YAP1 reactivation in cardiomyocytes following ECM remodelling contributes to the development of contractile force and sarcomere maturation

. 2025 Nov 10 ; 11 (1) : 518. [epub] 20251110

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41213910

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_019/0000868 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/15_003/0000492 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_019/0000868 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/15_003/0000492 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
101070546 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
101070546 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
101070546 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
BHF Centre for Excellence Award RE/18/2/34213 Kings College London
BHF project grant PG/24/12045 Kings College London
RE/18/2/34213 King's College London
BHF project grant PG/24/12045 King's College London
BHF Centre for Excellence Award RE/18/2/34213 King's College London
BHF project grant PG/24/12045 King's College London
363055819/GRK2415 Deutsche Forschungsgemeinschaft (German Research Foundation)
363055819/GRK2415 Deutsche Forschungsgemeinschaft (German Research Foundation)

Odkazy

PubMed 41213910
PubMed Central PMC12603042
DOI 10.1038/s41420-025-02793-2
PII: 10.1038/s41420-025-02793-2
Knihovny.cz E-zdroje

Cardiac diseases are fueled by extracellular matrix (ECM) remodelling. Together with the altered ECM chemical composition, the mechanical turmoil associated with ECM maladaptive remodelling in the pathological heart drives the shuttling of Yes Associated Protein 1 (YAP1) into cardiomyocyte (CM) nuclei that results either in cell cycle re-entry or cardiomyocyte hypertrophy. The mechanism of YAP1 reactivation and factors driving qualitatively different cellular outcomes is not well understood. Here we employed mechanical actuation as a proxy reproducing ECM remodelling in vitro to trigger YAP1 nuclear shuttling in contractile cardiomyocytes derived from human embryonic and induced pluripotent stem cells (hPSCs). By using hPSC lines in which YAP1 expression has been genetically depleted, super-resolution microscopy and electrophysiological measurements, we show that ECM-triggered nuclear presence of endogenous YAP1 contributes to cardiomyocyte maturation, participates in the formation and alignment of myofibrils, as well as in the maturation of their electrophysiological properties and calcium dynamics. We eventually exploit engineered heart tissues (EHTs) to demonstrate that the net effect of YAP1 deficiency in cardiomyocytes is the inability to respond to physiological stimuli by compensatory growth that results in reduced force development. These results suggest that the re-activation of endogenous YAP1 following ECM maladaptive remodelling promotes cardiomyocyte contractility by restructuring the sarcomere apparatus and the maturation of electrophysiological properties via transcriptionally dependent and independent mechanisms.

Zobrazit více v PubMed

Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87:1285–342. PubMed DOI

Mosqueira D, Pagliari S, Uto K, Ebara M, Romanazzo S, Escobedo-Lucea C, et al. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano. 2014;8:2033–47. PubMed DOI

Del Re DP, Yang Y, Nakano N, Cho J, Zhai P, Yamamoto T, et al. Yes-associated Protein Isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J Biol Chem. 2013;288:3977–88. PubMed DOI PMC

Wang J, Liu S, Heallen T, Martin JF. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol. 2018;15:672–84. PubMed DOI

Byun J, Re DPD, Zhai P, Ikeda S, Shirakabe A, Mizushima W, et al. Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. J Biol Chem. 2019;294:3603–17. PubMed DOI PMC

Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, et al. Regulation of insulin-like growth factor signaling by YAP governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4:ra70. PubMed DOI PMC

Judson R, Gray S, Walker C, Carroll A, Itzstein C, Lionikas A, et al. Constitutive expression of yes-associated protein (YAP) in adult skeletal muscle fibres induces muscle atrophy and myopathy. PloS One. 2013;8:e59622. PubMed DOI PMC

Li RG, Li X, Morikawa Y, Grisanti-Canozo FJ, Meng F, Tsai CR, et al. YAP induces a neonatal-like pro-renewal niche in the adult heart. Nat Cardiovasc Res. 2024;3:283–300. PubMed DOI PMC

Ren F, Zhang L, Jiang J. Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev Biol. 2010;337:303–12. PubMed DOI PMC

