The Effect of Liposomal DMU-212 on the Differentiation of Human Ovarian Granulosa Cells in a Primary 3D Culture Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
41155575
PubMed Central
PMC12567554
DOI
10.3390/ph18101460
PII: ph18101460
Knihovny.cz E-zdroje
- Klíčová slova
- 3,4,5,4′-tetramethoxystilbene (DMU-212), RNA-seq, differentiation, granulosa cells, osteoblasts,
- Publikační typ
- časopisecké články MeSH
Background/Objectives: Human ovarian granulosa cells (hGCs) are crucial to ovarian follicle development and function, exhibiting multipotency and the ability to differentiate into neuronal cells, chondrocytes, and osteoblasts in vitro. 3,4,5,4'-tetramethoxystilbene (DMU-212) is a methylated derivative of resveratrol, a natural polyphenol found in grapes and berries, with a wide spectrum of biological activities, including notable anticancer properties. Interestingly, DMU-212 exhibits cytotoxic effects predominantly on cancer cells while sparing non-cancerous ones, and evidence suggests that similar to resveratrol, it may also promote hGC differentiation. This study aimed to investigate the effects of the liposomal formulation of this methylated resveratrol analog-lipDMU-212-on the osteogenic differentiation ability of hGCs in a primary three-dimensional cell culture model. Methods: lipDMU-212 was formulated using the thin-film hydration method. GC spheroids' viability was evaluated after exposure to lipDMU-212, an osteoinductive medium, or both. Osteogenic differentiation was confirmed using Alizarin Red staining and quantified by measuring Alkaline Phosphatase (ALP) activity on days 1, 7, and 15. RNA sequencing (RNA-seq) was performed to explore molecular mechanisms underlying lipDMU-212-induced differentiation. Results: lipDMU-212 promoted osteogenic differentiation of hGCs in the 3D cell culture model, as evidenced by increased mineralization and a ~4-fold increase in ALP activity compared with the control. RNA-seq revealed up-regulation of genes related to cell differentiation and cellular identity. Furthermore, JUN (+2.82, p = 0.003), LRP1 (+2.06, p = 0.05), AXIN1 (+3.02, p = 0.03), and FYN (+3.30, p = 0.01) were up-regulated, indicating modulation of the Wnt/β-catenin signaling pathway, a key regulator of osteoblast differentiation. Conclusions: The ability of GCs to differentiate into diverse tissue-specific cell types underscores their potential in regenerative medicine. This study contributes to the understanding of lipDMU-212's role in osteogenic differentiation and highlights its potential in developing future therapies for degenerative bone diseases.
Center for Gynecology Obstetrics and Infertility Treatment Pastelova 60 198 Poznan Poland
Collegium Medicum University of Zielona Gora 65 046 Zielona Gora Poland
Department of Toxicology Poznan University of Medical Sciences 60 806 Poznan Poland
Doctoral School Poznan University of Medical Sciences 60 812 Poznan Poland
Physiology Graduate Faculty North Carolina State University Raleigh NC 27613 USA
Prestage Department of Poultry Science North Carolina State University Raleigh NC 27695 USA
Zobrazit více v PubMed
Fan Y., Hanai J.I., Le P.T., Bi R., Maridas D., DeMambro V., Figueroa C.A., Kir S., Zhou X., Mannstadt M., et al. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate. Cell Metab. 2017;25:661–672. doi: 10.1016/j.cmet.2017.01.001. PubMed DOI PMC
