Sensitive Profiling of Human Milk Oligosaccharides in Human Colostrum and Breast Milk by Capillary Electrophoresis-Mass Spectrometry

. 2025 Nov ; 48 (11) : e70309.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41171001

Human milk oligosaccharides are pivotal for shaping the infant gut microbiome and immune development, yet their structural diversity hampers routine identification and quantification. We report an optimized capillary electrophoresis-mass spectrometry workflow that enables sensitive, isomer‑selective profiling of 10 biologically relevant human milk oligosaccharides in colostrum and early‑lactation breast milk. Human milk oligosaccharides were first neutralized to stabilize sialic acids and derivatized with Girard's reagent P, introducing a permanent positive charge to enhance electrophoretic resolution and electrospray ionization efficiency. Separation in a linear‑polyacrylamide‑coated capillary (0.25 M formic acid, 30 kV) and mass spectrometry detection with a nanoCEasy interface achieved baseline resolution of all targets except positional isomers lacto-N-difucohexaose I/II. Incorporation of Girard's reagent P‑labeled maltoheptaose as an internal standard improved migration time precision to < 0.5% RSD and reduced peak‑area repeatability to 9%-25% RSD. Limits of detection were 0.8-290 ng/mL, corresponding to fg-pg on‑column amounts and outperforming precedent APTS-based CE/LIF methodologies. Application to colostrum and milk samples from a single donor (1-3 months postpartum) revealed pronounced variation. Colostrum was dominated by 2'‑fucosyllactose and fucosylated lacto-N-fucopentaose isomers, whereas sialylated human milk oligosaccharides were present in smaller amounts. Longitudinally, 2'‑fucosyllactose remained the most abundant species, while lacto-N-fucopentaose and lacto-N-neotetraose/lacto-N-tetraose diminished markedly by Month 3. The presented capillary electrophoresis-mass spectrometry platform delivers reasonably fast (< 70 min), high‑sensitivity human milk oligosaccharide fingerprinting from minimal sample volumes and is readily adaptable to large‑cohort studies, offering new opportunities to elucidate the nutritional dynamics of the maternal milk glycome during lactation.

Zobrazit více v PubMed

Andreas N. J., Kampmann B., and Mehring Le‐Doare K., “Human Breast Milk: A Review on Its Composition and Bioactivity,” Early Human Development 91 (2015): 629–635, 10.1016/j.earlhumdev.2015.08.013. PubMed DOI

Thurl S., Munzert M., Boehm G., Matthews C., and Stahl B., “Systematic Review of the Concentrations of Oligosaccharides in Human Milk,” Nutrition Reviews 75 (2017): 920–933, 10.1093/nutrit/nux044. PubMed DOI PMC

Ayechu‐Muruzabal V., van Stigt A. H., Mank M., et al., “Diversity of Human Milk Oligosaccharides and Effects on Early Life Immune Development,” Frontiers in Pediatrics 6 (2018): 239, 10.3389/fped.2018.00239. PubMed DOI PMC

Soyyılmaz B., Mikš M. H., Röhrig C. H., Matwiejuk M., Meszaros‐Matwiejuk A., and Vigsnæs L. K., “The Mean of Milk: A Review of Human Milk Oligosaccharide Concentrations Throughout Lactation,” Nutrients 13 (2021): 2737, 10.3390/nu13082737. PubMed DOI PMC

Bode L. and Jantscher‐Krenn E., “Structure–Function Relationships of Human Milk Oligosaccharides,” Advances in Nutrition 3 (2012): 383S–391S, 10.3945/an.111.001404. PubMed DOI PMC

Bode L., “The Functional Biology of Human Milk Oligosaccharides,” Early Human Development 91 (2015): 619–622, 10.1016/j.earlhumdev.2015.09.001. PubMed DOI

Walsh C., Lane J. A., van Sinderen D., and Hickey R. M., “Human Milk Oligosaccharides: Shaping the Infant Gut Microbiota and Supporting Health,” Journal of Functional Foods 72 (2020): 104074, 10.1016/j.jff.2020.104074. PubMed DOI PMC

Carr L. E., Virmani M. D., Rosa F., et al., “Role of Human Milk Bioactives on Infants′ Gut and Immune Health,” Frontiers in Immunology 12 (2021): 604080, 10.3389/fimmu.2021.604080. PubMed DOI PMC

Martin C. R., Ling P.‐R., and Blackburn G. L., “Review of Infant Feeding: Key Features of Breast Milk and Infant Formula,” Nutrients 8 (2016): 279, 10.3390/nu8050279. PubMed DOI PMC

Auer F., Jarvas G., and Guttman A., “Recent Advances in the Analysis of Human Milk Oligosaccharides by Liquid Phase Separation Methods,” Journal of Chromatography B 1162 (2021): 122497, 10.1016/j.jchromb.2020.122497. PubMed DOI

Zhong X., Chen Z., Snovida S., Liu Y., Rogers J. C., and Li L., “Capillary Electrophoresis‐Electrospray Ionization‐Mass Spectrometry for Quantitative Analysis of Glycans Labeled With Multiplex Carbonyl‐Reactive Tandem Mass Tags,” Analytical Chemistry 87 (2015): 6527–6534, 10.1021/acs.analchem.5b01835. PubMed DOI PMC

Albrecht S., Schols H. A., van Zoeren D., et al., “Oligosaccharides in Feces of Breast‐ and Formula‐Fed Babies,” Carbohydrate Research 346 (2011): 2173–2181, 10.1016/j.carres.2011.06.034. PubMed DOI

Albrecht S., Schols H. A., van den Heuvel E. G. H. M., Voragen A. G. J., and Gruppen H., “CE‐LIF‐MS PubMed DOI

