Bioaccumulation Exceedances by Pregnancy Contraindicated Neuropharmaceuticals during Development of Brown Trout in the Field
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41139301
PubMed Central
PMC12593334
DOI
10.1021/acs.est.5c08231
Knihovny.cz E-zdroje
- Klíčová slova
- bioconcentration, developmental exposure, earth system boundaries, fish early life stage, in situ exposure, urbanization, water quality,
- MeSH
- bioakumulace MeSH
- chemické látky znečišťující vodu metabolismus MeSH
- pstruh * metabolismus MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
Though pharmaceuticals and their metabolites can bioaccumulate in aquatic organisms, bioconcentration and bioaccumulation dynamics across early life history stages, which include critical windows of development, are poorly understood, particularly under environmentally realistic field conditions. We examined the in situ bioconcentration of neuropharmaceuticals in brown trout (Salmo trutta) eggs and yolk sac fry (i.e., alevins) and then quantified the bioaccumulation of these contaminants of emerging concern in free swimming young-of-year (YOY) fish during a 238 day study of an effluent-impacted stream. Using liquid chromatography with high-resolution tandem mass spectrometry, we observed increasing tissue levels of donepezil, sertraline, norsertraline, citalopram, trazodone, telmisartan, and mirtazapine in eggs and yolk sac fry over time, followed by marked decreases in YOY fish. We identified exceedances of common bioaccumulation cutoff values (e.g., 500, 1000) used by regulatory agencies for donepezil, sertraline, norsertraline, and trazodone across each of these early life stages of brown trout. Our findings have important implications for routine bioaccumulation assessment practices, which commonly focus on older life stages of fish, and for managing aquatic exposures to neuroactive pharmaceuticals that are contraindicated in pregnant mothers due to potential risks of neurodevelopmental adverse outcomes.
Zobrazit více v PubMed
ECHA . Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.11: PBT/vPvB assessment (Version 4.0); 2023. https://echa.europa.eu/documents/10162/17224/information_requirements_r11_en.pdf/a8cce23f-a65a-46d2-ac68-92fee1f9e54f (accessed 2025-09-25).
REACH . Regulation (EC) No 1907/2006 of the European Parliament and of the Council; 2006. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1907 (accessed 2025-09-25).
OECD . Test No. 305: Bioaccumulation in Fish: Aqueous and Dietary Exposure, OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing, Paris, 2012. 10.1787/9789264185296-en (accessed 2025-09-25). DOI
ECHA . Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.7c: Endpoints specific guidance (Version 4.0); 2023. https://echa.europa.eu/documents/10162/17224/information_requirements_r7c_en.pdf/e2e23a98-adb2-4573-b450-cc0dfa7988e5 (accessed 2025-09-25).
US EPA . Series 850 - Ecological Effects Test Guidelines, OCSPP Number 850.1730: Fish Bioconcentration Factor (BCF) (EPA 712-C-16-003). Washington, DC, 2016. https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-850-ecological-effects-test-guidelines (accessed 2025-09-25).
Bostrom M. L., Ugge G., Jonsson J. A., Berglund O.. BIOACCUMULATION AND TROPHODYNAMICS OF THE ANTIDEPRESSANTS SERTRALINE AND FLUOXETINE IN LABORATORY-CONSTRUCTED, 3-LEVEL AQUATIC FOOD CHAINS. Environ. Toxicol. Chem. 2016;36(4):1029–1037. doi: 10.1002/etc.3637. PubMed DOI
Constantine L. A., Burden N., Davidson T., Dolan D. G., Janer G., Haner A., Lee M. R., Maynard S. K., Nfon E., Nimrod Perkins A., Ryan J. J., Tell J.. Evaluation of the EMA log kow trigger for fish BCF testing based on data for several human pharmaceuticals. Regul. Toxicol. Pharmacol. 2024;151:105651. doi: 10.1016/j.yrtph.2024.105651. PubMed DOI
OECD . Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing, 2025. 10.1787/9789264203709-en (accessed 2025-09-25). DOI
US EPA . Methods for measuring acute toxicity of effluents and receiving waters to freshwater and marine organisms (WET); 2002. https://www.epa.gov/sites/default/files/2015-08/documents/acute-freshwater-and-marine-wet-manual_2002.pdf (accessed 2025-09-25).