Yu B., Huo L., Liu Y., Deng P., Szymanski J., Li J., Luo X., Hong C., Lin J., Wang C.Y. PGC-1α Controls Skeletal Stem Cell Fate and Bone-Fat Balance in Osteoporosis and Skeletal Aging by Inducing TAZ. Cell Stem Cell. 2018;23:193–209.e5. doi: 10.1016/j.stem.2018.06.009. Erratum in: Cell Stem Cell 2018, 23, 615–623. https://doi.org/10.1016/j.stem.2018.09.001 . PubMed DOI PMC
Barake M., Arabi A., Nakhoul N., El-Hajj Fuleihan G., El Ghandour S., Klibanski A., Tritos N.A. Effects of Growth Hormone Therapy on Bone Density and Fracture Risk in Age-Related Osteoporosis in the Absence of Growth Hormone Deficiency: A Systematic Review and Meta-Analysis. Endocrine. 2018;59:39–49. doi: 10.1007/s12020-017-1440-0. PubMed DOI
Kossowska-Tomaszczuk K., De Geyter C., De Geyter M., Martin I., Holzgreve W., Scherberich A., Zhang H. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells. 2009;27:210–219. doi: 10.1634/stemcells.2008-0233. PubMed DOI
Kossowska-Tomaszczuk K., De Geyter C. Cells with stem cell characteristics in somatic compartments of the ovary. Biomed. Res. Int. 2013;2013:310859. doi: 10.1155/2013/310859. PubMed DOI PMC
Oki Y., Ono H., Motohashi T., Sugiura N., Nobusue H., Kano K. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts. Biochem. J. 2012;447:239–248. doi: 10.1042/BJ20120172. PubMed DOI PMC
Dzafic E., Stimpfel M., Virant-Klun I. Plasticity of granulosa cells: On the crossroad of stemness and transdifferentiation potential. J. Assist. Reprod. Genet. 2013;30:1255–1261. doi: 10.1007/s10815-013-0068-0. PubMed DOI PMC
Grasselli F., Basini G., Tirelli M., Cavalli V., Bussolati S., Tamanini C. Angiogenic activity of porcine granulosa cells co-cultured with endothelial cells in a microcarrier-based three-dimensional fibrin gel. J. Physiol. Pharmacol. 2003;54:361–370. PubMed
Jozkowiak M., Hutchings G., Jankowski M., Kulcenty K., Mozdziak P., Kempisty B., Spaczynski R.Z., Piotrowska-Kempisty H. The Stemness of Human Ovarian Granulosa Cells and the Role of Resveratrol in the Differentiation of MSCs—A Review Based on Cellular and Molecular Knowledge. Cells. 2020;9:1418. doi: 10.3390/cells9061418. PubMed DOI PMC
Di Benedetto A., Posa F., De Maria S., Ravagnan G., Ballini A., Porro C., Trotta T., Grano M., Muzio L.L., Mori G. Polydatin, natural precursor of resveratrol, promotes osteogenic differentiation of mesenchymal stem cells. Int. J. Med. Sci. 2018;15:944–952. doi: 10.7150/ijms.24111. PubMed DOI PMC
Baur A., Sinclair D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006;5:493–506. doi: 10.1038/nrd2060. PubMed DOI
Liu M., Yin Y., Ye X., Zeng M., Zhao Q., Keefe D.L., Liu L. Resveratrol protects against age-associated infertility in mice. Hum. Reprod. 2013;28:707–717. doi: 10.1093/humrep/des437. PubMed DOI
Chen Z.-G., Luo L.-L., Xu J.-J., Zhuang X.-L., Kong X.-X., Fu Y.-C. Effects of plant polyphenols on ovarian follicular reserve in aging rats. Biochem. Cell Biol. 2010;88:737–745. doi: 10.1139/O10-012. PubMed DOI
Hao J., Tuck A.R., Sjödin M.O.D., Lindberg J., Sand A., Niklasson B., Argyraki M., Hovatta O., Damdimopoulou P. Resveratrol supports and alpha-naphthoflavone disrupts growth of human ovarian follicles in an in vitro tissue culture model. Toxicol. Appl. Pharmacol. 2018;338:73–82. doi: 10.1016/j.taap.2017.11.009. PubMed DOI
Walle T., Hsieh F., DeLegge M.H., Oatis J.E., Jr., Walle U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004;32:1377–1382. doi: 10.1124/dmd.104.000885. PubMed DOI
