Targeting Caspase-1 in osteoarthritis: multi-omics insights into the effects of VX-765 on human chondrocyte function and phenotype
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41112282
PubMed Central
PMC12532135
DOI
10.3389/fimmu.2025.1677801
Knihovny.cz E-zdroje
- Klíčová slova
- MMP13, Mendelian randomization, VX-765, caspase-1, chondrocytes, migration, osteoarthritis, senescence,
- MeSH
- chondrocyty * účinky léků metabolismus MeSH
- dipeptidy MeSH
- fenotyp MeSH
- kaspasa 1 * metabolismus genetika MeSH
- kultivované buňky MeSH
- lidé MeSH
- multiomika MeSH
- osteoartróza * farmakoterapie metabolismus genetika patologie MeSH
- para-aminobenzoáty * farmakologie MeSH
- proteomika metody MeSH
- simulace molekulového dockingu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- belnacasan MeSH Prohlížeč
- dipeptidy MeSH
- kaspasa 1 * MeSH
- para-aminobenzoáty * MeSH
BACKGROUND: Osteoarthritis (OA) progression involves chronic inflammation, chondrocyte senescence, and extracellular matrix (ECM) degradation affecting all synovial joint tissues. To date, no regenerative OA drugs have been approved. Caspase-1, a core effector of the inflammasome, may contribute to OA via both canonical inflammatory and non-canonical functions, but its therapeutic value remains unclear. METHODS: We combined transcriptomic, proteomic, functional, and Mendelian randomization (MR) approaches. Using GSE168505 data, we analyzed CASP1, CARD gene family members (CARD16/17/18/8), and OA-related genes in OA- versus non-OA chondrocytes. We established an in vitro OA model by treating human chondrocytes with TNF-α ± VX-765 and assessed Caspase-1 activity, cell metabolism, and MMP secretion. We further conducted LC-MS/MS proteomic profiling, molecular docking, and MR analysis to identify molecular mechanisms and causal links. RESULTS: CASP1 and inflammatory/ECM-degrading genes (e.g., IL1B, MMP13) were upregulated in OA chondrocytes, whereas SOX9 was downregulated. CASP1 gene expression correlated positive with genes involved in senescence, inflammation, oxidative stress and ECM remodeling. Inhibitor VX-765 significantly inhibited Caspase-1 activity, reduced senescence, and enhanced migration in non-OA- and OA chondrocytes, with donor-dependent effects in OA chondrocytes. It also suppressed MMP13 secretion in OA chondrocytes. Integrated transcriptomic and proteomic analysis showed that VX-765 reprogrammed OA-activated signaling, significantly downregulating pathways related to senescence, inflammation, complement activation, and ECM organization, while upregulating interferon-α/γ responses. Moreover, in silico performed molecular docking analyses suggest that caspase-1 may directly bind MMP13, CTSD, ABL1, MRPS11, POLR21, SMAD2 and SOX9. MR analysis supported a causal link between increased CARD17/18/8 gene expression and reduced OA risk; several CASP1 SNPs (e.g., rs61751523) showed negative OA associations, suggesting a protective role. CONCLUSIONS: This study demonstrates that Caspase-1 contributes to OA pathogenesis through both canonical and non-canonical mechanisms, and that VX-765 can alleviate chondrocyte dysfunction. The combined evidence supports VX-765 as a potential disease-modifying target for OA therapy. However, further investigation is warranted to clarify Caspase-1's physiological roles, including possible off-target effects of its inhibitors, in cartilage and other joint tissues and the clinical relevance of inter-individual variability, with genomic variants (e.g., rs61751523) as one potential contributor, for therapeutic application.
