Integrative diagnostic approach to salivary gland tumors: from clinical evaluation to molecularly targeted therapy
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
41134332
DOI
10.1007/s00428-025-04267-3
PII: 10.1007/s00428-025-04267-3
Knihovny.cz E-zdroje
- Klíčová slova
- Diagnosis, Molecular profiling, Salivary gland neoplasms, Targeted therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Diagnosing salivary gland tumors remains challenging due to their clinical and biological complexity, histopathologic diversity, and overlapping morphology. Over the last few years, molecular profiling has emerged as a key tool for improving tumor classification, shedding light on the cellular and molecular mechanisms underlying tumors pathogenesis. This review provides a comprehensive exploration of the clinical application of molecular profiling in the decision to indicate targeted therapy for salivary gland neoplasm. The increasing adoption of innovative biological markers associated with Next-Generation Sequencing highlights the potential of molecular diagnostic approaches as well as the prediction of therapeutic response. While immunohistochemistry remains a reliable and widely accessible ancillary tool for characterizing specific salivary gland tumors subtypes, additional validation using in situ hybridization, reverse transcription polymerase chain reaction or Next-Generation Sequencing may enhance diagnostic accuracy and facilitate the identification of actionable molecular alterations in the appropriate clinical and morphological context. This integrated diagnostic approach strengthens clinical decision-making and opens new avenues for precision-targeted therapy in the management of salivary gland tumors. As molecular insights continue to expand, the integration of traditional and modern tools will be critical to improving diagnostic accuracy, prognostic stratification, and treatment outcomes for patients with salivary gland tumors.
Bioptic Laboratory Ltd Plzen Czech Republic
Cancer Institute of the State of São Paulo São Paulo State of São Paulo Brazil
Coordinator of the International Head and Neck Scientific Group Padua Italy
Department of Oncology Section Head and Neck Oncology KU Leuven Louvain Belgium
Department of Pathology Faculty of Medicine Charles University Pilsen Czech Republic
Department of Pathology University of Calgary Calgary AB Canada
Head and Neck Surgery Department and LIM 28 University of São Paulo Medical School São Paulo Brazil
Hospital Israelita Albert Einstein São Paulo Brazil
Institute of Pathology University Hospital Erlangen Erlangen Germany
Zobrazit více v PubMed
WHO Classification of Tumours Editorial Board (2022) Head and Neck Tumours, 5th ed. International Agency for Research on Cancer, Lyon (France)
Seethala RR, Griffith CC (2016) Molecular pathology: predictive, prognostic, and diagnostic markers in salivary gland tumors. Surg Pathol Clin 9:339–352 PubMed DOI
Skálová A, Stenman G, Simpson RHW et al (2018) The role of molecular testing in the differential diagnosis of salivary gland carcinomas. Am J Surg Pathol 42:e11–e27. https://doi.org/10.1097/PAS.0000000000000980 PubMed DOI
Swid MA, Li L, Drahnak EM et al (2023) Updated salivary gland immunohistochemistry: a review. Arch Pathol Lab Med 147:1383–1389. https://doi.org/10.5858/arpa.2022-0461-RA PubMed DOI
Iyer J, Hariharan A, Cao UMN et al (2021) An overview on the histogenesis and morphogenesis of salivary gland neoplasms and evolving diagnostic approaches. Cancers (Basel) 13:3910. https://doi.org/10.3390/cancers13153910 PubMed DOI
