perea L., Canizales-Davalos L., Martinez-Guajardo G., Bañuelos-Frias A.. DLP Fabrication of TiO2 Nanoparticle Thin Films. Mater. Lett. 2021;296:129873. doi: 10.1016/j.matlet.2021.129873. DOI
Zhang K., Bai J., Wan X., Dong L., Wang S., Pan H., Chu Y., Ren J., Zhang J., Peng G.-D.. Facile Fabrication of Silica Glass Embedded with NiO Nanoparticles by 3D Printing Technology and Its Optical Nonlinearity. Adv Photonics Res. 2024;5(2):2300244. doi: 10.1002/adpr.202300244. DOI
Weber K., Werdehausen D., König P., Thiele S., Schmid M., Decker M., De Oliveira P. W., Herkommer A., Giessen H.. Tailored Nanocomposites for 3D Printed Micro-Optics. Opt Mater Express. 2020;10(10):2345. doi: 10.1364/OME.399392. DOI
Mustafa Y. F.. Modern Developments in the Application and Function of Metal/Metal Oxide Nanocomposite–Based Antibacterial Agents. BioNanoScience. 2023;13:840–852. doi: 10.1007/s12668-023-01100-6. DOI
Abdullah, T. ; Qurban, R. O. ; Bolarinwa, S. O. ; Mirza, A. A. ; Pasovic, M. ; Memic, A. . 3D Printing of Metal/Metal Oxide Incorporated Thermoplastic Nanocomposites With Antimicrobial Properties. Front Bioeng Biotechnol 2020, 8, 10.3389/fbioe.2020.568186. PubMed DOI PMC
Xu X., Awad A., Robles-Martinez P., Gaisford S., Goyanes A., Basit A. W.. Vat Photopolymerization 3D Printing for Advanced Drug Delivery and Medical Device Applications. J. Controlled Release. 2021;329:743–757. doi: 10.1016/j.jconrel.2020.10.008. PubMed DOI
Timofticiuc I. A., Călinescu O., Iftime A., Dragosloveanu S., Caruntu A., Scheau A. E., Badarau I. A., Didilescu A. C., Caruntu C., Scheau C.. Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications. Journal of Functional Biomaterials. 2024;15(1):7. doi: 10.3390/jfb15010007. PubMed DOI PMC
Chen F., Zhu H., Wu J. M., Chen S., Cheng L. J., Shi Y. S., Mo Y. C., Li C. H., Xiao J.. Preparation and Biological Evaluation of ZrO2 All-Ceramic Teeth by DLP Technology. Ceram. Int. 2020;46(8):11268–11274. doi: 10.1016/j.ceramint.2020.01.152. DOI
Tomal W., Petko F., Galek M., Świeży A., Tyszka-Czochara M., Środa P., Mokrzyński K., Ortyl J.. Water-Soluble Type I Radical Photoinitiators Dedicated to Obtaining Microfabricated Hydrogels. Chem. Mater. 2024;36(13):6421–6439. doi: 10.1021/acs.chemmater.4c00369. DOI
Tomal W., Ortyl J.. Water-Soluble Photoinitiators in Biomedical Applications. Polymers. 2020;12(5):1073. doi: 10.3390/polym12051073. PubMed DOI PMC
Balhaddad A. A., Garcia I. M., Mokeem L., Alsahafi R., Collares F. M., De Melo M. A. S.. Metal Oxide Nanoparticles and Nanotubes: Ultrasmall Nanostructures to Engineer Antibacterial and Improved Dental Adhesives and Composites. Bioengineering. 2021;8(10):146. doi: 10.3390/bioengineering8100146. PubMed DOI PMC
Asar N. V., Albayrak H., Korkmaz T., Turkyilmaz I.. Influence of Various Metal Oxides on Mechanical and Physical Properties of Heat-Cured Polymethyl Methacrylate Denture Base Resins. Journal of Advanced Prosthodontics. 2013;5(3):241–247. doi: 10.4047/jap.2013.5.3.241. PubMed DOI PMC
Azmy E., Al-Kholy M. R. Z., Al-Thobity A. M., Gad M. M., Helal M. A.. Comparative Effect of Incorporation of ZrO2, TiO2, and SiO2 Nanoparticles on the Strength and Surface Properties of PMMA Denture Base Material: An in Vitro Study. Int J Biomater. 2022;2022:1. doi: 10.1155/2022/5856545. PubMed DOI PMC
Pushpalatha, C. ; Suresh, J. ; Gayathri, V. S. ; Sowmya, S. V. ; Augustine, D. ; Alamoudi, A. ; Zidane, B. ; Mohammad Albar, N. H. ; Patil, S. . Zinc Oxide Nanoparticles: A Review on Its Applications in Dentistry. Frontiers in Bioengineering and Biotechnology 2022, 10, 10.3389/fbioe.2022.917990. PubMed DOI PMC