Sale S., Verschoyle R.D., Boocock D., Jones D.J.L., Wilsher N., Ruparelia K.C., Potter G.A., Farmer P.B., Steward W.P., Gescher A.J. Pharmacokinetics in mice and growth-inhibitory properties of the putative cancer chemopreventive agent resveratrol and the synthetic analogue trans 3,4,5,4′-tetramethoxystilbene. Br. J. Cancer. 2004;90:736–744. doi: 10.1038/sj.bjc.6601568. PubMed DOI PMC
Kang S.-Y., Lee J.K., Choi O., Kim C.Y., Jang J.-H., Hwang B.Y., Hong Y.-S. Biosynthesis of methylated resveratrol analogs through the construction of an artificial biosynthetic pathway in E. coli. BMC Biotechnol. 2014;14:67. doi: 10.1186/1472-6750-14-67. PubMed DOI PMC
Nowicki A., Wawrzyniak D., Czajkowski M., Józkowiak M., Pawlak M., Wierzchowski M., Rolle K., Skupin-Mrugalska P., Piotrowska-Kempisty H. Enhanced biological activity of liposomal methylated resveratrol analog 3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214) in 3D patient-derived ovarian cancer model. Drug Deliv. 2022;29:2459–2468. doi: 10.1080/10717544.2022.2103210. PubMed DOI PMC
Józkowiak M., Kobylarek D., Bryja A., Piotrowska-Kempisty H., Celichowski P., Kocherova I., Dyszkiewicz-Konwińska M., Bukowska D., Brązert M., Ożegowska K., et al. Steroidogenic activity of liposomal methylated resveratrol analog 3,4,5,4′-tetramethoxystilbene (DMU-212) in human luteinized granulosa cells in a primary three-dimensional in vitro model. Endocrine. 2023;82:681–694. doi: 10.1007/s12020-023-03458-9. PubMed DOI PMC
Bernar A., Gebetsberger J.V., Bauer M., Streif W., Schirmer M. Optimization of the Alizarin Red S Assay by Enhancing Mineralization of Osteoblasts. Int. J. Mol. Sci. 2022;24:723. doi: 10.3390/ijms24010723. PubMed DOI PMC
Kolter M., Wittmann M., Köll-Weber M., Süss R. The suitability of liposomes for the delivery of hydrophobic drugs—A case study with curcumin. Eur. J. Pharm. Biopharm. 2019;140:20–28. doi: 10.1016/j.ejpb.2019.04.013. PubMed DOI
Kapałczyńska M., Kolenda T., Przybyła W., Zajączkowska M., Teresiak A., Filas V., Ibbs M., Bliźniak R., Łuczewski Ł., Lamperska K. 2D and 3D cell cultures—A comparison of different types of cancer cell cultures. Arch. Med. Sci. 2018;14:910–919. doi: 10.5114/aoms.2016.63743. PubMed DOI PMC
Olimpio R.M.C., de Oliveira M., De Sibio M.T., Moretto F.C.F., Deprá I.C., Mathias L.S., Gonçalves B.M., Rodrigues B.M., Tilli H.P., Coscrato V.E., et al. Cell viability assessed in a reproducible model of human osteoblasts derived from human adipose-derived stem cells. PLoS ONE. 2018;13:e0194847. doi: 10.1371/journal.pone.0194847. PubMed DOI PMC
Tseng P.C., Hou S.M., Chen R.J., Peng H.W., Hsieh C.F., Kuo M.L., Yen M.L. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J. Bone Miner. Res. 2011;26:2552–2563. doi: 10.1002/jbmr.460. PubMed DOI
Zhao X.E., Yang Z., Zhang H., Yao G., Liu J., Wei Q., Ma B. Resveratrol Promotes Osteogenic Differentiation of Canine Bone Marrow Mesenchymal Stem Cells Through Wnt/Beta-Catenin Signaling Pathway. Cell. Reprogram. 2018;20:371–381. doi: 10.1089/cell.2018.0032. PubMed DOI
Miranda-Carboni G.A., Guemes M., Bailey S., Anaya E., Corselli M., Peault B., Krum S.A. GATA4 regulates estrogen receptor-alpha-mediated osteoblast transcription. Mol. Endocrinol. 2011;25:1126–1136. doi: 10.1210/me.2010-0463. PubMed DOI PMC
Güemes M., Garcia A.J., Rigueur D., Runke S., Wang W., Zhao G., Mayorga V.H., Atti E., Tetradis S., Péault B., et al. GATA4 is essential for bone mineralization via ERα and TGFβ/BMP pathways. J. Bone Miner. Res. 2014;29:2676–2687. doi: 10.1002/jbmr.2296. PubMed DOI PMC
