Turning urban wildlife mortality into a surveillance tool: Detection of vector-borne pathogens in carcasses of hedgehogs, squirrels, and blackbirds
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41625258
PubMed Central
PMC12856192
DOI
10.1016/j.onehlt.2026.101328
PII: S2352-7714(26)00012-1
Knihovny.cz E-zdroje
- Klíčová slova
- Carcasses multi-tissue sampling, Erinaceus europaeus, Erinaceus roumanicus, Sciurus vulgaris, Turdus merula, Urban wildlife, Vector-borne pathogens surveillance,
- Publikační typ
- časopisecké články MeSH
Tick-borne zoonoses pose a major challenge to human and animal health, driving efforts to monitor the distribution, intensity, and diversity of their causative agents. Within the One Health framework, which links human, animal, and environmental health, integrated surveillance strategies are increasingly needed. However, most studies focus on tick vectors, while vertebrate reservoirs are often overlooked due to labour-intensive sampling, the need for specialized skills, and legislative or species protection constraints. This study evaluated whether carcasses of accidentally killed wildlife (primarily roadkill) can serve as a source of biological material for vector-borne pathogen surveillance, with a focus on urban habitats due to their public health relevance. Hedgehogs, squirrels, and blackbirds were selected as synanthropic species that thrive in cities, are commonly infested by ticks, and act as hosts for zoonotic tick-borne pathogens (TBPs). A total of 268 carcasses (125 hedgehogs, 55 squirrels, and 88 blackbirds) were collected across multiple Czech cities with public assistance. Overall, 1836 tissue samples were analyzed using multiplex real-time PCR assays targeting over ten microorganisms. Detection efficiency was compared across tissues, with ear and skin consistently the most reliable and versatile sample types. Individual pathogen-host-tissue combinations reached 65-93% efficiency, highlighting the value of multi-tissue sampling. The most prevalent TBPs detected were Anaplasma phagocytophilum, Borrelia burgdorferi s.l., Bartonella spp., and Rickettsia helvetica. In conclusion, carcasses of accidentally killed urban wildlife provide a practical and valuable resource for TBP surveillance, complementing vector-focused methods. This approach supports One Health principles by integrating wildlife monitoring into urban disease surveillance efforts.
Department of Zoology Faculty of Science Charles University Vinicna 7 128 00 Prague Czech Republic
State Veterinary Institute Prague Sidlistni 24 165 03 Prague Czech Republic
University of Ostrava Dvorakova 7 701 03 Ostrava Czech Republic
Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
Zobrazit více v PubMed
Rizzoli A., Silaghi C., Obiegala A., Rudolf I., Hubálek Z., Földvári G., Plantard O., Vayssier-Taussat M., Bonnet S., Špitalská E., Kazimírová M. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front. Public Health. 2014;2:251. doi: 10.3389/fpubh.2014.00251. PubMed DOI PMC
Hansford K.M., Wheeler B.W., Tschirren B., Medlock J.M. Questing Ixodes ricinus ticks and Borrelia spp. in urban green space across Europe: a review. Zoonoses Public Health. 2022;69:153–166. doi: 10.1111/zph.12913. PubMed DOI PMC
Heylen D., Sprong H., van Oers K., Fonville M., Leirs H., Matthysen E. Are the specialized bird ticks, Ixodes arboricola and I. frontalis, competent vectors for Borrelia burgdorferi sensu lato? Environ. Microbiol. 2014;16:1081–1089. doi: 10.1111/1462-2920.12332. PubMed DOI