Environment Canada . Biological Test Method: Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout); 1998. https://publications.gc.ca/collections/collection_2013/ec/En49-24-1-28-eng.pdf (accessed 2025-09-25).
Brooks B. W., Riley T. M., Taylor R. D.. Water quality of effluent-dominated ecosystems: ecotoxicological, hydrological, and management considerations. Hydrobiologia. 2006;556:365–379. doi: 10.1007/s10750-004-0189-7. DOI
Persson L., Carney Almroth B. M., Collins C. D., Cornell S., de Wit C. A., Diamond M. L., Fantke P., Hassellöv M., MacLeod M., Ryberg M. W., Søgaard Jørgensen P., Villarrubia-Gómez P., Wang Z., Hauschild M. Z.. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environ. Sci. Technol. 2022;56(3):1510–1521. doi: 10.1021/acs.est.1c04158. PubMed DOI PMC
Stroski K. M., Sims J. L., Wronski A. R., Bain F. L., Snow C. C., Henke A. N., Langan L. M., Brooks B. W.. Discharge of Per- and Polyfluoroalkyl Substances in Reclaimed Wastewater: Temporal Water Quality Implications for Effluent-Dominated Systems. ACS ES&T Water. 2025;5(2):1003–1014. doi: 10.1021/acsestwater.4c01072. DOI
Zhang N., Grabicová K., Horký P., Toušová Z., Douda K., Linhartová Z., Turek J., Pšenička M., Hilscherová K., Grabic R., Randák T.. Early life development and sex determination of brown trout affected by treated wastewater discharge. Environmental Research. 2025;271:121135. doi: 10.1016/j.envres.2025.121135. PubMed DOI
Grabicova K., Vojs Staňová A., Koba Ucun O., Borik A., Randak T., Grabic R.. Development of a robust extraction procedure for the HPLC-ESI-HRPS determination of multi-residual pharmaceuticals in biota samples. Anal. Chim. Acta. 2018;1022:53–60. doi: 10.1016/j.aca.2018.04.011. PubMed DOI
Grabicová K., Grabic R., Fedorova G., Vojs Staňová A., Bláha M., Randák T., Brooks B. W., Žlábek V.. Water reuse and aquaculture: Pharmaceutical bioaccumulation by fish during tertiary treatment in a wastewater stabilization pond. Environ. Pollut. 2020;267:115593. doi: 10.1016/j.envpol.2020.115593. PubMed DOI
Fedorova G., Grabic R., Grabicová K., Turek J., Van Nguyen T., Randak T., Brooks B. W., Zlabek V.. Water reuse for aquaculture: Comparative removal efficacy and aquatic hazard reduction of pharmaceuticals by a pond treatment system during a one year study. J. Hazard. Mater. 2022;421:126712. doi: 10.1016/j.jhazmat.2021.126712. PubMed DOI
Alvarez D. A., Petty J. D., Huckins J. N., Jones-Lepp T. L., Getting D. T., Goddard J. P., Manahan S. E.. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ. Toxicol. Chem. 2004;23(7):1640–1648. doi: 10.1897/03-603. PubMed DOI
Vrana B., Urík J., Fedorova G., Švecová H., Grabicová K., Golovko O., Randák T., Grabic R.. In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters. Environ. Pollut. 2021;269:116121. doi: 10.1016/j.envpol.2020.116121. PubMed DOI
Paíga P., Santos L. H. M. L. M., Ramos S., Jorge S., Silva J. G., Delerue-Matos C.. Presence of pharmaceuticals in the Lis river (Portugal): Sources, fate and seasonal variation. Sci. Total Environ. 2016;573:164–177. doi: 10.1016/j.scitotenv.2016.08.089. PubMed DOI
Kondor A. C., Molnár É., Jakab G., Vancsik A., Filep T., Szeberényi J., Szabó L., Maász G., Pirger Z., Weiperth A., Ferincz Á., Staszny Á., Dobosy P., Horváthné Kiss K., Hatvani I. G., Szalai Z.. Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: Concentrations, interactions, and risks. Sci. Total Environ. 2022;808:152160. doi: 10.1016/j.scitotenv.2021.152160. PubMed DOI
