Fat or flat? The impact of dipole moment vectors on non-covalent interactions between aromatic tags and macromolecules
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41127420
PubMed Central
PMC12538275
DOI
10.1039/d5qi01546d
PII: d5qi01546d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The closo-1,2-C2B10H12 carborane is a recognized 3D aromatic icosahedral building block, with an electron distribution governed by the outer hydridic BH and acidic CH vertices. We attached the carborane cage to a peptidomimetic scaffold to generate an active-site inhibitor of SmCB1, a protease drug target in the Schistosoma pathogen. The carborane-tagged compound exhibited superior inhibitor affinity and bioactivity compared to its conventional 2D aromatic phenyl analog. Quantum mechanical computations, based on the crystal structure of the protease-inhibitor complex, revealed that the carborane tag contributed to inhibitor binding not only through nonpolar interactions but also via a key hydrogen bond between its CH vertex and a negatively charged residue in the binding site. This interaction, driven by the large dipole moment of the carborane cage, resulted in a more favorable energy contribution than that of the phenyl group in the 2D analog. The carborane pharmacophore boosted affinity for SmCB1 and conferred specific anti-schistosomal activity, highlighting its potential in protein ligand design.
Zobrazit více v PubMed
Grams R. J. Santos W. L. Scorei I. R. Abad-García A. Rosenblum C. A. Bita A. Cerecetto H. Viñas C. Soriano-Ursúa M. A. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem. Rev. 2024;124(5):2441–2511. PubMed
Leśnikowski Z. J. Challenges and Opportunities for the Application of Boron Cluster in Drug Design. J. Med. Chem. 2016;59(17):7738–7758. PubMed
Boron Science: New Technologies and Applications, ed. N. S. Hosmane, CRC Press, 2012
Handbook of Boron Science: With Applications in Organometallics, Catalysis, Materials and Medicine, ed. H. R. Eagling, World Scientific, 2018
Boron-Based Compounds: Potential and Emerging Applications in Medicine, ed. C. Vińas and E. Hey-Hawkins, Wiley, 2018
Hosmane N. S., Maguire J. A., Zhu Y. and Takagi M., Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment, World Scientific, 2012
Poater J. Solà M. Viñas C. Teixidor F. π Aromaticity and Three-Dimensional Aromaticity: Two sides of the Same Coin? Angew. Chem., Int. Ed. 2014;53(45):12191–12195. PubMed
Poater J. Viñas C. Bennour I. Escayola S. Solà M. Teixidor F. Too Persistent to Give Up: Aromaticity in Boron Clusters Survives Radical Structural Changes. J. Am. Chem. Soc. 2020;142(20):9396–9407. PubMed
Grimes R. N., Carboranes, Elsevier, Amsterdam, The Netherlands, 3rd edn, 2016
Fanfrlík J. Lepšík M. Horinek D. Havlas Z. Hobza P. Interaction of Carboranes with Biomolecules: Formation of Dihydrogen Bonds. ChemPhysChem. 2006;7(5):1100–1105. PubMed
Pecina A. Lepšík M. Řezáč J. Brynda J. Mader P. Řezáčová P. Hobza P. Fanfrlík J. QM/MM Calculations Reveal the Different Nature of the Interaction of two Carborane-Based Sulfamide Inhibitors of Human Carbonic Anhydrase II. J. Phys. Chem. B. 2013;117(50):16096–16104. PubMed
Fanfrlík J. Pecina A. Řezáč J. Sedlak R. Hnyk D. Lepšík M. Hobza P. B–H⋯π: A Nonclassical Hydrogen Bond or Dispersion Contact? Phys. Chem. Chem. Phys. 2017;19(28):18194–18200. PubMed
Hnyk D. Všetečka V. Drož L. Exner O. Charge Distribution within 1,2-dicarba-closododecaborane: Dipole Moments of its Phenyl Derivatives. Collect. Czech. Chem. Commun. 2001;66:1375–1379.