Grochowska A., Milewski R., Pancewicz S., Dunaj J., Czupryna P., Milewska A.J., Róg-Makal M., Grygorczuk S., Moniuszko-Malinowska A. Comparison of tick-borne pathogen prevalence in Ixodes ricinus ticks collected in urban areas of Europe. Sci. Rep. 2020;10:6975. doi: 10.1038/s41598-020-63760-0. PubMed DOI PMC
Venclíková K., Mendel J., Betášová L., Hubálek Z., Rudolf I. First evidence of Babesia venatorum and Babesia capreoli in questing Ixodes ricinus ticks in the Czech Republic. Ann. Agric. Environ. Med. 2015;22:212–214. doi: 10.5604/12321966.1152067. PubMed DOI
Kowalec M., Szewczyk T., Welc-Falęciak R., Siński E., Karbowiak G., Bajer A. Ticks and the city – are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasit. Vectors. 2017;10:573. doi: 10.1186/s13071-017-2391-2. PubMed DOI PMC
Kybicová K., Baštová K., Malý M. Detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in questing ticks Ixodes ricinus from the Czech Republic. Ticks Tick-Borne Dis. 2017;8:483–487. doi: 10.1016/j.ttbdis.2017.02.007. PubMed DOI
Richtrová E., Míchalová P., Lukavská A., Navrátil J., Kybicová K. Borrelia burgdorferi sensu lato infection in Ixodes ricinus ticks in urban green areas in Prague. Ticks Tick-Borne Dis. 2022;13 doi: 10.1016/j.ttbdis.2022.102053. PubMed DOI
Földvári G., Rigó K., Jablonszky M., Biró N., Majoros G., Molnár V., Tóth M. Ticks and the city: ectoparasites of the northern white-breasted hedgehog (Erinaceus roumanicus) in an urban park. Ticks Tick-Borne Dis. 2011;2:231–234. doi: 10.1016/j.ttbdis.2011.09.001. PubMed DOI
Sándor A.D., Kalmár Z., Matei I., Ionică A.M., Mărcuţan I.–D. Urban breeding corvids as disseminators of ticks and emerging tick-borne pathogens. Vector-Borne Zoonotic Dis. 2017;17:152–154. doi: 10.1089/vbz.2016.2054. PubMed DOI
Szekeres S., van Leeuwen A.D., Tóth E., Majoros G., Sprong H., Földvári G. Road-killed mammals provide insight into tick-borne bacterial pathogen communities within urban habitats. Transbound. Emerg. Dis. 2019;66:277–286. doi: 10.1111/tbed.13019. PubMed DOI
Defosseux I., Rouxel C., Galon C., Poux V., Arné P., Barzic C.L., Lagrée A.-C., Haddad N., Deshuillers P., Moutailler S., Marsot M. Diversity of tick species and tick-borne pathogens hosted by urban and suburban European hedgehogs (Erinaceus europaeus) in France. J. Wildl. Dis. 2025;61:743–748. doi: 10.7589/JWD-D-24-00178. PubMed DOI
Vecchiato M., Lawson B., Seilern-Moy K., White M.L., Jones N., Brown F., Yaffy D., Medlock J.M., Hansford K.M. Limited occurrence of Borrelia burgdorferi sensu lato in the European hedgehog (Erinaceus europaeus) and Ixodes hexagonus in Great Britain. Ticks Tick-Borne Dis. 2025;16 doi: 10.1016/j.ttbdis.2025.102475. PubMed DOI
Kožuch O., Grešíková M., Nosek J., Lichard M., Sekeyová M. The role of small rodents and hedgehogs in a natural focus of tick-borne encephalitis. Bull. World Health Organ. 1967;36(Suppl. 1):61–66. PubMed PMC
Krivanec O., Kopecký J., Tomková E., Grubhoffer L. Isolation of TBE virus from the tick Ixodes hexagonus. Folia Parasitol. 1988;35:273–276. PubMed
Gray J.S., Kahl O., Janetzki-Mittmann C., Stein J., Guy E. Acquisition of Borrelia burgdorferi by Ixodes ricinus ticks fed on the European hedgehog (Erinaceus europaeus L.) Exp. Appl. Acarol. 1994;18:485–491. doi: 10.1007/BF00051470. PubMed DOI
Gern L., Rouvinez E., Toutoungi L.N., Godfroid E. Transmission cycles of Borrelia burgdorferi sensu lato involving Ixodes ricinus and/or I. hexagonus ticks and the European hedgehog (Erinaceus europaeus) in suburban and urban areas in Switzerland. Folia Parasitol. 1997;44:309–314. PubMed
Humair P.F., Gern L. Relationship between Borrelia burgdorferi sensu lato species, red squirrels (Sciurus vulgaris) and Ixodes ricinus in enzootic areas in Switzerland. Acta Trop. 1998;69:213–227. doi: 10.1016/S0001-706X(97)00126-5. PubMed DOI