Freiberger SN, Ikenberg K, van Egmond D et al (2024) Molecular analysis using SalvGlandDx improves risk of malignancy estimation and diagnosis of salivary gland cytopathology: an exploratory multicenter study. Cancer Cytopathol 132:435–446. https://doi.org/10.1002/cncy.22814 PubMed DOI
da Silva LP, Serpa MS, Viveiros SK et al (2018) Salivary gland tumors in a Brazilian population: a 20-year retrospective and multicentric study of 2292 cases. Journal of Cranio-Maxillofacial Surgery 46:2227–2233. https://doi.org/10.1016/j.jcms.2018.09.028 PubMed DOI
Bishop JA; Thompson LDR; Wakely PE Jr; Weinreb I (2021) Tumors of the Salivary Glands. In: Montgomery EA (ed) AFIP Atlas of Tumor and Non-Tumor Pathology, 5th series. American Registry of Pathology, Arlington, VA
Louredo BVR, Santos-Silva AR, Vargas PA et al (2021) Clinicopathological analysis and survival outcomes of primary salivary gland tumors in pediatric patients: a systematic review. J Oral Pathol Med 50:435–443. https://doi.org/10.1111/jop.13151 PubMed DOI
Pérez-de-Oliveira M-E, Sousa-Neto S-S, Vargas P-A (2025) Epithelial salivary gland neoplasms in pediatric patients: A comprehensive review. Med Oral Patol Oral Cir Bucal. https://doi.org/10.4317/medoral.26983 PubMed DOI PMC
Peeperkorn S, Meulemans J, Van Lierde C et al (2020) Validated prognostic nomograms for patients with parotid carcinoma predicting 2- and 5-year tumor recurrence-free interval probability. Front Oncol. https://doi.org/10.3389/fonc.2020.01535 PubMed DOI PMC
Guzzo M, Locati LD, Prott FJ et al (2010) Major and minor salivary gland tumors. Crit Rev Oncol Hematol 74:134–148. https://doi.org/10.1016/j.critrevonc.2009.10.004 PubMed DOI
Alsanie I, Rajab S, Cottom H et al (2022) Distribution and frequency of salivary gland tumours: an international multicenter study. Head Neck Pathol 16:1043–1054. https://doi.org/10.1007/s12105-022-01459-0 PubMed DOI PMC
Bradley PJ, McGurk M (2013) Incidence of salivary gland neoplasms in a defined UK population. Br J Oral Maxillofac Surg 51:399–403. https://doi.org/10.1016/j.bjoms.2012.10.002 PubMed DOI
Moretz-sohn PF, Dias FL, de Carvalho Marques CM (2023) Minor salivary gland cancer of the head and neck: a review of epidemiologic aspects, prognostic factors, and outcomes. Curr Oncol Rep 25:173–179. https://doi.org/10.1007/s11912-022-01356-3 PubMed DOI
Lavareze L, Kimura TdeC, Cacita N et al (2025) Survival outcomes in adenoid cystic carcinoma of the head and neck: a systematic review of 17 497 cases and meta-analysis. Head Neck. https://doi.org/10.1002/hed.28132 PubMed DOI
Skálová A, Bradová M, Laco J et al (2025) Basal cell adenoma with S100 protein–positive “stroma”: a distinct triphasic salivary gland neoplasm characterized by CTNNB1 mutation. Virchows Arch. https://doi.org/10.1007/s00428-025-04141-2 PubMed DOI PMC
Agaimy A, Mantsopoulos K, Iro H, Stoehr R (2023) KRAS codon 12 mutations characterize a subset of de novo proliferating “metaplastic” Warthin tumors. Virchows Arch 482:839–848. https://doi.org/10.1007/s00428-023-03504-x PubMed DOI PMC
Stenman G, Fehr A, Skálová A et al (2022) Chromosome translocations, gene fusions, and their molecular consequences in pleomorphic salivary gland adenomas. Biomedicines 10:1970. https://doi.org/10.3390/biomedicines10081970 PubMed DOI PMC
Bradley PJ, Stenman G, Thompson LDR et al (2024) Metastatic cutaneous squamous cell carcinoma accounts for nearly all squamous cell carcinomas of the parotid gland. Virchows Arch 485:3–11. https://doi.org/10.1007/s00428-024-03798-5 PubMed DOI PMC
