Elucidating the Role of NaCl in the on-Surface Synthesis of Conjugated Azaacene Polymers on Au(111)

. 2025 Dec 09 ; 31 (69) : e02452. [epub] 20251105

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41190794

Grantová podpora
200021_204053 Swiss National Science Foundation
CRSII5 213533 Sinergia Project
101039746 European Union's Horizon 2020
606728 Marie Curie Initial Training Network
606728 HORIZON EUROPE Marie Sklodowska-Curie Actions
CRSII5 213533 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
PA3628/1 Deutsche Forschungsgemeinschaft
101039746 HORIZON EUROPE European Research Council

On-surface synthesis (OSS) offers unique opportunities for fabricating carbon-based nanostructures that are unattainable by conventional wet-chemical synthesis. Despite OSS being extremely successful, the use of coadsorbates to promote reactions remains largely unexplored. In this study, we investigate the role of sodium chloride (NaCl) in promoting the Scholl reaction (oxidative aryl-aryl coupling) of hexaazatriphenylene (HAT) molecules on Au(111), leading to the growth of conjugated azaacene oligomers. Using scanning tunneling microscopy (STM), synchrotron-based X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations, we shed light on the reaction mechanism and the intermediates involved. Upon codeposition on Au(111), NaCl decomposes on the surface, releasing Na atoms that form thermally stable metal-organic complexes, enhancing precursor stability against desorption. This stabilizing effect allows HAT molecules to undergo regioselective intermolecular coupling for polymerization at elevated temperatures. This study highlights the role of alkali metals in on-surface chemical reactions and outlines a strategy for overcoming the precursor-desorption issue.

Zobrazit více v PubMed

Cai J., Ruffieux P., Jaafar R., Bieri M., Braun T., Blankenburg S., Muoth M., Seitsonen A. P., Saleh M., Feng X., Müllen K., Fasel R., Nature 2010, 466, 470. PubMed

Grill L., Hecht S., Nat. Chem. 2020, 12, 115. PubMed

Grill L., Dyer M., Lafferentz L., Persson M., Peters M. V., Hecht S., Nat. Nanotechnol. 2007, 2, 687. PubMed

Wiengarten A., Seufert K., Auwärter W., Ecija D., Diller K., Allegretti F., Bischoff F., Fischer S., Duncan D. A., Papageorgiou A. C., Klappenberger F., Acres R. G., Ngo T. H., Barth J. V., J. Am. Chem. Soc. 2014, 136, 9346. PubMed

Kocić N., Liu X., Chen S., Decurtins S., Krejčí O., Jelínek P., Repp J., Liu S. X., J. Am. Chem. Soc. 2016, 138, 5585. PubMed

Zhang Y.‐Q., Kepčija N., Kleinschrodt M., Diller K., Fischer S., Papageorgiou A. C., Allegretti F., Björk J., Klyatskaya S., Klappenberger F., others Nat. Commun. 2012, 3, 1286. PubMed

Lackinger M., Dalton Trans 2021, 50, 10020. PubMed

Bieri M., Nguyen M. T., Gröning O., Cai J., Treier M., Aït‐Mansour K., Ruffieux P., Pignedoli C. a., Passerone D., Kastler M., Müllen K., Fasel R., J. Am. Chem. Soc. 2010, 132, 16669. PubMed

Lafferentz L., Eberhardt V., Dri C., Africh C., Comelli G., Esch F., Hecht S., Grill L., Nat. Chem. 2012, 4, 215. PubMed

Fritton M., Duncan D. A., Deimel P. S., Rastgoo‐Lahrood A., Allegretti F., Barth J. V., Heckl W. M., Björk J., Lackinger M., J. Am. Chem. Soc. 2019, 141, 4824. PubMed

Patera L. L., Bianchini F., Africh C., Dri C., Soldano G., Mariscal M. M., Peressi M., Comelli G., Science 2018, 359, 1243. PubMed

Mendieta‐Moreno J. I., Mallada B., de la Torre B., Cadart T., Kotora M., Jelínek P., Angew. Chem. Int. Ed. 2022, 61, e202208010. PubMed

Lowe B., Hellerstedt J., Matěj A., Mutombo P., Kumar D., Ondráček M., Jelinek P., Schiffrin A., J. Am. Chem. Soc. 2022, 144, 21389. PubMed

de la Torre B., Matěj A., Sánchez‐Grande A., Cirera B., Mallada B., Rodríguez‐Sánchez E., Santos J., Mendieta‐Moreno J. I., Edalatmanesh S., Lauwaet K., Otyepka M., Medveď M., Buendía Á., Miranda R., Martín N., Jelínek P., Écija D., Nat. Commun. 2020, 11, 4567. PubMed PMC

Aika K., Shimazaki K., Hattori Y., Ohya A., Ohshima S., Shirota K., Ozaki A., J. Catal. 1985, 92, 296.

Bart J. C. J., Cavallaro S., Lefebvre G., Lazarus M., Kollmuss A., Teles J. H., Slaten C. S., Seapan M., Lower M. W., Tomlinson P. E., Aoki M., Noyori R., Kholdeeva O. A., Jhung S. H., Chang J. S., Holmberg K., Wang K., Chen J., “Catalytically active Au‐O(OH)x‐alkali” 2014, 346.