Taragel’ová J. Koči, Hanincová K., Kurtenbach K., Derdáková M., Ogden N.H., Literák I., Kocianová E., Labuda M. Blackbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of borreliosis in Central Europe. Appl. Environ. Microbiol. 2008;74:1289–1293. doi: 10.1128/AEM.01060-07. PubMed DOI PMC
Skuballa J., Petney T., Pfäffle M., Oehme R., Hartelt K., Fingerle V., Kimmig P., Taraschewski H. Occurrence of different Borrelia burgdorferi sensu lato genospecies including B. afzelii, B. bavariensis, and B. spielmanii in hedgehogs (Erinaceus spp.) in Europe. Ticks Tick-Borne Dis. 2012;3:8–13. doi: 10.1016/j.ttbdis.2011.09.008. PubMed DOI
Norte A.C., Lopes de Carvalho I., Núncio M.S., Ramos J.A., Gern L. Blackbirds Turdus merula as competent reservoirs for Borrelia turdi and Borrelia valaisiana in Portugal: evidence from a xenodiagnostic experiment. Environ. Microbiol. Rep. 2013;5:604–607. doi: 10.1111/1758-2229.12058. PubMed DOI
Pisanu B., Chapuis J.-L., Dozières A., Basset F., Poux V., Vourc’h G. High prevalence of Borrelia burgdorferi s.l. in the European red squirrel Sciurus vulgaris in France. Ticks Tick-Borne Dis. 2014;5:1–6. doi: 10.1016/j.ttbdis.2013.07.007. PubMed DOI
Hönig V., Palus M., Kašpar T., Zemanová M., Majerová K., Hofmannová L., Papežík P., Sikutova S., Rettich F., Hubálek Z., Rudolf I., Votýpka J., Modrý D., Růžek D. Multiple lineages of Usutu virus (Flaviviridae, Flavivirus) in blackbirds (Turdus merula) and mosquitoes (Culex pipiens, Cx. modestus) in the Czech Republic (2016–2019) Microorganisms. 2019;7:568. doi: 10.3390/microorganisms7110568. PubMed DOI PMC
Majerová K., Hönig V., Houda M., Papežík P., Fonville M., Sprong H., Rudenko N., Golovchenko M., Černá Bolfíková B., Hulva P., Růžek D., Hofmannová L., Votýpka J., Modrý D. Hedgehogs, squirrels, and blackbirds as sentinel hosts for active surveillance of Borrelia miyamotoi and Borrelia burgdorferi complex in urban and rural environments. Microorganisms. 2020;8:1908. doi: 10.3390/microorganisms8121908. PubMed DOI PMC
Majerová K., Gutiérrez R., Fonville M., Hönig V., Papežík P., Hofmannová L., Lesiczka P.M., Nachum-Biala Y., Růžek D., Sprong H., Golovchenko G., Černá Bolfíková B., Hulva P. Hedgehogs and squirrels as hosts of zoonotic Bartonella species. Pathogens. 2021;10:686. doi: 10.3390/pathogens10060686. PubMed DOI PMC
Lesiczka P.M., Hrazdilová K., Majerová K., Fonville M., Sprong H., Hönig V., Hofmannová L., Papežík P., Růžek D., Zurek L., Votýpka J., Modrý D. The role of peridomestic animals in the eco-epidemiology of Anaplasma phagocytophilum. Microb. Ecol. 2021;82:602–612. doi: 10.1007/s00248-021-01704-z. PubMed DOI
Modrý D., Hofmannová L., Papežík P., Majerová K., Votýpka J., Hönig V., Růžek D., Hrazdilová K. Hepatozoon in Eurasian red squirrels Sciurus vulgaris, its taxonomic identity, and phylogenetic placement. Parasitol. Res. 2021;120:2989–2993. doi: 10.1007/s00436-021-07229-1. PubMed DOI
European Environment Agency . Copernicus Land Monitoring Service, European Environment Agency; 2016. Urban Atlas Land Cover / Land Use 2012 (vector), Europe. v1. DOI
Hudec K., Šťastný K. second ed. Academia; Prague: 2011. Fauna ČR: Ptáci III/I (pěvci) pp. 278–289.
Wilson D.E., Lacher T.E., Mittermeier R.A. Lagomorphs and Rodents I. Vol. 6. Lynx Edicions and IUCN; Barcelona: 2016. Handbook of the mammals of the world; p. 987.
Wilson D.E., Mittermeier R.A. Insectivores, Sloths and Colugos, Lynx Edicions and IUCN. vol. 8. 2018. Handbook of the mammals of the world; p. 710. Barcelona.