Lydiatt WM, Patel SG, O’Sullivan B, et al (2017) Head and neck cancers—major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin 67:122–137. https://doi.org/10.3322/caac.21389
Seethala RR (2009) An update on grading of salivary gland carcinomas. Head Neck Pathol 3:69–77. https://doi.org/10.1007/s12105-009-0102-9 PubMed DOI PMC
Hernandez-Prera JC, Skálová A, Franchi A et al (2021) Pleomorphic adenoma: the great mimicker of malignancy. Histopathology 79:279–290. https://doi.org/10.1111/his.14322 PubMed DOI
de Lima-Souza RA, Bělohlávková K, Michal M et al (2025) Atypical and worrisome histological features in pleomorphic adenoma: challenging and potentially significant diagnostic pitfall. Virchows Arch. https://doi.org/10.1007/s00428-024-04015-z PubMed DOI
Skalova A, Leivo I, Hellquist H et al (2021) High-grade transformation/dedifferentiation in salivary gland carcinomas: occurrence across subtypes and clinical significance. Adv Anat Pathol 28:107–118. https://doi.org/10.1097/PAP.0000000000000298 PubMed DOI
de Lima-Souza RA, de Vieira GS, de Kimura TC et al (2024) Insights into the molecular alterations of PLAG1 and HMGA2 associated with malignant phenotype acquisition in pleomorphic adenoma. Crit Rev Oncol Hematol 204:104494. https://doi.org/10.1016/j.critrevonc.2024.104494 PubMed DOI
Baněčková M, Uro-Coste E, Ptáková N et al (2020) What is hiding behind S100 protein and SOX10 positive oncocytomas? Oncocytic pleomorphic adenoma and myoepithelioma with novel gene fusions in a subset of cases. Hum Pathol 103:52–62. https://doi.org/10.1016/j.humpath.2020.07.009 PubMed DOI
Kas K, Voz ML, Röijer E et al (1997) Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat Genet 15:170–174. https://doi.org/10.1038/ng0297-170 PubMed DOI
Bishop JA, Gagan J, Baumhoer D et al (2020) Sclerosing Polycystic “Adenosis” of Salivary Glands: A Neoplasm Characterized by PI3K Pathway Alterations More Correctly Named Sclerosing Polycystic Adenoma. Head Neck Pathol 14:630–636. https://doi.org/10.1007/s12105-019-01088-0 PubMed DOI
Skálová A, Baněčková M, Laco J et al (2022) Sclerosing polycystic adenoma of salivary glands. Am J Surg Pathol 46:268–280. https://doi.org/10.1097/PAS.0000000000001807 PubMed DOI
de Carvalho Kimura T, de Lima-Souza RA, Scarini JF et al (2023) Clinicopathological profile of sclerosing polycystic adenoma/adenosis: a systematic review. Head Neck 45:2449–2457. https://doi.org/10.1002/hed.27435 PubMed DOI
Wilson TC, Ma D, Tilak A et al (2016) Next-generation sequencing in salivary gland basal cell adenocarcinoma and basal cell adenoma. Head Neck Pathol 10:494–500. https://doi.org/10.1007/s12105-016-0730-9 PubMed DOI PMC
Jo VY, Sholl LM, Krane JF (2016) Distinctive patterns of CTNNB1 (β-catenin) alterations in salivary gland basal cell adenoma and basal cell adenocarcinoma. Am J Surg Pathol 40:1143–1150. https://doi.org/10.1097/PAS.0000000000000669 PubMed DOI
Sato M, Yamamoto H, Hatanaka Y et al (2018) Wnt/β-catenin signal alteration and its diagnostic utility in basal cell adenoma and histologically similar tumors of the salivary gland. Pathol Res Pract 214:586–592. https://doi.org/10.1016/j.prp.2017.12.016 PubMed DOI
Rito M, Mitani Y, Bell D et al (2018) Frequent and differential mutations of the CYLD gene in basal cell salivary neoplasms: linkage to tumor development and progression. Mod Pathol 31:1064–1072. https://doi.org/10.1038/s41379-018-0018-6 PubMed DOI
Wong K, Bishop JA, Weinreb I et al (2025) Wnt/β-catenin activation by mutually exclusive FBXW11 and CTNNB1 hotspot mutations drives salivary basal cell adenoma. Nat Commun 16:4657. https://doi.org/10.1038/s41467-025-59871-3 PubMed DOI PMC
