Cyanochelin B: a cyanobacterium-produced siderophore with photolytic properties that negate iron monopolization in UV light
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-05478S
Czech Science Foundation
121 06/21/2022 (IR0000035)
The National Biodiversity Center
FRA 2022
Universita degli Studi di Napoli Federico II
126/2024/P
Grant Agency of the University of South Bohemia
LM2023069
Ministry of Education, Youth and Sports of the Czech Republic
OP JAK project "Photomachines" - CZ.02.01.01/00/22_008/0004624
Czech Ministry of Education, Youth, and Sports (MEYS)
PubMed
41090998
PubMed Central
PMC12628792
DOI
10.1128/aem.02566-24
Knihovny.cz E-zdroje
- Klíčová slova
- Leptolyngbyaceae, beta-hydroxy-aspartate, co-cultuvation, cyanobacteria, iron acquisition, microbial interactions, photolytic, secondary metabolites, siderophores, structural elucidation,
- MeSH
- fotolýza MeSH
- siderofory * metabolismus chemie MeSH
- sinice * metabolismus účinky záření MeSH
- ultrafialové záření MeSH
- železo * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- siderofory * MeSH
- železo * MeSH
Siderophores are low-molecular-weight compounds excreted by microorganisms to acquire iron and possibly to monopolize iron resource to achieve competitive advantage over other strains, or to trade for other substrates in mutualistic relationships. Siderophores that employ β-hydroxy-aspartate (β-OH-Asp) for iron chelation can undergo UV-mediated photolytic cleavage, simultaneously reducing Fe3+ to Fe2+. Photolytic siderophores can promote algal-bacterial mutualism, where the bacteria provide iron in exchange for dissolved organic carbon. We present a comprehensive characterization of cyanochelin B, a photolytic β-OH-Asp-containing siderophore produced by the filamentous cyanobacterium Leptolyngbya sp. NIES-3755. Combining nuclear magnetic resonance, high-resolution mass spectrometry, bioinformatic analyses, and Marfey's and Murata's method, we elucidated the structure of cyanochelin B, including the configuration of its stereocenters. Cyanochelin B-iron complexes rapidly photolyse under UV light (t1/2 = 2.3 min; 19.6 µmol m-2 s-1 UV-A) and release Fe2+. Using a coculture setup with Leptolyngbya and Synechocystis sp. PCC 6803 (a non-siderophore producer) in membrane-separated compartments and alginate-embedded FeCl3 to simulate poorly accessible precipitated iron, we demonstrate cyanochelin B mode of actions. Our results show that in the absence of UV light, cyanochelin B efficiently monopolizes iron, favoring Leptolyngbya. However, UV light eliminates this monopolization, making iron available to any cohabiting, also possibly competing, organisms. We further report isolating novel cyanochelin B-producing Phormidesmis strains from field material and discuss the broader implications of photolytic siderophores. In conclusion, our interdisciplinary approach led to the discovery of a novel photolytic siderophore, cyanochelin B, and highlighted its possible role in distributing iron in microbial communities.IMPORTANCEIron is an essential micronutrient that is required by all living organisms as a cofactor of indispensable enzymes. Due to its specific properties, it is mostly precipitated and is biologically unavailable. Microbes produce siderophores, low-molecular-weight compounds that bind iron, to facilitate iron uptake. Siderophores are mediators of microbial interactions and facilitate competitive exclusion of non-compatible strains or support mutualistic partners and cheater strains. Here, we adopt an interdisciplinary strategy and report a complete structural elucidation of cyanochelin B, a photolytic cyanobacterial siderophore that contains β-hydroxy-aspartate (β-OH-Asp). Our coculture experiments show that cyanochelin B can either monopolize iron to its producer or make it accessible to other strains, depending on the presence of UV light. Moreover, our data suggest that the benefits from production of photolytic siderophores are not restricted to the producer or cohabiting bacteria but are rather available to the entire irradiated community. Out of the known siderophores, 17.5% contain the photoreactive β-OH-Asp and therefore may play a similar role.
Centre Algatech Institute of Microbiology of the Czech Academy of Sciences Třeboň Czech Republic
Department of Pharmaceutical Biology Institute of Pharmacy Freie Universität Berlin Berlin Germany
Department of Pharmacy Università degli Studi di Napoli Federico 2 Napoli Italy
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Whitton BA. 2012. Ecology of cyanobacteria II: their diversity in space and time. Springer, Netherlands.