Grabicova K., Grabic R., Blaha M., Kumar V., Cerveny D., Fedorova G., Randak T.. Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant. Water Res. 2015;72:145–153. doi: 10.1016/j.watres.2014.09.018. PubMed DOI
Grabicova K., Grabic R., Fedorova G., Fick J., Cerveny D., Kolarova J., Turek J., Zlabek V., Randak T.. Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream. Water Res. 2017;124:654–662. doi: 10.1016/j.watres.2017.08.018. PubMed DOI
Niemi L., Landová P., Taggart M., Boyd K., Zhang Z., Gibb S.. Spatiotemporal trends and annual fluxes of pharmaceuticals in a Scottish priority catchment. Environ. Pollut. 2022;292:118295. doi: 10.1016/j.envpol.2021.118295. PubMed DOI
Carter L. J., Armitage J. M., Brooks B. W., Nichols J. W., Trapp S.. Predicting the Accumulation of Ionizable Pharmaceuticals and Personal Care Products in Aquatic and Terrestrial Organisms. Environ. Toxicol. Chem. 2024;43(3):502–512. doi: 10.1002/etc.5451. PubMed DOI PMC
Brooks B. W., Chambliss C. K., Stanley J. K., Ramirez A., Banks K. E., Johnson R. D., Lewis R. J.. Determination of select antidepressants in fish from an effluent-dominated stream. Environ. Toxicol. Chem. 2005;24(2):464–469. doi: 10.1897/04-081R.1. PubMed DOI
Du B., Haddad S. P., Luek A., Scott W. C., Saari G. N., Kristofco L. A., Connors K. A., Rash C., Rasmussen J. B., Chambliss C. K., Brooks B. W.. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream. Philos. Trans. R. Soc. B-Biol. Sci. 2014;369(1656):20140058. doi: 10.1098/rstb.2014.0058. PubMed DOI PMC
Grabicová K., Grabic R., Fedorova G., Kolářová J., Turek J., Brooks B. W., Randák T.. Psychoactive pharmaceuticals in aquatic systems: A comparative assessment of environmental monitoring approaches for water and fish. Environ. Pollut. 2020;261:114150. doi: 10.1016/j.envpol.2020.114150. PubMed DOI
Grabicová K., Vojs Staňová A., Švecová H., Nováková P., Kodeš V., Leontovyčová D., Brooks B. W., Grabic R.. Invertebrates differentially bioaccumulate pharmaceuticals: Implications for routine biomonitoring. Environ. Pollut. 2022;309:119715. doi: 10.1016/j.envpol.2022.119715. PubMed DOI
Meador J. P., Yeh A., Young G., Gallagher E. P.. Contaminants of emerging concern in a large temperate estuary. Environ. Pollut. 2016;213:254–267. doi: 10.1016/j.envpol.2016.01.088. PubMed DOI PMC
Haddad S. P., Luek A., Scott W. C., Saari G. N., Burket S. R., Kristofco L. A., Corrales J., Rasmussen J. B., Chambliss C. K., Luers M., Rogers C., Brooks B. W.. Spatio-temporal bioaccumulation and trophic transfer of ionizable pharmaceuticals in a semi-arid urban river influenced by snowmelt. J. Hazard. Mater. 2018;359:231–240. doi: 10.1016/j.jhazmat.2018.07.063. PubMed DOI
Koba O., Grabicova K., Cerveny D., Turek J., Kolarova J., Randak T., Zlabek V., Grabic R.. Transport of pharmaceuticals and their metabolites between water and sediments as a further potential exposure for aquatic organisms. J. Hazard. Mater. 2018;342:401–407. doi: 10.1016/j.jhazmat.2017.08.039. PubMed DOI