McLean AC, Rooper LM, Gagan J et al (2022) A subset of salivary intercalated duct lesions harbors recurrent CTNNB1 and HRAS mutations: a molecular link to basal cell adenoma and epithelial-myoepithelial carcinoma? Head Neck Pathol 17:393–400. https://doi.org/10.1007/s12105-022-01513-x PubMed DOI PMC
Rooper LM, Agaimy A, Assaad A et al (2023) Recurrent IDH2 mutations in salivary gland striated duct adenoma define an expanded histologic spectrum distinct from canalicular adenoma. Am J Surg Pathol 47:333–343. https://doi.org/10.1097/PAS.0000000000002004 PubMed DOI
Agaimy A, Mueller SK, Bumm K et al (2018) Intraductal papillary mucinous neoplasms of minor salivary glands with AKT1 p.Glu17Lys mutation. Am J Surg Pathol 42:1076–1082. https://doi.org/10.1097/PAS.0000000000001080 PubMed DOI
Hsieh M-S, Bishop JA, Wang Y-P et al (2020) Salivary sialadenoma papilliferum consists of two morphologically, immunophenotypically, and genetically distinct subtypes. Head Neck Pathol 14:489–496. https://doi.org/10.1007/s12105-019-01068-4 PubMed DOI
Arida M, Barnes EL, Hunt JL (2005) Molecular assessment of allelic loss in Warthin tumors. Mod Pathol 18:964–968. https://doi.org/10.1038/modpathol.3800379 PubMed DOI
Honda K, Kashima K, Daa T et al (2000) Clonal analysis of the epithelial component of Warthin’s tumor. Hum Pathol 31:1377–1380 PubMed DOI
Mark J, Dahlenfors R, Stenman G, Nordquist A (1990) Chromosomal patterns in Warthin’s tumor. A second type of human benign salivary gland neoplasm. Cancer Genet Cytogenet 46:35–39. https://doi.org/10.1016/0165-4608(90)90006-v PubMed DOI
Nordkvist A, Mark J, Dahlenfors R et al (1994) Cytogenetic observations in 13 cystadenolymphomas (Warthin’s tumors). Cancer Genet Cytogenet 76:129–135. https://doi.org/10.1016/0165-4608(94)90463-4 PubMed DOI
Nakaguro M, Urano M, Ogawa I et al (2020) Histopathological evaluation of minor salivary gland papillary–cystic tumours: focus on genetic alterations in sialadenoma papilliferum and intraductal papillary mucinous neoplasm. Histopathology 76:411–422. https://doi.org/10.1111/his.13990 PubMed DOI
Gallego L, Junquera L, Fresno MF (2009) Non-sebaceous lymphadenoma of the parotid gland: immunohistochemical study and DNA ploidy analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:555–558. https://doi.org/10.1016/j.tripleo.2008.11.018 PubMed DOI
Mark J, Dahlenfors R, Wedell B et al (1994) Cytogenetical and FISH analysis on a salivary sebaceous lymphadenoma. Oncol Rep. https://doi.org/10.3892/or.1.3.561 PubMed DOI
Bishop JA, Nakaguro M, Urano M et al (2024) Keratocystoma. Am J Surg Pathol 48:317–328. https://doi.org/10.1097/PAS.0000000000002169 PubMed DOI
Pérez-de-Oliveira ME, Wagner VP, Araújo ALD et al (2020) Prognostic value of CRTC1-MAML2 translocation in salivary mucoepidermoid carcinoma: systematic review and meta-analysis. J Oral Pathol Med 49:386–394. https://doi.org/10.1111/jop.12970 PubMed DOI
Skálová A, Hyrcza MD, Vaneček T et al (2022) Fusion-positive salivary gland carcinomas. Genes Chromosomes Cancer 61:228–243. https://doi.org/10.1002/gcc.23020 PubMed DOI
Persson M, Andrén Y, Mark J et al (2009) Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A 106:18740–18744. https://doi.org/10.1073/pnas.0909114106 PubMed DOI PMC
Meyer MT, Watermann C, Dreyer T et al (2021) 2021 update on diagnostic markers and translocation in salivary gland tumors. Int J Mol Sci 22:6771. https://doi.org/10.3390/ijms22136771 PubMed DOI PMC