Campbell SE. 1979. Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. Origins Life Evol Biosphere 9:335–348. doi: 10.1007/BF00926826 PubMed DOI
Oren N, Raanan H, Murik O, Keren N, Kaplan A. 2017. Dawn illumination prepares desert cyanobacteria for dehydration. Curr Biol 27:R1056–R1057. doi: 10.1016/j.cub.2017.08.027 PubMed DOI
Kramer J, Özkaya Ö, Kümmerli R. 2020. Bacterial siderophores in community and host interactions. Nat Rev Microbiol 18:152–163. doi: 10.1038/s41579-019-0284-4 PubMed DOI PMC
Årstøl E, Hohmann-Marriott MF. 2019. Cyanobacterial siderophores—physiology, structure, biosynthesis, and applications. Mar Drugs 17:281. doi: 10.3390/md17050281 PubMed DOI PMC
Sandy M, Butler A. 2009. Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595. doi: 10.1021/cr9002787 PubMed DOI PMC
Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, et al. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129. doi: 10.1038/371123a0 DOI
Mazzotta MG, McIlvin MR, Saito MA. 2020. Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, Pseudoalteromonas (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage. Metallomics 12:654–667. doi: 10.1039/d0mt00034e PubMed DOI PMC
Keren N, Aurora R, Pakrasi HB. 2004. Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol 135:1666–1673. doi: 10.1104/pp.104.042770 PubMed DOI PMC
He R, Gu S, Xu J, Li X, Chen H, Shao Z, Wang F, Shao J, Yin WB, Qian L, Wei Z, Li Z. 2024. SIDERITE: unveiling hidden siderophore diversity in the chemical space through digital exploration. Imeta 3:e192. doi: 10.1002/imt2.192 PubMed DOI PMC
Avalon NE, Reis MA, Thornburg CC, Williamson RT, Petras D, Aron AT, Neuhaus GF, Al-Hindy M, Mitrevska J, Ferreira L, et al. 2024. Leptochelins A-C, cytotoxic metallophores produced by geographically dispersed Leptothoe strains of marine cyanobacteria. J Am Chem Soc 146:18626–18638. doi: 10.1021/jacs.4c05399 PubMed DOI PMC
Galica T, Borbone N, Mareš J, Kust A, Caso A, Esposito G, Saurav K, Hájek J, Řeháková K, Urajová P, Costantino V, Hrouzek P. 2021. Cyanochelins, an overlooked class of widely distributed cyanobacterial siderophores, discovered by silent gene cluster awakening. Appl Environ Microbiol 87:e0312820. doi: 10.1128/AEM.03128-20 PubMed DOI PMC
Sousa ML, Ferreira L, Ferreira D, Forero AM, Castelo-Branco R, Szemerédi N, Spengler G, Rodríguez J, Jiménez C, Leão PN, Vasconcelos V, Reis MA. 2025. Decoding Lusichelins A-E: an in-depth look at the metallophores of Lusitaniella coriacea LEGE 07167-structure, production, and functionality. J Nat Prod 88:1319–1333. doi: 10.1021/acs.jnatprod.5c00204 PubMed DOI PMC
Tostado-Islas O, Mendoza-Ortiz A, Ramírez-García G, Cabrera-Takane ID, Loarca D, Pérez-González C, Jasso-Chávez R, Jiménez-Cortés JG, Hoshiko Y, Maeda T, Cazares A, García-Contreras R. 2021. Iron limitation by transferrin promotes simultaneous cheating of pyoverdine and exoprotease in Pseudomonas aeruginosa. ISME J 15:2379–2389. doi: 10.1038/s41396-021-00938-6 PubMed DOI PMC
D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K. 2010. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17:254–264. doi: 10.1016/j.chembiol.2010.02.010 PubMed DOI PMC
Hardy CD, Butler A. 2019. Ambiguity of NRPS structure predictions: four bidentate chelating groups in the siderophore pacifibactin. J Nat Prod 82:990–997. doi: 10.1021/acs.jnatprod.8b01073 PubMed DOI
Butler A, Harder T, Ostrowski AD, Carrano CJ. 2021. Photoactive siderophores: structure, function and biology. J Inorg Biochem 221:111457. doi: 10.1016/j.jinorgbio.2021.111457 PubMed DOI