Albrecht S., Schols H. A., van den Heuvel E. G. H. M., Voragen A. G. J., and Gruppen H., “Occurrence of Oligosaccharides in Feces of Breast‐Fed Babies in Their First Six Months of Life and the Corresponding Breast Milk,” Carbohydrate Research 346 (2011): 2540–2550, 10.1016/j.carres.2011.08.009. PubMed DOI

Lageveen‐Kammeijer G. S. M., de Haan N., Mohaupt P., et al., “Highly Sensitive CE‐ESI‐MS Analysis of PubMed DOI PMC

Wang X., Liu J., Li C., et al., “Pregnancy‐Related Diseases and Delivery Mode Can Affect the Content of Human Milk Oligosaccharides: A Preliminary Study,” Journal of Agricultural and Food Chemistry 70 (2022): 5207–5217, 10.1021/acs.jafc.2c00147. PubMed DOI

Hill D. R., Chow J. M., and Buck R. H., “Multifunctional Benefits of Prevalent HMOs: Implications for Infant Health,” Nutrients 13 (2021): 3364, 10.3390/nu13103364. PubMed DOI PMC

Sprenger N., Lee L. Y., Castro C. A. D., Steenhout P., and Thakkar S. K., “Longitudinal Change of Selected Human Milk Oligosaccharides and Association to Infants′ growth, an Observatory, Single Center, Longitudinal Cohort Study,” PLoS ONE 12 (2017): e0171814, 10.1371/journal.pone.0171814. PubMed DOI PMC

Zhang W., Wang T., Chen X., et al., “Absolute Quantification of Twelve Oligosaccharides in Human Milk Using a Targeted Mass Spectrometry‐Based Approach,” Carbohydrate Polymers 219 (2019): 328–333, 10.1016/j.carbpol.2019.04.092. PubMed DOI

Schlecht J., Stolz A., Hofmann A., Gerstung L., and Neusüß C., “nanoCEasy: An Easy, Flexible, and Robust Nanoflow Sheath Liquid Capillary Electrophoresis‐Mass Spectrometry Interface Based on 3D Printed Parts,” Analytical Chemistry 93 (2021): 14593–14598, 10.1021/acs.analchem.1c03213. PubMed DOI

Hjertén S., “High‐Performance Electrophoresis: Elimination of Electroendosmosis and Solute Adsorption,” Journal of Chromatography A 347 (1985): 191–198, 10.1016/S0021-9673(01)95485-8. DOI

Smolkova D., Cmelik R., and Lavicka J., “Labeling Strategies for Analysis of Oligosaccharides and Glycans by Capillary Electrophoresis,” Trends in Analytical Chemistry 163 (2023): 117068, 10.1016/j.trac.2023.117068. DOI

Krenkova J., Dusa F., and Cmelik R., “Comparison of Oligosaccharide Labeling Employing Reductive Amination and Hydrazone Formation Chemistries,” Electrophoresis 41 (2020): 684–690, 10.1002/elps.201900475. PubMed DOI

Pongracz T., Verhoeven A., Wuhrer M., and de Haan N., “The Structure and Role of Lactone Intermediates in Linkage‐Specific Sialic Acid Derivatization Reactions,” Glycoconjugate Journal 38 (2021): 157–166, 10.1007/s10719-020-09971-7. PubMed DOI PMC

Höchsmann A., Schairer J., Schott O., Höneise R., and Neusüß C., “Flow Rate Determination of the Nanoflow Sheath Liquid CE–MS‐Coupling Applying the NanoCEasy Interface,” Electrophoresis 46 (2025): 1014–1021, 10.1002/elps.202400191. PubMed DOI PMC

Farsang R., Jarvas G., and Guttman A., “Purification Free PubMed DOI

Dusa F., Smolkova D., Cmelik R., Guttman A., and Lavicka J., “Labeling of Oligosaccharides and PubMed DOI

Sarkozy D., Borza B., Domokos A., et al., “Ultrafast High‐Resolution Analysis of human Milk Oligosaccharides by Multicapillary Gel Electrophoresis,” Food Chemistry 341 (2021): 128200, 10.1016/j.foodchem.2020.128200. PubMed DOI

Dusa F., Rusin M., Smolkova D., et al., “Adapting the Laser‐induced Fluorescence Detection Setup of the Standard Capillary Electrophoresis Equipment to Achieve High‐Sensitivity Detection of 2‐Aminoacridone Labeled Oligosaccharides,” Journal of Separation Science 48 (2025): e70112, 10.1002/jssc.70112. PubMed DOI PMC

Ge H., Zhu W., Zhang J., et al., “Human Milk Microbiota and Oligosaccharides in Colostrum and Mature Milk: Comparison and Correlation,” Frontiers in Nutrition 11 (2024): 1512700, 10.3389/fnut.2024.1512700. PubMed DOI PMC

Samuel T. M., Binia A., de Castro C. A., et al., “Impact of Maternal Characteristics on Human Milk Oligosaccharide Composition Over the First 4 Months of Lactation in a Cohort of Healthy European Mothers,” Scientific Reports 9 (2019): 11767, 10.1038/s41598-019-48337-4. PubMed DOI PMC

Ferreira A. L., Alves R., Figueiredo A., et al., “Human Milk Oligosaccharide Profile Variation Throughout Postpartum in Healthy Women in a Brazilian Cohort,” Nutrients 12 (2020): 790, 10.3390/nu12030790. PubMed DOI PMC

Asher A. T., Mangel L., Ari J. B., et al., “Human Milk Oligosaccharide Profile Across Lactation Stages in Israeli Women—A Prospective Observational Study,” Nutrients 15 (2023): 2548, 10.3390/nu15112548. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...