Fujii K, Murase T, Beppu S et al (2017) MYBL 1, MYBL, 2 and NFIB gene alterations and MYC overexpression in salivary gland adenoid cystic carcinoma. Histopathology 71:823–834. https://doi.org/10.1111/his.13281 PubMed DOI
Stephens PJ, Davies HR, Mitani Y et al (2013) Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest 123:2965–2968. https://doi.org/10.1172/JCI67201 PubMed DOI PMC
Ho AS, Ochoa A, Jayakumaran G et al (2019) Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J Clin Invest 129:4276–4289. https://doi.org/10.1172/JCI128227 PubMed DOI PMC
Ferrarotto R, Mitani Y, McGrail DJ et al (2023) Proteogenomic analysis of salivary adenoid cystic carcinomas defines molecular subtypes and identifies therapeutic targets. Clin Cancer Res 27:852–864. https://doi.org/10.1158/1078-0432.CCR-20-1192 DOI
Andreasen S, Melchior LC, Kiss K et al (2018) The PRKD1 E710D hotspot mutation is highly specific in separating polymorphous adenocarcinoma of the palate from adenoid cystic carcinoma and pleomorphic adenoma on FNA. Cancer Cytopathol 126:275–281. https://doi.org/10.1002/cncy.21959 PubMed DOI
Xu B, Barbieri AL, Bishop JA et al (2020) Histologic classification and molecular signature of polymorphous adenocarcinoma (PAC) and cribriform adenocarcinoma of salivary gland (CASG). Am J Surg Pathol 44:545–552. https://doi.org/10.1097/PAS.0000000000001431 PubMed DOI PMC
Haller F, Bieg M, Will R et al (2019) Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. Nat Commun 10:368. https://doi.org/10.1038/s41467-018-08069-x PubMed DOI PMC
Andreasen S, Varma S, Barasch N et al (2019) The HTN3-MSANTD3 fusion gene defines a subset of acinic cell carcinoma of the salivary gland. Am J Surg Pathol 43:489–496. https://doi.org/10.1097/PAS.0000000000001200 PubMed DOI PMC
Barasch N, Gong X, Kwei KA et al (2017) Recurrent rearrangements of the Myb/SANT-like DNA-binding domain containing 3 gene (MSANTD3) in salivary gland acinic cell carcinoma. PLoS ONE 12:e0171265. https://doi.org/10.1371/journal.pone.0171265 PubMed DOI PMC
Skálová A, Vanecek T, Sima R et al (2010) Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 34:599–608. https://doi.org/10.1097/PAS.0b013e3181d9efcc PubMed DOI
Baněčková M, Thompson LDR, Hyrcza MD et al (2023) Salivary gland secretory carcinoma. Am J Surg Pathol 47:661–677. https://doi.org/10.1097/PAS.0000000000002043 PubMed DOI
Bishop JA, Weinreb I, Swanson D et al (2019) Microsecretory adenocarcinoma. Am J Surg Pathol 43:1023–1032. https://doi.org/10.1097/PAS.0000000000001273 PubMed DOI
Bishop JA, Sajed DP, Weinreb I et al (2021) Microsecretory adenocarcinoma of salivary glands: an expanded series of 24 cases. Head Neck Pathol 15:1192–1201. https://doi.org/10.1007/s12105-021-01331-7 PubMed DOI PMC
Weinreb I, Hahn E, Dickson BC et al (2023) Microcribriform adenocarcinoma of salivary glands. Am J Surg Pathol 47:194–201. https://doi.org/10.1097/PAS.0000000000001980 PubMed DOI
Antonescu CR, Katabi N, Zhang L et al (2011) EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer 50:559–570. https://doi.org/10.1002/gcc.20881 PubMed DOI
Chapman E, Skalova A, Ptakova N et al (2018) Molecular profiling of hyalinizing clear cell carcinomas revealed a subset of tumors harboring a novel EWSR1-CREM fusion. Am J Surg Pathol 42:1182–1189. https://doi.org/10.1097/PAS.0000000000001114 PubMed DOI
Weinreb I, Bishop JA, Chiosea SI et al (2018) Recurrent RET gene rearrangements in intraductal carcinomas of salivary gland. Am J Surg Pathol 42:442–452. https://doi.org/10.1097/PAS.0000000000000952 PubMed DOI PMC
Skálová A, Ptáková N, Santana T et al (2019) NCOA4-RET and TRIM27-RET are characteristic gene fusions in salivary intraductal carcinoma, including invasive and metastatic tumors. Am J Surg Pathol 43:1303–1313. https://doi.org/10.1097/PAS.0000000000001301 PubMed DOI