Li D., Ichikuni N., Shimazu S., Uematsu T., Appl. Catal. Gen. 1998, 172, 351.

Liu X., Matej A., Kratky T., Mendieta‐Moreno J. I., Günther S., Mutombo P., Decurtins S., Aschauer U., Repp J., Jelinek P., Shi‐Xia Liu, Patera L. L., Angew. Chem. Int. Ed. 2022, 61, e202112798. PubMed PMC

Stepanow S., Ohmann R., Leroy F., Lin N., Strunskus T., Woll C., Kern K., ACS Nano 2010, 4, 1813. PubMed

Li D., Ding Y., Wang X., Xu W., J. Phys. Chem. Lett. 2021, 12, 5228. PubMed

Ding Y., Xie L., Li D., Shen H., Li C., Xu W., Chem. Commun. 2022, 58, 3198. PubMed

Shan H., Zhou L., Ji W., Zhao A., J. Phys. Chem. Lett. 2021, 12, 10808. PubMed

Hou R., Guo Y., Yi Z., Zhang Z., Zhang C., Xu W., J. Phys. Chem. Lett. 2023, 14, 3636. PubMed

Zhou K., Liang H., Wang M., Xing S., Ding H., Song Y., Wang Y., Xu Q., He J.‐H., Zhu J., Zhao W., Ma Y., Shi Z., Nanoscale Adv. 2020, 2, 2170. PubMed PMC

Zhang C., Xie L., Wang L., Kong H., Tan Q., Xu W., J. Am. Chem. Soc. 2015, 137, 11795. PubMed

Skomski D., Abb S., Tait S. L., J. Am. Chem. Soc. 2012, 134, 14165. PubMed

Zhang C., Wang L., Xie L., Kong H., Tan Q., Cai L., Sun Q., Xu W., ChemPhysChem 2015, 16, 2099. PubMed

Shimizu T. K., Jung J., Imada H., Kim Y., Angew. Chem. Int. Ed. 2014, 53, 13729. PubMed

Wäckerlin C., Iacovita C., Chylarecka D., Fesser P., Jung T. A., Ballav N., Chem. Commun. 2011, 47, 9146. PubMed

Hieulle J., Peyrot D., Jiang Z., Silly F., Chem. Commun. 2015, 51, 13162. PubMed

Peyrot D., Silly F., J. Phys. Chem. C 2017, 121, 20986.

Peng J., Guo J., Ma R., Meng X., Jiang Y., J. Phys. Condens. Matter 2017, 29, 104001. PubMed

Yi Z., Zhang C., Zhang Z., Hou R., Guo Y., Xu W., Precis. Chem. 2023, 1, 226. PubMed PMC

Xu L., Zhang C., Hou R., Gao Y., Zhang Z., Yi Z., Zhang C., Xu W., J. Phys. Chem. Lett. 2024, 15, 11862. PubMed

Patera L. L., Liu X., Mosso N., Decurtins S., Liu S.‐X., Repp J., Angew. Chem. Int. Ed. 2017, 56, 10786. PubMed

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., Science 2009, 325, 1110. PubMed

Floreano L., Cossaro A., Gotter R., Verdini A., Bavdek G., Evangelista F., Ruocco A., Morgante A., Cvetko D., J. Phys. Chem. C 2008, 112, 10794.

Kastanas G. N., Koel B. E., Appl. Surf. Sci. 1993, 64, 235.

Gao W., Baker T. A., Zhou L., Pinnaduwage D. S., Kaxiras E., Friend C. M., J. Am. Chem. Soc. 2008, 130, 3560. PubMed

Lauwaet K., Schouteden K., Janssens E., Van Haesendonck C., Lievens P., J. Phys. Condens. Matter 2012, 24, 475507. PubMed

Kishi K., Kirimura H., Fujimoto Y., Surf. Sci. 1987, 181, 586.

Imai‐Imada M., Imada H., Miwa K., Jung J., Shimizu T. K., Kawai M., Kim Y., Phys. Rev. B 2018, 98, 201403.

Barth J., Behm R., Ertl G., Surf. Sci. 1995, 341, 62.

Blum V., Gehrke R., Hanke F., Havu P., Havu V., Ren X., Reuter K., Scheffler M., Comput. Phys. Commun. 2009, 180, 2175.

Xiao Z. Y., Zhao X., Jiang X. K., Li Z. T., Langmuir 2010, 26, 13048. PubMed

Rogers D., J. Org. Chem. 1986, 51, 3904.

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed

Tkatchenko A., Scheffler M., Phys. Rev. Lett. 2009, 102, 073005. PubMed

Heimann P., Van der Veen J., Eastman D., Solid State Commun. 1981, 38, 595.

Tanuma S., Powell C. J., Penn D. R., Surf. Interface Anal. 1994, 21, 165‐. PubMed PMC

Kennedy D. J., Manson S. T., Phys. Rev. A 1972, 5, 227.

Yeh J., Lindau I., At. Data Nucl. Data Tables 1985, 32, 1–155.

Davey W. P., Phys. Rev. 1925, 25, 753.

Powell C. J., Jablonski A., J. Phys. Chem. Ref. Data 1999, 28, 19.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...