Wahid F., Zhong C., Wang H.-S., Hu X.-H., Chu L.-Q.. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles. Polymers. 2017;9(12):636. doi: 10.3390/polym9120636. PubMed DOI PMC
Cai H. X., Xu X., Lu X., Zhao M., Jia Q., Jiang H. B., Kwon J. S.. Dental Materials Applied to 3D and 4D Printing Technologies: A Review. Polymers. 2023;15(10):2405. doi: 10.3390/polym15102405. PubMed DOI PMC
Branco A. C., Colaço R., Figueiredo-Pina C. G., Serro A. P.. Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. Materials. 2023;16(5):1860. doi: 10.3390/ma16051860. PubMed DOI PMC
Su G., Zhang Y., Jin C., Zhang Q., Lu J., Liu Z., Wang Q., Zhang X., Ma J.. 3D Printed Zirconia Used as Dental Materials: A Critical Review. Journal of Biological Engineering. 2023;17:78. doi: 10.1186/s13036-023-00396-y. PubMed DOI PMC
Jeong M., Radomski K., Lopez D., Liu J. T., Lee J. D., Lee S. J.. Materials and Applications of 3D Printing Technology in Dentistry: An Overview. Dentistry Journal. 2024;12(1):1. doi: 10.3390/dj12010001. PubMed DOI PMC
Totu E. E., Nechifor A. C., Nechifor G., Aboul-Enein H. Y., Cristache C. M.. Poly(Methyl Methacrylate) with TiO2 Nanoparticles Inclusion for Stereolithographic Complete Denture Manufacturing – the Future in Dental Care for Elderly Edentulous Patients? J Dent. 2017;59:68–77. doi: 10.1016/j.jdent.2017.02.012. PubMed DOI
Mpuhwe N. A., Kim G.-N., Koh Y.-H.. Vat Photopolymerization of CeO2-Incorporated Hydrogel Scaffolds with Antimicrobial Efficacy. Materials. 2025;18(5):1125. doi: 10.3390/ma18051125. PubMed DOI PMC
Chen S., Yang J., Li K., Lu B., Ren L.. Carboxylic Acid-Functionalized TiO2 Nanoparticle-Loaded Pmma/ Peek Copolymer Matrix as a Dental Resin for 3D Complete Denture Manufacturing by Stereolitographic Technique. Int J Food Prop. 2018;21(1):2557–2565. doi: 10.1080/10942912.2018.1534125. DOI
Peters C., Hoop M., Pané S., Nelson B. J., Hierold C.. Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests. Adv. Mater. 2016;28(3):533–538. doi: 10.1002/adma.201503112. PubMed DOI
Bozuyuk U., Yasa O., Yasa I. C., Ceylan H., Kizilel S., Sitti M.. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano. 2018;12(9):9617–9625. doi: 10.1021/acsnano.8b05997. PubMed DOI
Suter M., Zhang L., Siringil E. C., Peters C., Luehmann T., Ergeneman O., Peyer K. E., Nelson B. J., Hierold C.. Superparamagnetic Microrobots: Fabrication by Two-Photon Polymerization and Biocompatibility. Biomed Microdevices. 2013;15(6):997–1003. doi: 10.1007/s10544-013-9791-7. PubMed DOI
Xia H., Wang J., Tian Y., Chen Q. D., Du X. B., Zhang Y. L., He Y., Sun H. B.. Ferrofluids for Fabrication of Remotely Controllable Micro-Nanomachines by Two-Photon Polymerization. Adv. Mater. 2010;22(29):3204–3207. doi: 10.1002/adma.201000542. PubMed DOI
Ceylan H., Olcay Dogan N., Ceren Yasa I., Nur Musaoglu M., Umut Kulali Z., Sitti M.. 3D Printed Personalized Magnetic Micromachines from Patient Blood-Derived Biomaterials. Sci. Adv. 2021;7:eabh0273. doi: 10.1126/sciadv.abh0273. PubMed DOI PMC
O’Halloran S., Pandit A., Heise A., Kellett A.. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. Advanced Science. 2023;10(7):2204072. doi: 10.1002/advs.202204072. PubMed DOI PMC
Marino A., Barsotti J., De Vito G., Filippeschi C., Mazzolai B., Piazza V., Labardi M., Mattoli V., Ciofani G.. Two-Photon Lithography of 3D Nanocomposite Piezoelectric Scaffolds for Cell Stimulation. ACS Appl Mater Interfaces. 2015;7(46):25574–25579. doi: 10.1021/acsami.5b08764. PubMed DOI
Skoog S. A., Nguyen A. K., Kumar G., Zheng J., Goering P. L., Koroleva A., Chichkov B. N., Narayan R. J.. Two-Photon Polymerization of 3-D Zirconium Oxide Hybrid Scaffolds for Long-Term Stem Cell Growth. Biointerphases. 2014;9(2):029014. doi: 10.1116/1.4873688. PubMed DOI