Dalin MG, Desrichard A, Katabi N et al (2016) Comprehensive molecular characterization of salivary duct carcinoma reveals actionable targets and similarity to apocrine breast cancer. Clin Cancer Res 22:4623–4633. https://doi.org/10.1158/1078-0432.CCR-16-0637 PubMed DOI PMC
Utsumi Y, Nakaguro M, Kawakita D et al (2025) Cytoplasmic p53 immunostaining in salivary duct carcinoma: a poor prognostic factor associated with characteristic TP53 variants. Mod Pathol 38:100766. https://doi.org/10.1016/j.modpat.2025.100766 PubMed DOI
de Lima-Souza RA, Altemani A, Michal M et al (2024) Expanding the molecular spectrum of carcinoma ex pleomorphic adenoma. Am J Surg Pathol 48:1491–1502. https://doi.org/10.1097/PAS.0000000000002307 PubMed DOI
Santana T, Pavel A, Martinek P et al (2019) Biomarker immunoprofile and molecular characteristics in salivary duct carcinoma: clinicopathological and prognostic implications. Hum Pathol 93:37–47. https://doi.org/10.1016/j.humpath.2019.08.009 PubMed DOI
Agaimy A, Baněčková M, Ihrler S et al (2021) ALK rearrangements characterize 2 distinct types of salivary gland carcinomas. Am J Surg Pathol 45:1166–1178. https://doi.org/10.1097/PAS.0000000000001698 PubMed DOI
Lavareze L, Scarini JF, de Lima-Souza RA et al (2023) Clinicopathological and survival profile of patients with salivary gland myoepithelial carcinoma: a systematic review. J Oral Pathol Med 52:101–108. https://doi.org/10.1111/jop.13395 PubMed DOI
Yagi H, Utsumi Y, Tada Y et al (2025) Correlation between basal cell adenoma and basal cell adenocarcinoma of the salivary gland: a histomorphological and molecular review of 129 cases. Virchows Arch 487:75–86. https://doi.org/10.1007/s00428-025-04120-7 PubMed DOI PMC
de Paiva JPG, Roldán DG, Bezerra HKF et al (2024) Intraoral salivary gland cystadenomas: a case series study and literature review. Head Neck Pathol 18:45. https://doi.org/10.1007/s12105-024-01661-2 PubMed DOI PMC
Chen S, Peng J, Yuan C et al (2021) Sialadenoma papilliferum: clinicopathologic, immunohistochemical, molecular analyses of new five cases and review of the literature. Diagn Pathol 16:22. https://doi.org/10.1186/s13000-021-01084-5 PubMed DOI PMC
Owosho AA, Aguilar CE, Seethala RR (2016) Comparison of p63 and p40 (ΔNp63) as basal, squamoid, and myoepithelial markers in salivary gland tumors. Appl Immunohistochem Mol Morphol 24:501–508. https://doi.org/10.1097/PAI.0000000000000222 PubMed DOI
Sams RN, Gnepp DR (2013) P63 expression can be used in differential diagnosis of salivary gland acinic cell and mucoepidermoid carcinomas. Head Neck Pathol 7:64–68. https://doi.org/10.1007/s12105-012-0403-2 PubMed DOI
Ueda K, Murase T, Nagao T et al (2020) Central pathology review of salivary gland adenoid cystic carcinoma. Head Neck 42:1721–1727. https://doi.org/10.1002/hed.26081 PubMed DOI
Vander Poorten V, Triantafyllou A, Skálová A et al (2018) Polymorphous adenocarcinoma of the salivary glands: reappraisal and update. Eur Arch Otorhinolaryngol 275:1681–1695. https://doi.org/10.1007/s00405-018-4985-5 PubMed DOI
Paiva-Correia A, Hellquist H, Apolónio J, Castelo-Branco P (2025) Role of ancillary techniques in the differential diagnosis of salivary gland carcinomas. APMIS. https://doi.org/10.1111/apm.70008 PubMed DOI
Di Villeneuve L, Souza IL, Tolentino FDS et al (2020) Salivary Gland Carcinoma: Novel Targets to Overcome Treatment Resistance in Advanced Disease. Front Oncol 10:580141. https://doi.org/10.3389/fonc.2020.580141 PubMed DOI PMC
