Comprehensive analysis of GGCT genes in u's triangle Brassica species: insights into abiotic stress responses and potential association of BnaGGCT11/26 with seed weight
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PNURSP2025R740
Princess Nourah bint Abdulrahman University Researchers Supporting Project
PNURSP2025R740
Princess Nourah bint Abdulrahman University Researchers Supporting Project
PNURSP2025R740
Princess Nourah bint Abdulrahman University Researchers Supporting Project
PNURSP2025R740
Princess Nourah bint Abdulrahman University Researchers Supporting Project
PNURSP2025R740
Princess Nourah bint Abdulrahman University Researchers Supporting Project
PNURSP2025R740
Princess Nourah bint Abdulrahman University Researchers Supporting Project
PNURSP2025R740
Princess Nourah bint Abdulrahman University Researchers Supporting Project
PNURSP2025R740
Princess Nourah bint Abdulrahman University Researchers Supporting Project
PNURSP2025R740
Princess Nourah bint Abdulrahman University Researchers Supporting Project
PubMed
41126038
PubMed Central
PMC12541955
DOI
10.1186/s12870-025-07422-9
PII: 10.1186/s12870-025-07422-9
Knihovny.cz E-zdroje
- Klíčová slova
- BnaGGCT11, Brassica, GGCT, Gene expression, Seed weight, Stresses,
- MeSH
- Brassica * genetika růst a vývoj fyziologie enzymologie MeSH
- fylogeneze MeSH
- fyziologický stres * genetika MeSH
- období sucha MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny * MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- semena rostlinná * růst a vývoj genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné proteiny * MeSH
BACKGROUND: Glutathione homeostasis, crucial for plant growth and stress adaptation, is regulated by the enzyme γ-glutamylcyclotransferase (GGCT). As the critical component of the glutathione recycling pathway, GGCT plays a vital role in maintaining cellular redox balance under normal and stressful conditions. While the GGCT gene family has been characterized in Arabidopsis thaliana, its diversity, evolution, and functional roles remain unexplored in the U's triangle Brassica species, which includes important oilseed crops. RESULTS: We identified and characterized 154 putative GGCT genes in U's triangle Brassica species (Brassica nigra, 20; Brassica oleracea, 21; Brassica rapa, 18; Brassica juncea, 35; Brassica napus, 31; Brassica carinata, 29). Phylogenetic analysis grouped these GGCTs into three distinct clades, highlighting their structural and motif diversity. The diversity in cis-regulatory elements highlighted their role in growth and stress responses. Expression profiling of BnaGGCT genes revealed their differential expression patterns across the tissues at different developmental stages, such as BnaGGCT11 and BnaGGCT26, which are specifically expressed during late seed development phases. Furthermore, gene expression analysis under hormones and abiotic stresses indicated their contribution in stress responses as confirmed by eight selected BnaGGCT genes under drought and salt stresses. In addition, SNP analysis of BnaGGCT11 revealed a single-nucleotide variant that is significantly associated with seed weight and yield, potentially influencing gene function or translation efficiency. CONCLUSION: Collectively, this study comprehensively identified GGCTs that enhance our understanding of the functional evolution of the GGCT gene family in U's triangle Brassica species and lay the groundwork for further research into GGCT-mediated stress responses and seed development. In particular, the seed-specific expression of BnaGGCT11/26 and the SNP in BnaGGCT11 associated with seed weight and yield highlight their potential as candidates for marker-assisted breeding, but future functional validation will be required to substantiate their roles.
College of Agronomy and Biotechnology Southwest University Chongqing 400715 China
School of Breeding and Multiplication Hainan University Sanya 572000 China
Zobrazit více v PubMed
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. Glutathione in plants: an integrated overview. Plant Cell Environ. 2012;35(2):454–84. PubMed
Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol. 1998;49(1):249–79. PubMed
Lu B, Luo X, Gong C, Bai J. Overexpression of γ-glutamylcysteine synthetase gene from PubMed PMC
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. Arabidopsis Book. 2011. 10.1199/tab.0142. PubMed PMC
Paulose B, Chhikara S, Coomey J, Jung H-i, Vatamaniuk O, Dhankher OP. A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell. 2013;25(11):4580–95. PubMed PMC
Meister A. Glutathione synthesis. The enzymes. In: Boyer PD, editor. vol. 10. Academic Press; 1974. pp. 671–97. 10.1016/S1874-6047(08)60154-7.
Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep. 2017;36:791–805. PubMed
Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol. 2002;3:1–10. PubMed PMC
Kumar S, Kaur A, Chattopadhyay B, Bachhawat AK. Defining the cytosolic pathway of glutathione degradation in PubMed
Kageyama S, Hanada E, Ii H, Tomita K, Yoshiki T, Kawauchi A. Gamma-Glutamylcyclotransferase: a novel target molecule for cancer diagnosis and treatment. Biomed Res Int. 2015;2015(1):345219. PubMed PMC
Taniguchi K, Kageyama S, Moyama C, Ando S, Ii H, Ashihara E, et al. γ-Glutamylcyclotransferase, a novel regulator of HIF-1α expression, triggers aerobic glycolysis. Cancer Gene Ther. 2022;29(1):37–48. PubMed
Grzam A, Martin MN, Hell R, Meyer AJ. γ-glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett. 2007;581(17):3131–8. PubMed
Maruyama-Nakashita A, Nakamura Y, Watanabe‐Takahashi A, Inoue E, Yamaya T, Takahashi H. Identification of a novel PubMed
Ito T, Kitaiwa T, Nishizono K, Umahashi M, Miyaji S, Agake Si, et al. Glutathione degradation activity of γ‐glutamyl peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in Arabidopsis. Plant J. 2022;111(6):1626–42. PubMed PMC
Ghosh A, Islam MS, Alam NB, Mustafiz A, Islam T. Transcript profiling of glutathione metabolizing genes reveals abiotic stress and glutathione-specific alteration in Arabidopsis and rice. Physiol Mol Biol Plants. 2022;28(7):1375–90. PubMed PMC
Joshi NC, Meyer AJ, Bangash SA, Zheng ZL, Leustek T. PubMed
Zhang L, Sun W, Gao W, Zhang Y, Zhang P, Liu Y, Chen T, Yang D. Genome-wide identification and analysis of the GGCT gene family in wheat. BMC Genomics. 2024;25(1):32. PubMed PMC
García-Quirós E, Alché JD, Karpinska B, Foyer CH. Glutathione redox state plays a key role in flower development and pollen vigour. J Exp Bot. 2019;71(2):730–41. PubMed PMC
Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ. Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 2006;141(2):446–55. PubMed PMC
Hossain MA, Mostofa MG, Diaz-Vivancos P, Burritt DJ, Fujita M, Tran L-SP. Glutathione in plant growth. development, and stress tolerance: Springer; 2017.
Nagaharu U, Nagaharu N. Genome analysis in brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot. 1935;7(7):389–452.
Sun N, Chen J, Wang Y, Hussain I, Lei N, Ma X, Li W, Liu K, Yu H, Zhao K. Development and utility of SSR markers based on brassica sp. whole-genome in triangle of U. Front Plant Sci. 2024;14:1259736. PubMed PMC
Li P, Zhang S, Li F, Zhang S, Zhang H, Wang X, Sun R, Bonnema G, Borm TJ. A phylogenetic analysis of Chloroplast genomes elucidates the relationships of the six economically important brassica species comprising the triangle of U. Front Plant Sci. 2017;8:111. PubMed PMC
Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, et al. Early allopolyploid evolution in the post-Neolithic brassica napus oilseed genome. Science. 2014;345(6199):950–3. PubMed
He Z, Ji R, Havlickova L, Wang L, Li Y, Lee HT, Song J, Koh C, Yang J, Zhang M. Genome structural evolution in brassica crops. Nat Plants. 2021;7(6):757–65. PubMed
Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, et al. The brassica PubMed PMC
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS. The final piece of the triangle of U: evolution of the tetraploid brassica carinata genome. Plant Cell. 2022;34(11):4143–72. PubMed PMC
Mason AS, Snowdon RJ. Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species. Plant Biol. 2016;18(6):883–92. PubMed
Wu J, Liang J, Lin R, Cai X, Zhang L, Guo X, et al. Investigation of brassica and its relative genomes in the post-genomics era. Hortic Res. 2022;9:uhac182. PubMed PMC
Shahzad A, Fan Y, Qian M, Khan SU, Mahmood U, Wei L, et al. Genome-wide characterization of related to ABI3/VP1 transcription factors among u’s triangle brassica species reveals a negative role for BnaA06. RAV3L in seed size. Plant Physiol Biochem. 2024. 10.1016/j.plaphy.2024.108854. PubMed
Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 2021;49(D1):D458–60. PubMed PMC
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48(D1):D265–8. PubMed PMC
Chou K-C, Shen H-B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE. 2010;5(6):e11335. PubMed PMC
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–7. PubMed PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6. PubMed PMC
Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002;93(1):77–8. PubMed
Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43(W1):W39–49. PubMed PMC
Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, et al. Tbtools-ii: a one for all, all for one bioinformatics platform for biological big-data mining. Mol Plant. 2023;16(11):1733–42. PubMed