Kreutzer MF, Kage H, Nett M. 2012. Structure and biosynthetic assembly of cupriachelin, a photoreactive siderophore from the bioplastic producer Cupriavidus necator H16. J Am Chem Soc 134:5415–5422. doi: 10.1021/ja300620z PubMed DOI
Kümmerli R. 2023. Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 36:777–797. doi: 10.1007/s10534-022-00480-8 PubMed DOI PMC
Barbeau K, Rue EL, Bruland KW, Butler A. 2001. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413. doi: 10.1038/35096545 PubMed DOI
Jiang Y, Shin HH, Park BS, Li Z. 2024. Potential siderophore-dependent mutualism in the harmful dinoflagellate Alexandrium pacificum (Group IV) and bacterium Photobacterium sp. TY1-4 under iron-limited conditions. Harmful Algae 139:102726. doi: 10.1016/j.hal.2024.102726 PubMed DOI
Marfey P. 1984. Determination of d-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun 49:591–596. doi: 10.1007/BF02908688 DOI
Matsumori N, Kaneno D, Murata M, Nakamura H, Tachibana K. 1999. Stereochemical determination of acyclic structures based on carbon-proton spin-coupling constants. a method of configuration analysis for natural products. J Org Chem 64:866–876. doi: 10.1021/jo981810k PubMed DOI
Reitz ZL, Hardy CD, Suk J, Bouvet J, Butler A. 2019. Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family. Proc Natl Acad Sci USA 116:19805–19814. doi: 10.1073/pnas.1903161116 PubMed DOI PMC
Carmeli S, Paik S, Moore RE, Patterson GML, Yoshida WY. 1993. Revised structures and biosynthetic studies of tantazoles A and B. Tetrahedron Lett 34:6681–6684. doi: 10.1016/S0040-4039(00)61674-X DOI
Keatinge-Clay AT. 2007. A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem Biol 14:898–908. doi: 10.1016/j.chembiol.2007.07.009 PubMed DOI
Chatzimpaloglou A, Yavropoulou MP, Rooij KE, Biedermann R, Mueller U, Kaskel S, Sarli V. 2012. Total synthesis and biological activity of the proposed structure of phaeosphaeride A. J Org Chem 77:9659–9667. doi: 10.1021/jo301662e PubMed DOI
Chatzimpaloglou A, Kolosov M, Eckols TK, Tweardy DJ, Sarli V. 2014. Synthetic and biological studies of phaeosphaerides. J Org Chem 79:4043–4054. doi: 10.1021/jo500545d PubMed DOI
Pecundo MH, Chen T, Wang Y, Wen X, Hu Z, Chen H, Li N. 2023. Stenomitos nagquensis sp. nov. (Leptolyngbyaceae, Cyanobacteria) from a meadow wetland in the Tibet Plateau: a novel species studied based on a polyphasic approach. Diversity (Basel) 15:536. doi: 10.3390/d15040536 DOI
Soares F, Trovão J, Coelho C, Costa I, Mesquita N, Gil F, Catarino L, Cardoso SM, Portugal A, Tiago I. 2020. High-quality draft genome sequences of three cyanobacteria isolated from the limestone walls of the old cathedral of Coimbra, Portugal. Microbiol Resour Announc 9:e00575-20. doi: 10.1128/MRA.00575-20 PubMed DOI PMC
Morris JJ, Lenski RE, Zinser ER. 2012. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3:e00036-12. doi: 10.1128/mBio.00036-12 PubMed DOI PMC
Miller MC, Parkin S, Fetherston JD, Perry RD, Demoll E. 2006. Crystal structure of ferric-yersiniabactin, a virulence factor of Yersinia pestis. J Inorg Biochem 100:1495–1500. doi: 10.1016/j.jinorgbio.2006.04.007 PubMed DOI
Mular A, Piasta K, Jedyńczuk A, Kamińska K, Olshvang E, Nolte NM, Wojaczyńska E, Kozłowski H, Gumienna-Kontecka E. 2024. The diversity and utility of arylthiazoline and aryloxazoline siderophores: challenges of coordination chemistry, biological activity and selected applications. Coord Chem Rev 501:215551. doi: 10.1016/j.ccr.2023.215551 DOI
Risse D, Beiderbeck H, Taraz K, Budzikiewicz H, Gustine D. 1998. Corrugatin, a lipopeptide siderophore from Pseudomonas corrugata. Zeitschrift für Naturforschung C 53:295–304. doi: 10.1515/znc-1998-5-601 DOI