Kasahara T., Miyazaki T., Nitta H., Ono A., Miyagishima T., Nagao T., Urushidani T. Evaluation of methods for duration of preservation of RNA quality in rat liver used for transcriptome analysis. J. Toxicol. Sci. 2006;31:509–519. doi: 10.2131/jts.31.509. PubMed DOI
Bolfíková B., Hulva P. Microevolution of sympatry: landscape genetics of hedgehogs Erinaceus europaeus and E. roumanicus in Central Europe. Heredity (Edinb.) 2012;108:248–255. doi: 10.1038/hdy.2011.67. PubMed DOI PMC
Černá Bolfíková B., Eliášová K., Loudová M., Kryštufek B., Lymberakis P., Sándor A.D., Hulva P. Glacial allopatry vs. postglacial parapatry and peripatry: the case of hedgehogs. PeerJ. 2017;5 doi: 10.7717/peerj.3163. PubMed DOI PMC
Agresti A. second ed. John Wiley & Sons; Hoboken, NJ: 2002. Categorical Data Analysis.
Hothorn T., Hornik K., van de Wiel M.A., Zeileis A. Implementing a class of permutation tests: the coin package. J. Stat. Softw. 2008;28:1–23. doi: 10.18637/jss.v028.i08. DOI
Gryczyńska A., Welc-Falęciak R. Long-term study of the prevalence of Borrelia burgdorferi s.l. infection in ticks (Ixodes ricinus) feeding on blackbirds (Turdus merula) in NE Poland. Exp. Appl. Acarol. 2016;70:381–394. doi: 10.1007/s10493-016-0082-x. PubMed DOI PMC
Luu L., Palomar A.M., Farrington G., Schilling A.K., Premchand-Branker S., McGarry J., Makepeace B.L., Meredith A., Bell-Sakyi L. Bacterial pathogens and symbionts harboured by Ixodes ricinus ticks parasitising red squirrels in the United Kingdom. Pathogens. 2021;10:458. doi: 10.3390/pathogens10040458. PubMed DOI PMC
Dwużnik-Szarek D., Beliniak A., Malaszewicz W., Krauze-Gryz D., Gryz J., Jasińska K.D., Wężyk D., Bajer A. Pathogens detected in ticks (Ixodes ricinus) feeding on red squirrels (Sciurus vulgaris) from city parks in Warsaw. Exp. Appl. Acarol. 2024;93:677–699. doi: 10.1007/s10493-024-00955-y. PubMed DOI PMC
von Loewenich F.D., Seckert C., Dauber E., Kik M.J.L., de Vries A., Sprong H., Buschmann K., Aardema M.L., Brandstetter M. Prosthetic valve endocarditis with Bartonella washoensis in a human European patient and its detection in red squirrels (Sciurus vulgaris) J. Clin. Microbiol. 2020;58:e01404–e01419. doi: 10.1128/JCM.01404-19. PubMed DOI PMC
Lipatova I., Razanske I., Jurgelevicius V., Paulauskas A. Bartonella washoensis infection in red squirrels (Sciurus vulgaris) and their ectoparasites in Lithuania. Comp. Immunol. Microbiol. Infect. Dis. 2020;68 doi: 10.1016/j.cimid.2019.101391. PubMed DOI
Petney T.N., Hassler D., Brückner M., Maiwald M. Comparison of urinary bladder and ear biopsy samples for determining prevalence of Borrelia burgdorferi in rodents in Central Europe. J. Clin. Microbiol. 1996;34:1310–1312. doi: 10.1128/jcm.34.5.1310-1312.1996. PubMed DOI PMC
Khanakah G., Kocianová E., Vyrosteková V., Reháček J., Kundi M., Stanek G. Seasonal variations in detecting Borrelia burgdorferi sensu lato in rodents from north eastern Austria. Wien. Klin. Wochenschr. 2006;118:754–758. doi: 10.1007/s00508-006-0730-y. PubMed DOI
Jahfari S., Coipan E.C., Fonville M., van Leeuwen A.D., Hengeveld P., Heylen D., Heyman P., van Maanen C., Butler C.M., Földvári G., Szekeres S., van Duijvendijk G., Tack W., Rijks J.M., van der Giessen J., Takken W., van Wieren S.E., Takumi K., Sprong H. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit. Vectors. 2014;7:365. doi: 10.1186/1756-3305-7-365. PubMed DOI PMC