Endo Y. Iijima T. Yamakoshi Y. Fukasawa H. Miyaura C. Inada M. Kubo A. Itai A. Potent Estrogen Agonists Based on Carborane as a Hydrophobic Skeletal Structure: A New Medicinal Application of Boron Clusters. Chem. Biol. 2001;8(4):341–355. PubMed
Yamamoto K. Endo Y. Utility of Boron Clusters for Drug Design. Hansch–Fujita Hydrophobic Parameters π of Dicarba-closo-Dodecaboranyl Groups. Bioorg. Med. Chem. Lett. 2001;11(17):2389–2392. PubMed
Chen Y. Du F. Tang L. Xu J. Zhao Y. Wu X. Li M. Shen J. Wen Q. Cho Ch. H. Xiao Z. Carboranes as Unique Pharmacophores in Antitumor Medicinal Chemistry. Mol. Ther.: Oncol. 2022;24:400–416. PubMed PMC
Worm D. J. Hoppenz S. Els-Heindl S. Kellert M. Kuhnert R. Saretz S. Köbberling J. Riedl B. Hey-Hawkins E. Beck-Sickinger A. G. Selective Neuropeptide Y Conjugates with Maximized Carborane Loading as Promising Boron Delivery Agents for Boron Neutron Capture Therapy. J. Med. Chem. 2020;63(5):2358–2371. PubMed
Quan Y. Xie Z. Controlled Functionalization of o-Carborane via, Transition Metal Catalyzed B-H Activation. Chem. Soc. Rev. 2019;48(13):3660–3673. PubMed
Caffrey C. R. McKerrow J. H. Salter J. P. Sajid M. Blood ‘n’ Guts: An Update on Schistosome Digestive Peptidases. Trends Parasitol. 2004;20(5):241–248. PubMed
Abdulla M. H. Lim K. C. Sajid M. McKerrow J. H. Caffrey C. R. Schistosomiasis mansoni: Novel Chemotherapy Using a Cysteine Protease Inhibitor. PLoS Med. 2007;4(1):e14. PubMed PMC
McManus D. P. Dunne D. W. Sacko M. Utzinger J. Vennerval B. J. Zhou X. N. Schistosomiasis. Nat. Rev. Dis. Primers. 2018;4:13. PubMed
Caffrey C. R. Chemotherapy of schistosomiasis: present and future. Curr. Opin. Chem. Biol. 2007;11(4):433–439. PubMed
WHO, Schistosomiasis. Status in endemic countries. https://apps.who.int/neglected_diseases/ntddata/sch/sch.html
Jílková A. Rubešová P. Fanfrlík J. Fajtová P. Řezáčová P. Brynda J. Lepšík M. Mertlíková-Kaiserová H. Emal C. D. Renslo A. R. Roush W. R. Horn M. Caffrey C. R. Mareš M. Druggable Hot Spots in the Schistosomiasis Cathepsin B1 Target Identified by Functional and Binding Mode Analysis of Potent Vinyl Sulfone Inhibitors. ACS Infect. Dis. 2021;7(5):1077–1088. PubMed PMC
Jílková A. Řezáčová P. Lepšík M. Horn M. Váchová J. Fanfrlík J. Brynda J. McKerrow J. H. Caffrey C. R. Mareš M. Structural Basis for Inhibition of Cathepsin B Drug Target from the Human Blood Fluke, Schistosoma mansoni. J. Biol. Chem. 2011;286(41):35770–35781. PubMed PMC