Department of Orthopedic Surgery The 1st Affiliated Hospital of Zhengzhou University Zhengzhou China
Department of Physiology University of Veterinary Sciences Brno Brno Czechia
Department of Trauma Surgery University of Regensburg Regensburg Germany
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthritis. Nat Rev Dis Primers. (2016) 2:16072. doi: 10.1038/nrdp.2016.72, PMID: PubMed DOI
Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: A review. Jama. (2021) 325:568–78. doi: 10.1001/jama.2020.22171, PMID: PubMed DOI PMC
Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, et al. 2019 american college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). (2020) 72:149–62. doi: 10.1002/acr.24131, PMID: PubMed DOI PMC
Nakata K, Hanai T, Take Y, Osada T, Tsuchiya T, Shima D, et al. Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis: a systematic review. Osteoarthritis Cartilage. (2018) 26:1263–73. doi: 10.1016/j.joca.2018.05.021, PMID: PubMed DOI
McAlindon TE, LaValley MP, Harvey WF, Price LL, Driban JB, Zhang M, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: A randomized clinical trial. Jama. (2017) 317:1967–75. doi: 10.1001/jama.2017.5283, PMID: PubMed DOI PMC
Brophy RH, Fillingham YA. AAOS clinical practice guideline summary: management of osteoarthritis of the knee (Nonarthroplasty), third edition. J Am Acad Orthop Surg. (2022) 30:e721–9. doi: 10.5435/jaaos-d-21-01233, PMID: PubMed DOI
Berkani S, Courties A, Eymard F, Latourte A, Richette P, Berenbaum F, et al. Time to total knee arthroplasty after intra-articular hyaluronic acid or platelet-rich plasma injections: A systematic literature review and meta-analysis. J Clin Med. (2022) 11:3985. doi: 10.3390/jcm11143985, PMID: PubMed DOI PMC
Han JH, Jung M, Chung K, Jung SH, Choi CH, Kim SH. Bone marrow aspirate concentrate injections for the treatment of knee osteoarthritis: A systematic review of randomized controlled trials. Orthop J Sports Med. (2024) 12:23259671241296555. doi: 10.1177/23259671241296555, PMID: PubMed DOI PMC
Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. (2016) 12:580–92. doi: 10.1038/nrrheum.2016.136, PMID: PubMed DOI PMC
Chevalier X, Eymard F, Richette P. Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol. (2013) 9:400–10. doi: 10.1038/nrrheum.2013.44, PMID: PubMed DOI
Sun Q, Scott MJ. Caspase-1 as a multifunctional inflammatory mediator: noncytokine maturation roles. J Leukoc Biol. (2016) 100:961–7. doi: 10.1189/jlb.3MR0516-224R, PMID: PubMed DOI PMC
Rathinam VA, Fitzgerald KA. Inflammasome complexes: emerging mechanisms and effector functions. Cell. (2016) 165:792–800. doi: 10.1016/j.cell.2016.03.046, PMID: PubMed DOI PMC
Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. (2010) 28:321–42. doi: 10.1146/annurev-immunol-030409-101311, PMID: PubMed DOI PMC
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. (2016) 16:407–20. doi: 10.1038/nri.2016.58, PMID: PubMed DOI
Keller M, Rüegg A, Werner S, Beer HD. Active caspase-1 is a regulator of unconventional protein secretion. Cell. (2008) 132:818–31. doi: 10.1016/j.cell.2007.12.040, PMID: PubMed DOI
Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E. Caspase-1 inhibition impacts the formation of chondrogenic nodules, and the expression of markers related to osteogenic differentiation and lipid metabolism. Int J Mol Sci. (2021) 22:9576. doi: 10.3390/ijms22179576, PMID: PubMed DOI PMC
Lu A, Li Y, Schmidt FI, Yin Q, Chen S, Fu TM, et al. Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nat Struct Mol Biol. (2016) 23:416–25. doi: 10.1038/nsmb.3199, PMID: PubMed DOI PMC
Karakaya T, Slaufova M, Di Filippo M, Hennig P, Kündig T, Beer HD. CARD8: A novel inflammasome sensor with well-known anti-inflammatory and anti-apoptotic activity. Cells. (2024) 13:1032. doi: 10.3390/cells13121032, PMID: PubMed DOI PMC
Modi P, Shah BM, Patel S. Interleukin-1β converting enzyme (ICE): A comprehensive review on discovery and development of caspase-1 inhibitors. Eur J Med Chem. (2023) 261:115861. doi: 10.1016/j.ejmech.2023.115861, PMID: PubMed DOI
Dhani S, Zhao Y, Zhivotovsky B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis. (2021) 12:949. doi: 10.1038/s41419-021-04240-3, PMID: PubMed DOI PMC
Liang YB, Luo RX, Lu Z, Mao Y, Song PP, Li QW, et al. VX-765 attenuates secondary damage and β-amyloid accumulation in ipsilateral thalamus after experimental stroke in rats. Exp Neurol. (2025) 385:115097. doi: 10.1016/j.expneurol.2024.115097, PMID: PubMed DOI
Flores J, Noël A, Foveau B, Beauchet O, LeBlanc AC. Pre-symptomatic Caspase-1 inhibitor delays cognitive decline in a mouse model of Alzheimer disease and aging. Nat Commun. (2020) 11:4571. doi: 10.1038/s41467-020-18405-9, PMID: PubMed DOI PMC