Cho YS, Jiang J. Hippo-independent regulation of YKI/YAP/TAZ: a non-canonical view. Front Cell Dev Biol. 2021;9:658481. PubMed DOI PMC

Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated Rho GTPase signaling circuitry. Cancer Cell. 2014;25:831–45. PubMed DOI PMC

Monroe TO, Hill MC, Morikawa Y, Leach JP, Heallen T, Cao S, et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev Cell. 2019;48:765–79.e7. PubMed DOI PMC

Lin, Gise Z, von A, Zhou P, Gu F, Ma Q, et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res. 2014;115:354. PubMed DOI PMC

Oka T, Sudol M. Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif. Genes Cells Devoted Mol Cell Mech. 2009;14:607–15. PubMed DOI

Yagi R, Chen L, Shigesada K, Murakami Y, Ito Y. A WW domain-containing Yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 1999;18:2551–62. PubMed DOI PMC

Komuro A, Nagai M, Navin NE, Sudol M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem. 2003;278:33334–41. PubMed DOI

Zhao B, Ye X, Yu J, Li L, Li W, Li S, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22:1962–71. PubMed DOI PMC

Joshi S, Davidson G, Gras SL, Watanabe S, Braun T, Mengus G, et al. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo. PLOS Genet. 2017;13:e1006600. PubMed DOI PMC

Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A, et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLOS Genet. 2015;11:e1005465. PubMed DOI PMC

Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol. 2015;17:1218–27. PubMed DOI PMC

Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013;503:290–4. PubMed DOI PMC

Mohler PJ, Kreda SM, Boucher RC, Sudol M, Stutts MJ, Milgram SL. Yes-associated protein 65 localizes P62c-yes to the apical compartment of airway epithelia by association with Ebp50. J Cell Biol. 1999;147:879–90. PubMed DOI PMC

Althoff MJ, Nayak RC, Hegde S, Wellendorf AM, Bohan B, Filippi MD, et al. Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood. 2020;136:1824–36. PubMed DOI PMC

Sakabe M, Fan J, Odaka Y, Liu N, Hassan A, Duan X, et al. YAP/TAZ-CDC42 signaling regulates vascular tip cell migration. Proc Natl Acad Sci. 2017;114:10918–23. PubMed DOI PMC

Liu Y, Wang J, Li J, Wang R, Tharakan B, Zhang SL, et al. Deletion of Cdc42 in embryonic cardiomyocytes results in right ventricle hypoplasia. Clin Transl Med. 2017;6:40. PubMed DOI PMC

Li J, Liu Y, Jin Y, Wang R, Wang J, Lu S, et al. Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol. 2017;421:271–83. PubMed DOI

Maillet M, Lynch JM, Sanna B, York AJ, Zheng Y, Molkentin JD. Cdc42 is an antihypertrophic molecular switch in the mouse heart. J Clin Invest. 2009;119:3079–88. PubMed DOI PMC

Qin H, Hejna M, Liu Y, Percharde M, Wossidlo M, Blouin L, et al. YAP induces human naive pluripotency. Cell Rep. 2016;14:2301–12. PubMed DOI PMC

Estarás C, Hsu HT, Huang L, Jones KA. YAP repression of the WNT3 gene controls hESC differentiation along the cardiac mesoderm lineage. Genes Dev. 2017;31:2250–63. PubMed DOI PMC

Pagliari S, Vinarsky V, Martino F, Perestrelo AR, Oliver De La Cruz J, Caluori G, et al. YAP–TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell Death Differ. 2021;28:1193–207. PubMed DOI PMC

von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA. 2012;109:2394–9. PubMed DOI PMC

Chen Z, Friedrich GA, Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 1994;8:2293–301. PubMed DOI

Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332:458–61. PubMed DOI PMC

Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim BS, et al. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS ONE. 2019;14:e0212017. PubMed DOI PMC

Tsika RW, Ma L, Kehat I, Schramm C, Simmer G, Morgan B, et al. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. J Biol Chem. 2010;285:13721–35. PubMed DOI PMC

Ikeda S, Mizushima W, Sciarretta S, Abdellatif M, Zhai P, Mukai R, et al. Hippo deficiency leads to cardiac dysfunction accompanied by cardiomyocyte de-differentiation during pressure overload. Circ Res. 2019;124:292–305. PubMed DOI PMC

Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature. 2019;569:418–22. PubMed DOI PMC

Torrini C, Cubero RJ, Dirkx E, Braga L, Ali H, Prosdocimo G, et al. Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation. Cell Rep. 2019;27:2759–71.e5. PubMed DOI PMC

Perestrelo AR, Silva AC, Oliver-De La Cruz J, Martino F, Horváth V, Caluori G, et al. Multiscale analysis of extracellular matrix remodeling in the failing heart. Circ Res. 2021;128:24–38. PubMed DOI

Niro F, Fernandes S, Cassani M, Apostolico M, Oliver-De La Cruz J, Pereira-Sousa D, et al. Fibrotic extracellular matrix impacts cardiomyocyte phenotype and function in an iPSC-derived isogenic model of cardiac fibrosis. Transl Res. 2024;273:58–77. PubMed DOI PMC

Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2013;8:162–75. PubMed DOI PMC

Nardone G, Oliver-De La Cruz J, Vrbsky J, Martini C, Pribyl J, Skládal P, et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun. 2017;8:15321. PubMed DOI PMC

Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–83. PubMed DOI

Murphy SA, Miyamoto M, Kervadec A, Kannan S, Tampakakis E, Kambhampati S, et al. PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2. Nat Commun. 2021;12:1648. PubMed DOI PMC

Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, et al. Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22:1948–61. PubMed DOI PMC

Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM. Tumor suppressors RB1 and CDKN2a cooperatively regulate cell-cycle progression and differentiation during cardiomyocyte development and repair. Circ Res. 2019;124:1184–97. PubMed DOI

Sakamoto T, Matsuura TR, Wan S, Ryba DM, Kim J, Won KJ, et al. A critical role for estrogen-related receptor signaling in cardiac maturation. Circ Res. 2020;126:1685–702. PubMed DOI PMC

Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database J Biol Databases Curation. 2017;2017:bax028. PubMed PMC

Monzen K, Shiojima I, Hiroi Y, Kudoh S, Oka T, Takimoto E, et al. Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4. Mol Cell Biol. 1999;19:7096–105. PubMed DOI PMC

Lin Z, Zhou P, von Gise A, Gu F, Ma Q, Chen J, et al. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res. 2015;116:35–45. PubMed DOI PMC

Lin YS, Chang TH, Ho WC, Chang SF, Chen YL, Chang ST, et al. Sarcomeres morphology and Z-line arrangement disarray induced by ventricular premature contractions through the Rac2/Cofilin pathway. Int J Mol Sci. 2021;22:11244. PubMed DOI PMC

Maltsev AV, Evdokimovskii EV, Kokoz YM. α2-Adrenoceptor signaling in cardiomyocytes of spontaneously hypertensive rats starts to impair already at early age. Biochem Biophys Res Commun. 2019;512:908–13. PubMed DOI

Iwaki H, Sasaki S, Matsushita A, Ohba K, Matsunaga H, Misawa H, et al. Essential role of TEA domain transcription factors in the negative regulation of the MYH 7 gene by thyroid hormone and its receptors. PLoS ONE. 2014;9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4004540/. PubMed PMC

Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22:1991–2002. PubMed DOI PMC

Zeevaert K, Goetzke R, Elsafi Mabrouk MH, Schmidt M, Maaßen C, Henneke AC, et al. YAP1 is essential for self-organized differentiation of pluripotent stem cells. Biomater Adv. 2023;146:213308. PubMed DOI

Ergir E, Oliver-De La Cruz J, Fernandes S, Cassani M, Niro F, Pereira-Sousa D, et al. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci Rep. 2022;12:17409. PubMed DOI PMC

Edgley AJ, Krum H, Kelly DJ. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-β. Cardiovasc Ther. 2012;30:e30–40. PubMed DOI

Zhang P, Li T, Griffith BP, Wu ZJ. Multiscale characterization of impact of infarct size on myocardial remodeling in an ovine infarct model. Cells Tissues Organs. 2015;200:349–62. PubMed DOI PMC