Brązert M., Kranc W., Celichowski P., Ożegowska K., Budna-Tukan J., Jeseta M., Pawelczyk L., Bruska M., Zabel M., Nowicki M., et al. Novel markers of human ovarian granulosa cell differentiation toward osteoblast lineage: A microarray approach. Mol. Med. Rep. 2019;20:4403–4414. doi: 10.3892/mmr.2019.10709. PubMed DOI PMC
Maruelli S., Besio R., Rousseau J., Garibaldi N., Amiaud J., Brulin B., Layrolle P., Escriou V., Rossi A., Trichet V., et al. Osteoblasts mineralization and collagen matrix are conserved upon specific Col1a2 silencing. Matrix Biol. Plus. 2020;31:100028. doi: 10.1016/j.mbplus.2020.100028. PubMed DOI PMC
Izu Y., Ezura Y., Koch M., Birk D.E., Noda M. Collagens VI and XII form complexes mediating osteoblast interactions during osteogenesis. Cell Tissue Res. 2016;364:623–635. doi: 10.1007/s00441-015-2345-y. PubMed DOI PMC
Zhang Y., Stefanovic B. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression. Int. J. Mol. Sci. 2016;17:419. doi: 10.3390/ijms17030419. PubMed DOI PMC
Mao H., Xie L., Pi X. Low-Density Lipoprotein Receptor-Related Protein-1 Signaling in Angiogenesis. Front. Cardiovasc. Med. 2017;4:34. doi: 10.3389/fcvm.2017.00034. PubMed DOI PMC
Park S., Lee M.S., Gwak J., Choi T.I., Lee Y., Ju B.G., Kim C.H., Oh S. CCAAT/enhancer-binding protein-β functions as a negative regulator of Wnt/β-catenin signaling through activation of AXIN1 gene expression. Cell Death Dis. 2018;9:1023. doi: 10.1038/s41419-018-1072-1. PubMed DOI PMC
Rubinfeld B., Albert I., Porfiri E., Fiol C., Munemitsu S., Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272:1023–1026. doi: 10.1126/science.272.5264.1023. PubMed DOI
Shah K., Kazi J.U. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front. Oncol. 2022;12:858782. doi: 10.3389/fonc.2022.858782. PubMed DOI PMC
Vega O.A., Lucero C.M.J., Araya H.F., Jerez S., Tapia J.C., Antonelli M., Salazar-Onfray F., Las Heras F., Thaler R., Riester S.M., et al. Wnt/β-Catenin Signaling Activates Expression of the Bone-Related Transcription Factor RUNX2 in Select Human Osteosarcoma Cell Types. J. Cell Biochem. 2017;118:3662–3674. doi: 10.1002/jcb.26011. PubMed DOI
Zhu S., Chen W., Masson A., Li Y.P. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov. 2024;10:71. doi: 10.1038/s41421-024-00689-6. PubMed DOI PMC
Doro D., Liu A., Grigoriadis A.E., Liu K.J. The Osteogenic Potential of the Neural Crest Lineage May Contribute to Craniosynostosis. Mol. Syndromol. 2019;10:48–57. doi: 10.1159/000493106. PubMed DOI PMC
Muriel J.M., O′Neill A., Kerr J.P., Kleinhans-Welte E., Lovering R.M., Bloch R.J. Keratin 18 is an integral part of the intermediate filament network in murine skeletal muscle. Am. J. Physiol. Cell Physiol. 2020;318:C215–C224. doi: 10.1152/ajpcell.00279.2019. PubMed DOI PMC
Dompe C., Kranc W., Jopek K., Kowalska K., Ciesiółka S., Chermuła B., Bryja A., Jankowski M., Perek J., Józkowiak M., et al. Muscle cell morphogenesis, structure, development and differentiation processes are significantly regulated during human ovarian granulosa cells in vitro cultivation. J. Clin. Med. 2020;9:2006. doi: 10.3390/jcm9062006. PubMed DOI PMC
Gogola J., Hoffmann M., Ptak A. Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate IGF1 secretion by adult ovarian granulosa cell tumor spheroids and thereby increase proliferation of non-cancer ovarian granulosa cells. Toxicol. Vitr. 2020;65:104769. doi: 10.1016/j.tiv.2020.104769. PubMed DOI