Xin Y, Wang W, Mao E, Yang H, Li S. Targeting NLRP3 inflammasome alleviates synovitis by reducing pyroptosis in rats with experimental temporomandibular joint osteoarthritis. Mediators Inflammation. (2022) 2022:2581151. doi: 10.1155/2022/2581151, PMID: PubMed DOI PMC
Stöckl S, Eitner A, Bauer RJ, König M, Johnstone B, Grässel S. Substance P and alpha-calcitonin gene-related peptide differentially affect human osteoarthritic and healthy chondrocytes. Front Immunol. (2021) 12:722884. doi: 10.3389/fimmu.2021.722884, PMID: PubMed DOI PMC
Li S, Stöckl S, Lukas C, Götz J, Herrmann M, Federlin M, et al. hBMSC-derived extracellular vesicles attenuate IL-1β-induced catabolic effects on OA-chondrocytes by regulating pro-inflammatory signaling pathways. Front Bioeng Biotechnol. (2020) 8:603598. doi: 10.3389/fbioe.2020.603598, PMID: PubMed DOI PMC
Lorenz J, Schafer N, Bauer R, Jenei-Lanzl Z, Springorum RH, Grassel S. Norepinephrine modulates osteoarthritic chondrocyte metabolism and inflammatory responses. Osteoarthritis Cartilage. (2016) 24:325–34. doi: 10.1016/j.joca.2015.08.007, PMID: PubMed DOI
Li S, Stockl S, Lukas C, Herrmann M, Brochhausen C, Konig MA, et al. Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1beta-induced catabolic responses of OA chondrocytes by upregulating miR-126-3p. Stem Cell Res Ther. (2021) 12:252. doi: 10.1186/s13287-021-02317-6, PMID: PubMed DOI PMC
Ross C, Chan AH, von Pein JB, Maddugoda MP, Boucher D, Schroder K. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes. Annu Rev Immunol. (2022) 40:249–69. doi: 10.1146/annurev-immunol-101220-030653, PMID: PubMed DOI
Vesela B, Zapletalova M, Svandova E, Ramesova A, Doubek J, Lesot H, et al. General caspase inhibition in primary chondrogenic cultures impacts their transcription profile including osteoarthritis-related factors. Cartilage. (2021) 13:1144s–54s. doi: 10.1177/19476035211044823, PMID: PubMed DOI PMC
Groslambert M, Py BF. Spotlight on the NLRP3 inflammasome pathway. J Inflammation Res. (2018) 11:359–74. doi: 10.2147/jir.S141220, PMID: PubMed DOI PMC
Lopez-Castejon G. Control of the inflammasome by the ubiquitin system. FEBS J. (2020) 287:11–26. doi: 10.1111/febs.15118, PMID: PubMed DOI PMC
Goldberg EL, Dixit VD. Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev. (2015) 265:63–74. doi: 10.1111/imr.12295, PMID: PubMed DOI PMC
Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. (2013) 15:978–90. doi: 10.1038/ncb2784, PMID: PubMed DOI PMC
Abdelghany L, Sillapachaiyaporn C, Zhivotovsky B. The concealed side of caspases: beyond a killer of cells. Cell Mol Life Sci. (2024) 81:474. doi: 10.1007/s00018-024-05495-7, PMID: PubMed DOI PMC
Hegde A, Ghosh S, Ananthan AS, Kataria S, Dutta A, Prabhu S, et al. Extracellular Caspase-1 induces hair stem cell migration in wounded and inflamed skin conditions. J Cell Biol. (2024) 223:e202306028. doi: 10.1083/jcb.202306028, PMID: PubMed DOI PMC
Woodring PJ, Hunter T, Wang JY. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci. (2003) 116:2613–26. doi: 10.1242/jcs.00622, PMID: PubMed DOI
Wang GF, Dong Q, Bai Y, Gu J, Tao Q, Yue J, et al. c-Abl kinase-mediated phosphorylation of γ-tubulin promotes γ-tubulin ring complexes assembly and microtubule nucleation. J Biol Chem. (2022) 298:101778. doi: 10.1016/j.jbc.2022.101778, PMID: PubMed DOI PMC
Dworak H, Rozmaric T, Grillari J, Ogrodnik M. Cells of all trades - on the importance of spatial positioning of senescent cells in development, healing and aging. FEBS Lett. (2025) 599:2087–106. doi: 10.1002/1873-3468.70037, PMID: PubMed DOI PMC
Ahmad R, El Mabrouk M, Sylvester J, Zafarullah M. Human osteoarthritic chondrocytes are impaired in matrix metalloproteinase-13 inhibition by IFN-gamma due to reduced IFN-gamma receptor levels. Osteoarthritis Cartilage. (2009) 17:1049–55. doi: 10.1016/j.joca.2009.02.008, PMID: PubMed DOI
Kim JR, Hong BK, Pham THN, Kim WU, Kim HA. Interferon-gamma signaling promotes cartilage regeneration after injury. Sci Rep. (2024) 14:8046. doi: 10.1038/s41598-024-58779-0, PMID: PubMed DOI PMC
Guo Q, Chen X, Chen J, Zheng G, Xie C, Wu H, et al. STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-κB signaling pathway. Cell Death Dis. (2021) 12:13. doi: 10.1038/s41419-020-03341-9, PMID: PubMed DOI PMC
Shin Y, Cho D, Kim SK, Chun JS. STING mediates experimental osteoarthritis and mechanical allodynia in mouse. Arthritis Res Ther. (2023) 25:90. doi: 10.1186/s13075-023-03075-x, PMID: PubMed DOI PMC
Cao D, Xi R, Li H, Zhang Z, Shi X, Li S, et al. Discovery of a covalent inhibitor of pro-caspase-1 zymogen blocking NLRP3 inflammasome activation and pyroptosis. J Med Chem. (2024) 67:15873–91. doi: 10.1021/acs.jmedchem.4c01558, PMID: PubMed DOI