Nowakowska K., Giebułtowicz J., Kamaszewski M., Adamski A., Szudrowicz H., Ostaszewska T., Solarska-Dzięciołowska U., Nałęcz-Jawecki G., Wroczyński P., Drobniewska A.. Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants: Bioaccumulation, physiological and histological changes. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2020;229:108670. doi: 10.1016/j.cbpc.2019.108670. PubMed DOI
Yang H. H., Lu G. H., Yan Z. H., Liu J. C., Dong H. K., Bao X. H., Zhang X. D., Sun Y.. Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion. J. Hazard. Mater. 2020;391:122245. doi: 10.1016/j.jhazmat.2020.122245. PubMed DOI
Kristofco L. A., Haddad S. P., Chambliss C. K., Brooks B. W.. Differential Uptake of and Sensitivity to Diphenhydramine in Embryonic and Larval Zebrafish. Environ. Toxicol. Chem. 2017;37(4):1175–1181. doi: 10.1002/etc.4068. PubMed DOI
Kroschwald S., Maharana S., Simon A.. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters. 2017:1–8. doi: 10.19185/matters.201702000010. DOI
van Wijk R. C., Krekels E. H. J., Kantae V., Harms A. C., Hankemeier T., van der Graaf P. H., Spaink H. P.. Impact of post-hatching maturation on the pharmacokinetics of paracetamol in zebrafish larvae. Sci. Rep. 2019;9:2149. doi: 10.1038/s41598-019-38530-w. PubMed DOI PMC
Zhang L., Brooks B. W., Liu F., Zhou Z. M., Li H. Z., You J.. Human Apparent Volume of Distribution Predicts Bioaccumulation of Ionizable Organic Chemicals in Zebrafish Embryos. Environ. Sci. Technol. 2022;56(16):11547–11558. doi: 10.1021/acs.est.2c03421. PubMed DOI
Vogs C., Johanson G., Näslund M., Wulff S., Sjödin M., Hellstrandh M., Lindberg J., Wincent E.. Toxicokinetics of Perfluorinated Alkyl Acids Influences Their Toxic Potency in the Zebrafish Embryo (Danio rerio) Environ. Sci. Technol. 2019;53(7):3898–3907. doi: 10.1021/acs.est.8b07188. PubMed DOI
Halbach K., Ulrich N., Goss K.-U., Seiwert B., Wagner S., Scholz S., Luckenbach T., Bauer C., Schweiger N., Reemtsma T.. Yolk Sac of Zebrafish Embryos as Backpack for Chemicals? Environ. Sci. Technol. 2020;54(16):10159–10169. doi: 10.1021/acs.est.0c02068. PubMed DOI
Connors K. A., Du B. W., Fitzsimmons P. N., Chambliss C. K., Nichols J. W., Brooks B. W.. Enantiomer-Specific In Vitro Biotransformation of Select Pharmaceuticals in Rainbow Trout (Oncorhynchus mykiss) Chirality. 2013;25(11):763–767. doi: 10.1002/chir.22211. PubMed DOI
Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 14th ed.; Brunton, L. L. ; Knollmann, B. C. , Eds.; McGraw-Hill Education, New York, NY, 2023.
Prescribers’ Digital Reference. https://www.pdr.net (accessed 2025-09-25).
Creeley C. E., Denton L. K.. Use of Prescribed Psychotropics during Pregnancy: A Systematic Review of Pregnancy, Neonatal, and Childhood Outcomes. Brain Sciences. 2019;9(9):235. doi: 10.3390/brainsci9090235. PubMed DOI PMC
LaLone C. A., Villeneuve D. L., Lyons D., Helgen H. W., Robinson S. L., Swintek J. A., Saari T. W., Ankley G. T.. Editor’s Highlight: Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity. Toxicol. Sci. 2016;153(2):228–245. doi: 10.1093/toxsci/kfw119. PubMed DOI
Brooks B. W., van den Berg S., Dreier D. A., Lalone C. A., Owen S. F., Raimondo S., Zhang X. W.. Toward a Precision Ecotoxicology: Leveraging Evolutionary Conservation of Pharmaceutical and Personal Care Product Targets to Understand Adverse Outcomes Across Species and Life Stages. Environ. Toxicol. Chem. 2024;43(3):526–536. doi: 10.1002/etc.5754. PubMed DOI PMC