Boon E, Bel M, van Boxtel W et al (2018) A clinicopathological study and prognostic factor analysis of 177 salivary duct carcinoma patients from <scp>T</scp> he <scp>N</scp> etherlands. Int J Cancer 143:758–766. https://doi.org/10.1002/ijc.31353 PubMed DOI PMC
Rooper LM, Argyris PP, Thompson LDR et al (2021) Salivary mucinous adenocarcinoma is a histologically diverse single entity with recurrent AKT1 E17K mutations. Am J Surg Pathol 45:1337–1347. https://doi.org/10.1097/PAS.0000000000001688 PubMed DOI
Neelakantan IV, Di Palma S, Smith CET, McCoombe A (2016) Parotid sebaceous carcinoma in patient with Muir Torre syndrome, caused by MSH2 mutation. Head Neck Pathol 10:354–361. https://doi.org/10.1007/s12105-015-0670-9 PubMed DOI
Ferrarotto R, Heymach JV, Glisson BS (2016) MYB-fusions and other potential actionable targets in adenoid cystic carcinoma. Curr Opin Oncol 28:195–200. https://doi.org/10.1097/CCO.0000000000000280 PubMed DOI
Ferrarotto R, Mitani Y, Diao L et al (2017) Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J Clin Oncol 35:352–360. https://doi.org/10.1200/JCO.2016.67.5264 PubMed DOI
Laurie SA, Ho AL, Fury MG et al (2011) Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: a systematic review. Lancet Oncol 12:815–824. https://doi.org/10.1016/S1470-2045(10)70245-X PubMed DOI
Tchekmedyian V, Sherman EJ, Dunn L et al (2019) Phase II study of lenvatinib in patients with progressive, recurrent or metastatic adenoid cystic carcinoma. J Clin Oncol 37:1529–1537. https://doi.org/10.1200/JCO.18.01859 PubMed DOI PMC
Wagner VP, Ferrarotto R, Vargas PA et al (2023) Drug-based therapy for advanced adenoid cystic carcinoma: current landscape and challenges based on an overview of registered clinical trials. Crit Rev Oncol Hematol 181:103886. https://doi.org/10.1016/j.critrevonc.2022.103886 PubMed DOI
EU Clinical Trials Register. EUCT number: 2023–508476–11–00. Available at: https://euclinicaltrials.eu/ctis-public/view/2023-508476-11-00
Sousa LG, McGrail DJ, Lazar Neto F et al (2023) Spatial immunoprofiling of adenoid cystic carcinoma reveals B7–H4 is a therapeutic target for aggressive tumors. Clin Cancer Res 29:3162–3171. https://doi.org/10.1158/1078-0432.CCR-23-0514 PubMed DOI PMC
Hamilton EP, Han HS, Kalinsky K et al (2025) Initial phase 1 dose escalation data for emiltatug ledadotin (Emi-Le), a novel B7–H4-directed dolasynthen antibody-drug conjugate. J Clin Oncol 43:3009–3009. https://doi.org/10.1200/JCO.2025.43.16_suppl.3009 DOI
Ferrarotto R, Eckhardt G, Patnaik A et al (2018) A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann Oncol 29:1561–1568. https://doi.org/10.1093/annonc/mdy171 PubMed DOI
Ferrarotto R, Mishra V, Herz E et al (2022) AL101, a gamma-secretase inhibitor, has potent antitumor activity against adenoid cystic carcinoma with activated NOTCH signaling. Cell Death Dis 13:678. https://doi.org/10.1038/s41419-022-05133-9 PubMed DOI PMC
Kieran R, de Paula BHR, Hubank M, et al (2021) Response of NOTCH1-Activated Tracheal Adenoid Cystic Carcinoma to the Gamma Secretase Inhibitor Nirogacestat. JCO Precis Oncol 1579–1583. https://doi.org/10.1200/PO.21.00228
Hoff CO, Dal Lago EA, Siqueira JM, et al (2024) First Use of AXL Targeting in Metastatic, Refractory, Adenoid Cystic Carcinoma: A Case Report. JCO Precis Oncol. https://doi.org/10.1200/PO.23.00633
Locati LD, Ferrarotto R, Licitra L, et al (2023) Current management and future challenges in salivary glands cancer. Front Oncol 13:. https://doi.org/10.3389/fonc.2023.1264287