Jílková A. Horn M. Fanfrlík J. Küppers J. Pachl P. Řezáčová P. Lepšík M. Fajtová P. Rubešová P. Chanová M. Caffrey C. R. Gütschow M. Mareš M. Azanitrile Inhibitors of the SmCB1 Protease Target Are Lethal to Schistosoma mansoni: Structural and Mechanistic Insights into Chemotype Reactivity. ACS Infect. Dis. 2021;7(1):189–201. PubMed PMC
Vale N. Gouveia M. J. Rinaldi G. Brindley P. J. Gärtner F. Correia da Costa J. M. Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance. Antimicrob. Agents Chemother. 2017;61(5):e02582. PubMed PMC
Doenhoff M. J. Pica-Mattoccia L. Praziquantel for the Treatment of Schistosomiasis: Its Use for Control in Areas with Endemic Disease and Prospects for Drug Resistance. Expert Rev. Anti-Infect. Ther. 2006;4(2):199–210. PubMed
Caffrey C. R., El-Sakkary N., Mäder P., Krieg R., Becker K., Schlitzer M., Drewry D. H., Vennerstrom J. L. and Grevelding C. G., Drug Discovery and Development for Schistosomiasis in Neglected Tropical Diseases, ed. D. Swinney, M. Pollastri, R. Mannhold, H. Buschmann and J. Holenz, 2019, pp. 187–225
Frizler M. Stirnberg M. Sisay M. T. Gütschow M. Development of Nitrile-Based Peptidic Inhibitors of Cysteine Cathepsins. Curr. Top. Med. Chem. 2010;10:294–322. PubMed
Cianni L. Feldmann C. W. Gilberg E. Gütschow M. Juliano L. Leitão A. Bajorath J. Montanari C. A. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity? J. Med. Chem. 2019;62(23):10497–10525. PubMed
Frizler M. Lohr F. Lülsdorff M. Gütschow M. Facing the gem-Dialkyl Effect in Enzyme Inhibitor Design: Preparation of Homocycloleucine-Based Azadipetide Nitriles. Chem. – Eur. J. 2011;17(41):11419–11423. PubMed
Breidenbach J. Lemke C. Pillaiyar T. Schäkel L. Al Hamwi G. Diett M. Gedschold R. Geiger N. Lopez V. Mirza S. Namasivayam V. Schiedel A. C. Sylvester K. Thimm D. Vielmuth C. Vu L. P. Zyulina M. Bodem J. Gütschow M. Müller C. E. Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Angew. Chem., Int. Ed. 2021;60(18):10423–10429. PubMed PMC
Löser R. Frizler M. Schilling K. Gütschow M. Azadipeptide Nitriles: Highly Potent and Proteolytically Stable Inhibitors of Papain-like Cysteine Proteases. Angew. Chem., Int. Ed. 2008;47(23):4331–4334. PubMed
Meusel M. Ambrozak A. Hecker T. K. Gütschow M. The Aminobarbituric Acid-Hydantoin Rearrangement. J. Org. Chem. 2003;68(12):4684–4693. PubMed
Löser R. Nieger M. Gütschow M. Synthesis and Crystal Structure of Benzyl [(1S,)-1-(5-amino-1,3,4-oxadiazol-2-yl)-2-phenylethyl]carbamate. Crystals. 2012;2(3):1201–1209.