Levin M.L., Snellgrove A.N., Zemtsova G.E. Comparative value of blood and skin samples for diagnosis of spotted fever group rickettsial infection in model animals. Ticks Tick-Borne Dis. 2016;7:1029–1034. doi: 10.1016/j.ttbdis.2016.05.011. PubMed DOI PMC
Sertour N., Cotté V., Garnier M., Malandrin L., Ferquel E., Choumet V. Infection kinetics and tropism of Borrelia burgdorferi sensu lato in mouse after natural (via ticks) or artificial (needle) infection depends on the bacterial strain. Front. Microbiol. 2018;9:1722. doi: 10.3389/fmicb.2018.01722. PubMed DOI PMC
Norte A.C., Lopes de Carvalho I., Núncio M.S., Araújo P.M., Matthysen E., Ramos J.A., Sprong H., Heylen D. Getting under the birds’ skin: tissue tropism of Borrelia burgdorferi s.l. in naturally and experimentally infected avian hosts. Microb. Ecol. 2020;79:756–769. doi: 10.1007/s00248-019-01442-3. PubMed DOI
Han P.-Y., Xu F.-H., Tian J.-W., Zhao J.-Y., Yang Z., Kong W., Wang B., Guo L.-J., Zhang Y.-Z. Molecular prevalence, genetic diversity, and tissue tropism of Bartonella species in small mammals from Yunnan Province, China. Animals. 2024;14:1320. doi: 10.3390/ani14091320. PubMed DOI PMC
Rouxel C., Etienne A., Arné P., Le Barzic C., Girault G., Boulouis H.-J., Haddad N., Lagrée A.-C., Deshuillers P.L. Anaplasma phagocytophilum in urban and peri-urban passerine birds in Île-de-France. Ticks Tick-Borne Dis. 2024;15 doi: 10.1016/j.ttbdis.2024.102350. PubMed DOI
Camacho M., Hernández J.M., Lima-Barbero J.F., Höfle U. Use of wildlife rehabilitation centres in pathogen surveillance: a case study in white storks (Ciconia ciconia) Prev. Vet. Med. 2016;130:106–111. doi: 10.1016/j.prevetmed.2016.06.012. PubMed DOI
Dumitrache M.O., Paştiu A.I., Kalmár Z., Mircean V., Sándor A.D., Gherman C.M., Peştean C., Mihalca A.D., Cozma V. Northern white-breasted hedgehogs Erinaceus roumanicus as hosts for ticks infected with Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in Romania. Ticks Tick-Borne Dis. 2013;4:214–217. doi: 10.1016/j.ttbdis.2012.11.010. PubMed DOI
Dziemian S., Sikora B., Piłacińska B., Michalik J., Zwolak R. Ectoparasite loads in sympatric urban populations of the northern white-breasted and the European hedgehog. Parasitol. Res. 2015;114:2317–2323. doi: 10.1007/s00436-015-4427-x. PubMed DOI PMC
Jahfari S., Ruyts S.C., Frazer-Mendelewska E., Jaarsma R., Verheyen K., Sprong H. Melting pot of tick-borne zoonoses: the European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles in urban and suburban areas. Parasit. Vectors. 2017;10:134. doi: 10.1186/s13071-017-2065-0. PubMed DOI PMC
Springer A., Schütte K., Brandes F., Reuschel M., Fehr M., Dobler G., Margos G., Fingerle V., Sprong H., Strube C. Potential drivers of vector-borne pathogens in urban environments: European hedgehogs (Erinaceus europaeus) in the spotlight. One Health. 2024;18 doi: 10.1016/j.onehlt.2024.100764. PubMed DOI PMC
Ruyts S.C., Frazer-Mendelewska E., Van Den Berge K., Verheyen L., Matthysen M. Molecular detection of tick-borne pathogens Borrelia afzelii, Borrelia miyamotoi and Anaplasma phagocytophilum in Eurasian red squirrels (Sciurus vulgaris) Eur. J. Wildl. Res. 2017;63:43. doi: 10.1007/s10344-017-1104-7. DOI