Amin SA, Green DH, Küpper FC, Carrano CJ. 2009. Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorg Chem 48:11451–11458. doi: 10.1021/ic9016883 PubMed DOI
Hirose Y, Fujisawa T, Ohtsubo Y, Katayama M, Misawa N, Wakazuki S, Shimura Y, Nakamura Y, Kawachi M, Yoshikawa H, Eki T, Kanesaki Y. 2016. Complete genome sequence of cyanobacterium Leptolyngbya sp. NIES-3755. Genome Announc 4:e00090-16. doi: 10.1128/genomeA.00090-16 PubMed DOI PMC
Mai T, Johansen JR, Pietrasiak N, Bohunická M, Martin MP. 2016. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 365:1. doi: 10.11646/phytotaxa.365.1.1 DOI
Strunecký O, Ivanova AP, Mareš J. 2023. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J Phycol 59:12–51. doi: 10.1111/jpy.13304 PubMed DOI
Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205. doi: 10.1128/br.35.2.171-205.1971 PubMed DOI PMC
R Core Team 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi: 10.1016/0003-2697(87)90612-9 PubMed DOI
Schmid R, Heuckeroth S, Korf A, Smirnov A, Myers O, Dyrlund TS, Bushuiev R, Murray KJ, Hoffmann N, Lu M, et al. 2023. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol 41:447–449. doi: 10.1038/s41587-023-01690-2 PubMed DOI PMC
Esposito G, Della Sala G, Teta R, Caso A, Bourguet‐Kondracki M, Pawlik JR, Mangoni A, Costantino V. 2016. Chlorinated thiazole-containing polyketide-peptides from the Caribbean sponge Smenospongia conulosa: structure elucidation on microgram scale. Eur J Org Chem 2016:2871–2875. doi: 10.1002/ejoc.201600370 DOI
Staub R. 1961. Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen BlaualgeOscillatoria rubescens DC. Schweiz Z Hydrologie 23:82–198. doi: 10.1007/BF02505618 DOI
Rippka R. 1988. Isolation and purification of cyanobacteria, p 3–27. In Methods in enzymology. Vol. 167. PubMed
Štenclová L, Wilde SB, Schwark M, Cullen JL, McWhorter SA, Niedermeyer THJ, Henderson WM, Mareš J. 2023. Occurrence of aetokthonotoxin producer in natural samples - A PCR protocol for easy detection. Harmful Algae 125:102425. doi: 10.1016/j.hal.2023.102425 PubMed DOI PMC
Johansen JR, Kovacik L, Casamatta DA, Iková KF, Kaštovský J. 2011. Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92:283–302. doi: 10.1127/0029-5035/2011/0092-0283 DOI
Mareš J, Hájek J, Urajová P, Kopecký J, Hrouzek P. 2014. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL) synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum. PLoS One 9:e111904. doi: 10.1371/journal.pone.0111904 PubMed DOI PMC
Krakau S, Straub D, Gourlé H, Gabernet G, Nahnsen S. 2022. nf-core/mag: a best-practice pipeline for metagenome hybrid assembly and binning. NAR Genom Bioinform 4:lqac007. doi: 10.1093/nargab/lqac007 PubMed DOI PMC
Wilmotte A, Demonceau C, Goffart A, Hecq JH, Demoulin V, Crossley AC. 2002. Molecular and pigment studies of the picophytoplankton in a region of the Southern Ocean (42–54°S, 141–144°E) in March 1998. Deep Sea Res II: Top Stud Oceanogr 49:3351–3363. doi: 10.1016/S0967-0645(02)00087-5 DOI
Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. doi: 10.1093/molbev/msab120 PubMed DOI PMC
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010 PubMed DOI
Lefort V, Longueville JE, Gascuel O. 2017. SMS: smart model selection in PhyML. Mol Biol Evol 34:2422–2424. doi: 10.1093/molbev/msx149 PubMed DOI PMC
Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, van Wezel GP, Medema MH, Weber T. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 51:W46–W50. doi: 10.1093/nar/gkad344 PubMed DOI PMC