Vasilescu C, Colpan M, Ojala TH, Manninen T, Mutka A, Ylänen K, et al. Recessive TMOD1 mutation causes childhood cardiomyopathy. Commun Biol. 2024;7:7. PubMed DOI PMC

Lay E, Azamian MS, Denfield SW, Dreyer W, Spinner JA, Kearney D, et al. LMOD2-related dilated cardiomyopathy presenting in late infancy. Am J Med Genet A. 2022;188:1858–62. PubMed DOI PMC

Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11:434–7. PubMed DOI

Maloyan A, Sanbe A, Osinska H, Westfall M, Robinson D, Imahashi Kichi, et al. Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation. 2005;112:3451–61. PubMed DOI PMC

Fananapazir L, Dalakas MC, Cyran F, Cohn G, Epstein ND. Missense mutations in the beta-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc Natl Acad Sci USA. 1993;90:3993–7. PubMed DOI PMC

Pettinato AM, Ladha FA, Hinson JT. The cardiac sarcomere and cell cycle. Curr Cardiol Rep. 2022;24:623–30. PubMed DOI PMC

Neininger AC, Dai X, Liu Q, Burnette DT. The Hippo pathway regulates density-dependent proliferation of iPSC-derived cardiac myocytes. Sci Rep. 2021;11:17759. PubMed DOI PMC

Buikema JW, Lee S, Goodyer WR, Maas RG, Chirikian O, Li G, et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell. 2020;27:50–63.e5. PubMed DOI PMC

Kaya-Çopur A, Marchiano F, Hein MY, Alpern D, Russeil J, Luis NM, et al. The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression. eLife. 2021;10:e63726. PubMed DOI PMC

Ege N, Dowbaj AM, Jiang M, Howell M, Hooper S, Foster C, et al. Quantitative analysis reveals that actin and Src-family kinases regulate nuclear YAP1 and its export. Cell Syst. 2018;6:692–708.e13. PubMed DOI PMC

Tyser RC, Miranda AM, Chen C, Davidson SM, Srinivas S, Riley PR. Calcium handling precedes cardiac differentiation to initiate the first heartbeat. eLife. 2016;5:e17113. PubMed DOI PMC

Jia BZ, Qi Y, Wong-Campos JD, Megason SG, Cohen AE. A bioelectrical phase transition patterns the first vertebrate heartbeats. Nature. 2023;622:149–55. PubMed DOI

Ji RP, Phoon CKL, Aristizábal O, McGrath KE, Palis J, Turnbull DH. Onset of cardiac function during early mouse embryogenesis coincides with entry of primitive erythroblasts into the embryo proper. Circ Res. 2003;92:133–5. PubMed DOI

Zheng M, Li RG, Song J, Zhao X, Tang L, Erhardt S, et al. Hippo-Yap signaling maintains sinoatrial node homeostasis. Circulation. 2022;146:1694–711. PubMed DOI PMC

Liu R, Lee J, Kim BS, Wang Q, Buxton SK, Balasubramanyam N, et al. Tead1 is required for maintaining adult cardiomyocyte function, and its loss results in lethal dilated cardiomyopathy. JCI Insight. 2017;2:e93343. PubMed DOI PMC

Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev. 2016;96:214–24. PubMed DOI

Iuliano A, Haalstra M, Raghuraman R, Bielawski K, Bholasing AP, van der Wal E, et al. Real-time and multichannel measurement of contractility of hiPSC-derived 3D skeletal muscle using fiber optics-based sensing. Adv Mater Technol. 2023;8:2300845. DOI

Landeen LK, Dederko DA, Kondo CS, Hu BS, Aroonsakool N, Haga JH, et al. Mechanisms of the negative inotropic effects of sphingosine-1-phosphate on adult mouse ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008;294:H736–49. PubMed DOI

Hilal-Dandan R, Means CK, Gustafsson AB, Morissette MR, Adams JW, Brunton LL, et al. Lysophosphatidic acid induces hypertrophy of neonatal cardiac myocytes via activation of Gi and Rho. J Mol Cell Cardiol. 2004;36:481–93. PubMed DOI

Zhang W, Bhetwal BP, Gunst SJ. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle. J Physiol. 2018;596:3617–35. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...