Stone J. A. McCrea J. B. Winter R. Zajic S. Stoch S. A. Clinical and Translational Pharmacology of the Cathepsin K Inhibitor Odanacatib Studied for Osteoporosis. Br. J. Clin. Pharmacol. 2019;85(6):1072–1083. PubMed PMC
Owen D. R. Allerton C. M. N. Anderson A. S. Aschenbrenner L. Avery M. Berritt S. Boras B. Cardin R. D. Carlo A. Coffman K. J. Dantonio A. Di L. Eng H. Ferre R. Gajiwala K. S. Gibson S. A. Greasley S. E. Hurst B. L. Kadar E. P. Kalgutkar A. S. Lee J. C. Lee J. Liu W. Mason S. W. Noell S. Novak J. J. Obach R. S. Ogilvie K. Patel N. C. Pettersson M. Rai D. K. Reese M. R. Sammons M. F. Sathish J. G. Singh R. S. P. Steppan C. M. Stewart A. E. Tuttle J. B. Updyke L. Verhoest P. R. Wei L. Yang Q. Zhu Y. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374(6575):1586–1593. PubMed
Giroud M. Kuhn B. Saint-Auret S. Kuratli C. Martin R. E. Schuler F. Diederich F. Kaiser M. Brun R. Schirmeister T. Haap W. 2H-,1,2,3-Triazole-Based Dipeptidyl Nitriles: Potent, Selective, and Tripanocidal Rhodesian Inhibitors by Structure-Based Design. J. Med. Chem. 2018;61(8):3370–3388. PubMed
Lemke C. Jílková A. Ferber D. Braune A. On A. Johe P. Zíková A. Schirmeister T. Mareš M. Horn M. Gütschow M. Two Tags in One Probe: Combining Fluorescence- and Biotin-based Detection of the Trypanosomal Cysteine Protease Rhodesain. Chem. – Eur. J. 2022;28(62):e202201636. PubMed PMC
Alves L. Santos D. A. Cendron R. Rocho F. R. Matos T. K. Leitão A. Montanari C. A. A Nitrile-Based Peptoids as Cysteine Protease Inhibitors. Bioorg. Med. Chem. 2021;41:116211–111621. PubMed
Plešek J. Janoušek Z. Heřmánek S. Direct Sulfhydrylation of Boranes and Heteroboranes, 1,2-Dicarba-closo-dodecaborane(12)-9-thiol, 9-HS-1,2,-C2B10H11. Inorg. Synth. 1983;22:241–243.
Jílková A. Horn M. Mareš M. Structural and Functional Characterization of Schistosoma mansoni, Cathepsin B1. Methods Mol. Biol. 2020;2151:145–158. PubMed
Cianni L. Lemke C. Gilberg E. Feldmann C. Rosini F. Rocho F. D. Ribeiro J. F. Tezuka D. Y. Lopes C. D. de Albuquerque S. Bajorath J. Laufer S. Leitão A. Gütschow M. Montanari C. A. Mapping the S1 and S1′ Subsites of Cysteine Proteases with new Dipeptidyl Nitrile Inhibitors as Trypanocidal Agents. PLoS Negl. Trop. Dis. 2020;14:e0007755. PubMed PMC
Mertens M. D. Schmitz J. Horn M. Furtmann N. Bajorath J. Mareš M. Gütschow M. A Coumarin-Labeled Vinyl Sulfone as Tripeptidomimetic Activity-Based Probe for Cysteine Cathepsins. ChemBioChem. 2014;15(7):955–959. PubMed
Lemke C. Benýšek J. Brajtenbach D. Breuer C. Jílková A. Horn M. Buša M. Ulrychová L. Illies A. Kubatzky K. F. Bartz U. Mareš M. Gütschow M. An Activity-Based Probe for Cathepsin K Imaging with Excellent Potency and Selectivity. J. Med. Chem. 2021;64(18):13793–13806. PubMed