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in Silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–7. PubMed PMC
Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, et al. BnIR: a multi-omics database with various tools for brassica napus research and breeding. Mol Plant. 2023;16(4):775–89. PubMed
Li X, Meng B, Zhang Z, Wei L, Chang W, Wang Y, et al. Qprimerdb 2.0: an updated comprehensive gene-specific qpcr primer database for 1172 organisms. Nucleic Acids Res. 2025;53(D1):D205-10. PubMed PMC
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: M inimum I nformation for publication of Q uantitative Real-Time PCR E xperiments. Clin Chem. 2009. 10.1373/clinchem.2008.112797. PubMed
Wang J, Mao L, Li Y, Lu K, Qu C, Tang Z, et al. Natural variation in BnaA9.NF-YA7 contributes to drought tolerance in PubMed PMC
Zhang L, Yang B, Li X, Chen S, Zhang C, Xiang S, et al. Integrating GWAS, RNA-seq and functional analysis revealed that BnaA02.SE mediates silique elongation by affecting cell proliferation and expansion in brassica napus. Plant Biotechnol J. 2024;22(10):2907–20. PubMed PMC
Qu C, Zhu M, Hu R, Niu Y, Chen S, Zhao H, et al. Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in brassica Napus. Nat Commun. 2023;14(1):5194. PubMed PMC
Chang W, Chen L, Xie X, Liu M, Song D, Yu M, et al. Construction of a FOX-hunting library to systematically identify functional genes and the salt-tolerant line isolation in PubMed
Pires DEV, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics. 2013;30(3):335–42. PubMed PMC
Ayub A, Rahayu F, Gacem A, Muzammil K, Yadav KK, Antarlina SS, et al. Glutathione and biosensor technologies: enhancing plant resilience to environmental stressors. Physiol Mol Plant Pathol. 2025. 10.1016/j.pmpp.2025.102570.
Chai Y-C, Mieyal JJ. Glutathione and glutaredoxin—key players in cellular redox homeostasis and signaling. Antioxidants. 2023;12(8):1553. PubMed PMC
Chang M, Ma J, Sun Y, Tian L, Liu L, Chen Q, et al. γ-Glutamyl‐transpeptidase CsGGT2 functions as light‐activated theanine hydrolase in tea plant ( PubMed
Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278(5338):631–7. PubMed
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in PubMed PMC
Blanc G, Wolfe KH. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell. 2004;16(7):1679–91. PubMed PMC
Taylor JS, Raes J. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet. 2004;38(1):615–43. PubMed
Flagel LE, Wendel JF. Gene duplication and evolutionary novelty in plants. New Phytol. 2009;183(3):557–64. PubMed
Panjabi P, Yadava SK, Kumar N, Bangkim R, Ramchiary N. Breeding brassica juncea and B. rapa for sustainable oilseed production in the changing climate: progress and prospects. 10.1007/978-3-319-93536-2_6.
Zhang X, Lu G, Long W, Zou X, Li F, Nishio T. Recent progress in drought and salt tolerance studies in brassica crops. Breed Sci. 2014;64(1):60–73. PubMed PMC
Greer SF, Surendran A, Grant M, Lillywhite R. The current status, challenges, and future perspectives for managing diseases of brassicas. Front Microbiol. 2023;14:1209258. PubMed PMC
Sheoran AR, Lakra N, Saharan BS, Luhach A, Mandal NK, Seth CS, Sharma D, Santal AR, Sadh PK, Rajput VD. Enduring drought: effects and strategies for brassica crop resilience. Acad Biol. 2024;2(3). 10.20935/AcadBiol6265.
Zhang H, Flottmann S. Seed yield of canola (
Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci. 2015;112(37):E5123–32. PubMed PMC
Meng J, Hu D, Wang B, Zhu Y, Lu C, Deng Y, et al. Fine mapping and candidate gene analysis of the major QTL qSW-A03 for seed weight in brassica napus. Theor Appl Genet. 2025;138(4):1–18. PubMed
Shi L, Song J, Guo C, Wang B, Guan Z, Yang P, Chen X, Zhang Q, King GJ, Wang J. A CACTA-like transposable element in the upstream region of BnaA9. CYP 78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J. 2019;98(3):524–39. PubMed
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. Planta. 2022;255(4):90. PubMed PMC
Seven M, Akdemir H. DOF, MYB and TCP transcription factors: their possible roles on barley germination and seedling establishment. Gene Expr Patterns. 2020;37:119116. PubMed
Ruta V, Longo C, Lepri A, De Angelis V, Occhigrossi S, Costantino P, et al. The DOF transcription factors in seed and seedling development. Plants. 2020;9(2):218. PubMed PMC
Su L, Wan S, Zhou J, Shao QS, Xing B. Transcriptional regulation of plant seed development. Physiol Plant. 2021;173(4):2013–25. PubMed
Sumugat M, Donahue J, Cortes D, Stromberg V, Grene R, Shulaev V, et al. Seed development and germination in an
Matilla AJ. Auxin: hormonal signal required for seed development and dormancy. Plants. 2020;9(6):705. PubMed PMC