Hotte SJ, Winquist EW, Lamont E et al (2005) Imatinib mesylate in patients with adenoid cystic cancers of the salivary glands expressing c-kit: a Princess Margaret Hospital phase II consortium study. J Clin Oncol 23:585–590. https://doi.org/10.1200/JCO.2005.06.125 PubMed DOI
Pfeffer MR, Talmi Y, Catane R et al (2007) A phase II study of imatinib for advanced adenoid cystic carcinoma of head and neck salivary glands. Oral Oncol 43:33–36. https://doi.org/10.1016/j.oraloncology.2005.12.026 PubMed DOI
van Herpen C, Vander Poorten V, Skalova A et al (2022) Salivary gland cancer: ESMO–European reference network on rare adult solid cancers (EURACAN) clinical practice guideline for diagnosis, treatment and follow-up. ESMO Open 7:100602. https://doi.org/10.1016/j.esmoop.2022.100602 PubMed DOI PMC
Durzyńska M, Dominiak K, Sosnowska I, Michalek IM (2023) Secretory carcinoma of major and minor salivary glands with ETV6-NTRK3 gene fusion: overcoming misdiagnosis in the era of tumour-agnostic therapy with TRK inhibitors. Wspolczesna Onkol 27:101–108. https://doi.org/10.5114/wo.2023.131204 DOI
Le X, Baik C, Bauman J et al (2022) Larotrectinib treatment for patients with TRK fusion-positive salivary gland cancers. Oncologist. https://doi.org/10.1093/oncolo/oyac080 PubMed DOI PMC
Suzuki K, Harada H, Takeda M et al (2022) Clinicopathological investigation of secretory carcinoma cases including a successful treatment outcome using entrectinib for high-grade transformation: a case report. BMC Med Genomics 15:6. https://doi.org/10.1186/s12920-022-01155-6 PubMed DOI PMC
Lujan B, Hakim S, Moyano S et al (2010) Activation of the EGFR/ERK pathway in high-grade mucoepidermoid carcinomas of the salivary glands. Br J Cancer 103:510–516. https://doi.org/10.1038/sj.bjc.6605788 PubMed DOI PMC
Nakano K, Sato Y, Sasaki T et al (2016) Combination chemotherapy of carboplatin and paclitaxel for advanced/metastatic salivary gland carcinoma patients: differences in responses by different pathological diagnoses. Acta Otolaryngol 136:948–951. https://doi.org/10.3109/00016489.2016.1170876 PubMed DOI
Fushimi C, Tada Y, Takahashi H et al (2018) A prospective phase II study of combined androgen blockade in patients with androgen receptor-positive metastatic or locally advanced unresectable salivary gland carcinoma. Ann Oncol 29:979–984. https://doi.org/10.1093/annonc/mdx771 PubMed DOI
Wotman M, El-Naggar A, Ferrarotto R (2023) Targeting human EGFR 2 (HER2) in salivary gland carcinoma. Expert Rev Anticancer Ther 23:573–582. https://doi.org/10.1080/14737140.2023.2208350 PubMed DOI
Hainsworth JD, Meric-Bernstam F, Swanton C et al (2018) Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 36:536–542. https://doi.org/10.1200/JCO.2017.75.3780 PubMed DOI
Takahashi H, Tada Y, Saotome T et al (2019) Phase II trial of Trastuzumab and Docetaxel in patients with human epidermal growth factor receptor 2–positive salivary duct carcinoma. J Clin Oncol 37:125–134. https://doi.org/10.1200/JCO.18.00545 PubMed DOI
Limaye SA, Posner MR, Krane JF et al (2013) Trastuzumab for the treatment of salivary duct carcinoma. Oncologist 18:294–300. https://doi.org/10.1634/theoncologist.2012-0369 PubMed DOI PMC
Schvartsman G, Pinto NA, Bell D, Ferrarotto R (2019) Salivary gland tumors: molecular characterization and therapeutic advances for metastatic disease. Head Neck 41:239–247. https://doi.org/10.1002/hed.25468 PubMed DOI
Nakaguro M, Tada Y, Faquin WC et al (2020) Salivary duct carcinoma: updates in histology, cytology, molecular biology, and treatment. Cancer Cytopathol 128:693–703. https://doi.org/10.1002/cncy.22288 PubMed DOI PMC