Štefanić S. Dvořák J. Horn M. Braschi S. Sojka D. Ruelas D. S. Suzuki B. Lim K. C. Hopkins S. D. McKerrow J. H. Caffrey C. R. RNA Interference in Schistosoma mansoni Schistosomula: Selectivity, Sensitivity and Operation for Larger-Scale Screening. PLoS Negl. Trop. Dis. 2010;4(10):e850. PubMed PMC
Fajtová P. Štefanič S. Hradilek M. Dvořák J. Vondrášek J. Jílková A. Ulrychová L. McKerrow J. H. Caffrey C. R. Mareš M. Horn M. Prolyl Oligopeptidase from the Blood Fluke Schistosoma mansoni: From Functional Analysis to Anti-schistosomal Inhibitors. PLoS Negl. Trop. Dis. 2015;9(6):e0003827. PubMed PMC
Long T. Neitz R. J. Beasley R. Kalyanaraman C. Suzuki B. M. Jacobson M. P. Dissous C. McKerrow J. H. Drewry D. H. Zuercher W. J. Singh R. Caffrey C. R. Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors Polo-Like Kinase 1 (PLK1), a Potential Drug Target in Schistosoma mansoni. PLoS Negl. Trop. Dis. 2016;10(1):e0004356. PubMed PMC
Fuchs N. Zimmermann R. A. Schwickert M. Gunkel A. Zimmer C. Meta M. Schwickert K. Keiser J. Haeberli C. Kiefer W. Schirmeister T. Dual Strategy to Design New Agents Targeting Schistosoma mansoni: Advancing Phenotypic and SmCB1 Inhibitors for Improved Efficacy. ACS Infect. Dis. 2024;10(5):1664–1678. PubMed
Hardegger L. A. Kuhn B. Spinnler B. Anselm L. Ecabert R. Stihle M. Gsell B. Thoma R. Diez J. Benz J. Plancher J. M. Hartmann G. Isshiki Y. Morikami K. Shimma N. Haap W. Banner D. W. Diederich F. Halogen Bonding at the Activite Sites of Cathepsin L and MEK1 Kinase: Efficient Interactions in Different Environments. ChemMedChem. 2011;6:2048–2054. PubMed
Dossetter A. G. Beeley H. Bowyer J. Cook C. R. Crawford J. J. Finlayson J. E. Heron N. M. Heyes C. Highton A. J. Hudson J. A. Jestel A. Kenny P. W. Krapp S. Martin S. MacFaul P. A. McGuire T. M. Gutierrez P. M. Morley A. D. Morris J. J. Page K. M. Ribeiro L. R. Sawney H. Steinbacher S. Smith C. Vickers M. (1R,2R)-N-(1-Cyanocyclopropyl)-2-(6-methoxy-1,3,4,5-tetrahydropyrido[4,3-b]indole-2-carbonyl)cyclohexanecarboxamide (AZD4996): A Potent and Highly Selective Cathepsine K, Inhibitor for the treatment of Osteoarthritis. J. Med. Chem. 2012;55(14):6363–6374. PubMed
Mantina M. Chamberlin A. C. Valero R. Cramer C. J. Truhlar D. G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A. 2009;113:5806–5812. PubMed PMC
Fanfrlík J. Bronowska A. K. Řezáč J. Přenosil O. Konvalinka J. Hobza P. A. Reliable Docking/Scoring Scheme Based on the Semiempirical Quantum Mechanical PM6-DH2 Method Accurately Covering Dispersion and H-Bonding: HIV-1 Protease with 22 Ligands. J. Phys. Chem. B. 2010;114:12666–12678. PubMed
Fanfrlík J. Brahmkshatriya P. S. Řezáč J. Jílková A. Horn M. Mareš M. Hobza P. Lepšík M. Quantum-Mechanics-Based Scoring Rationalizes the Irreversible Inactivation of parasitic Schistosoma mansoni, Cysteine Peptidase by Vinyl Sulfone Inhibitors. J. Phys. Chem. B. 2013;117:14973–14982. PubMed
Jeziorski B. Moszynski R. Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994;94:1887–1930.
Abdulla M. H. Ruelas D. S. Wolff B. Snedecor J. Lim K. C. Xu F. Renslo A. R. Williams J. McKerrow J. H. Caffrey C. R. Drug Discovery for Schistosomiasis: Hit and Lead Compounds Identified in a Library of Known Drugs by Medium-throughput Phenotypic Screening. PLoS Negl. Trop. Dis. 2009;3(7):e478. PubMed PMC
Horn M. Jílková A. Vondrášek J. Marešová L. Caffrey C. R. Mareš M. Mapping the Propeptide of the Schistosoma mansoni Cathepsin B1 Drug Target: Modulation of Inhibition by Heparin and Design of Mimetic Inhibitors. ACS Chem. Biol. 2011;6(6):609–617. PubMed
Jílková A. Horn M. Řezáčová P. Marešová L. Fajtová P. Brynda J. Vondrášek J. McKerrow J. H. Caffrey C. R. Mareš M. Activation Route of the Schistosoma mansoni Cathepsin B1 Drug Target: Structural Map with a Glycosaminoglycan Switch. Structure. 2014;22(12):1786–1798. PubMed
Basch P. F. Cultivation of Schistosoma mansoni in vitro. I. Establishment of Cultures from Cercariae and Development until Pairing. J. Parasitol. 1981;67(2):179–185. PubMed
Leontovyč A. Ulrychová L. Horn M. Dvořák J. Collection of Excretory/Secretory Products from Individual Developmental Stages of the Blood Fluke Schistosoma mansoni. Methods Mol. Biol. 2020;2151:55–63. PubMed
Dvořák J. Fajtová P. Ulrychová L. Leontovyč A. Rojo-Arreola L. Suzuki B. M. Horn M. Mareš M. Craik C. S. Caffrey C. R. O’Donoghue A. J. Excretion/Secretion Products from Schistosoma mansoni Adults, Eggs and Schistosomula Have Unique Peptidase Specificity Profiles. Biochimie. 2016;122:99–109. PubMed PMC
Glaser J. Schurigt U. Suzuki B. M. Caffrey C. R. Holzgrabe U. Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl and Thymyl Cinnamate Induce Cytoplasmic Vacuoles and Death in Schistosomula of Schistosoma mansoni. Molecules. 2015;20(6):10873–10883. PubMed PMC
Case D. A., Babin V., Berryman J. T., Betz R. M., Cai Q., Cerutti D. S., Cheatham III T. E., Darden T. A., Duke R. E., Gohlke H., Goetz A. W., Gusarov S., Homeyer N., Janowski P., Kaus J., Kolossváry I., Kovalenko A., Lee T. S., LeGrand S., Luchko T., Luo R., Madej B., Merz K. M., Paesani F., Roe D. R., Roitberg A., Sagui C., Salomon-Ferrer R., Seabra G., Simmerling C. L., Smith W., Swails J., Walker R. C., Wang J., Wolf R. M., Wu X. and Kollman P. A., AMBER 14, University of California, San Francisco, 2014
Maier J. A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K. E. Simmerling C. Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015;11:3696–3371. PubMed PMC
Fanfrlík J. Pecina A. Řezáč J. Lepšík M. Sárosi M. B. Hnyk D. Hobza P. Benchmark Data Sets of Boron Cluster Dihydrogen Bonding for the Validation of Approximate Computational Methods. ChemPhysChem. 2020;21:2599–2604. PubMed
Hostaš J. Řezáč J. Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 2017;13:3575–3585. PubMed
Řezáč J. Cuby: An Integrative Framework for Computational Chemistry. J. Comput. Chem. 2016;37:1230–1237. PubMed
Ahlrichs R. Bar M. Haser M. Horn H. Kölmel C. Electronic Structure Calculations on Workstation Computers: The Program System Turbomole. Chem. Phys. Lett. 1989;162:165–169.
Welch A. J. What Can We Learn from the Crystal Structures of Metallacarboranes? Crystals. 2017;7(8):234.
Turney J. M. Simmonett A. C. Parrish R. M. Hohenstein E. G. Evangelista F. Fermann J. T. Mintz B. J. Burns L. A. Wilke J. J. Abrams M. L. Russ N. J. Leininger M. L. Janssen C. L. Seidl E. T. Allen W. D. Schaefer H. F. King R. A. Valeev E. F. Sherrill C. D. Crawford T. D. PSI4: An Open-Source ab initio, Electronic Structure Program. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:556–565.
Frisch J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J. and Fox D. J., Gaussian 09, Gaussian Inc., Wallingford, CT, 2009
Flükiger P., Lüthi H. P., Portmann S. and Weber J., MOLEKEL 4.3, Swiss Center for Scientific Computing, Manno, Switzerland, 2000
Portmann S. and Lüthi H. P., Molekel: Chimia, 2007, vol. 28, pp. 555