Valentine K.H., Harms C.A., Cadenas M.B., Birkenheuer A.J., Marr H.S., Braun-McNeill J., Maggi R.G., Breitschwerdt E.B. Bartonella DNA in loggerhead sea turtles. Emerg. Infect. Dis. 2007;13:949–950. doi: 10.3201/eid1306.061551. PubMed DOI PMC
Mascarelli P.E., McQuillan M., Harms C.A., Harms R.V., Breitschwerdt E.B. Bartonella henselae and B. koehlerae DNA in birds. Emerg. Infect. Dis. 2014;20:490–492. doi: 10.3201/eid2003.130563. PubMed DOI PMC
Williams H.M., Dittmar K. Expanding our view of Bartonella and its hosts: Bartonella in nest ectoparasites and their migratory avian hosts. Parasit. Vectors. 2020;13:13. doi: 10.1186/s13071-020-3896-7. PubMed DOI PMC
Korobitsyn I.G., Moskvitina N.S., Tyutenkov O.Y., Gashkov S.I., Kononova Y.V., Moskvitin S.S., Romanenko V.N., Mikryukova T.P., Protopopova E.V., Kartashov M.Y., Chausov E.V., Konovalova S.N., Tupota N.L., Sementsova A.O., Ternovoi V.A., Loktev V.B. Detection of tick-borne pathogens in wild birds and their ticks in Western Siberia and high level of their mismatch. Folia Parasitol. 2021;68 doi: 10.14411/fp.2021.024. 2021.024. PubMed DOI
Bertelloni F., Cagnoli G., Interrante P., Ceccherelli R., Ebani V.V. Molecular survey on the occurrence of tick-borne bacteria in wild birds from Central Italy. Vet. Sci. 2024;11:284. doi: 10.3390/vetsci11070284. PubMed DOI PMC
Gomez-Chamorro A., Hodžić A., King K.C., Cabezas-Cruz A. Ecological and evolutionary perspectives on tick-borne pathogen co-infections. Curr. Res. Parasitol. Vector Borne Dis. 2021;1 doi: 10.1016/j.crpvbd.2021.100049. PubMed DOI PMC
Kožuch O., Nosek J., Ernek E., Lichard M., Albrecht P. Persistence of tick-borne encephalitis virus in hibernating hedgehogs and dormice. Acta Virol. 1963;7:430–433. PubMed
Michelitsch A., Wernike K., Klaus C., Dobler G., Beer M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11:669. doi: 10.3390/v11070669. PubMed DOI PMC
Kolman J.M. Isolation of the tick-borne encephalitis virus from the squirrel Sciurus vulgaris. Folia Parasitol. 1969;16:80.
Schönbächler K., Hatt J., Silaghi C., Merz N., Fraefel C., Bachofen C. Confirmation of tick-borne encephalitis virus in an European hedgehog (Erinaceus europaeus) Schweiz. Arch. Tierheilkd. 2019;161:23–31. doi: 10.17236/sat00191. PubMed DOI
Michelitsch A., Tews B.A., Klaus C., Bestehorn-Willmann M., Dobler G., Beer M., Wernike K. In vivo characterization of tick-borne encephalitis virus in bank voles (Myodes glareolus) Viruses. 2019;11:1069. doi: 10.3390/v11111069. PubMed DOI PMC
Tonteri E., Jääskeläinen A.E., Tikkakoski T., Voutilainen L., Niemimaa J., Henttonen H., Vaheri A., Vapalahti O. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008–2009. Emerg. Infect. Dis. 2011;17:72–75. doi: 10.3201/eid1701.100051. PubMed DOI PMC
Tonteri E., Kipar A., Voutilainen L., Vene S., Vaheri A., Vapalahti O., Lundkvist Å. The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (Myodes glareolus) PLoS One. 2013;8 doi: 10.1371/journal.pone.0081214. PubMed DOI PMC
Saksida A., Duh D., Lotrič-Furlan S., Strle F., Petrovec M., Avšič-Županc T. The importance of tick-borne encephalitis virus RNA detection for early differential diagnosis of tick-borne encephalitis. J. Clin. Virol. 2005;33:331–335. doi: 10.1016/j.jcv.2004.07.014. PubMed DOI
Kříha M.F., Kamiš J., Dvořáková M., Tardy L., Elsterová J., Teislerová D., Chrdle A., Palus M., Růžek D., Hönig V. Detection of tick-borne encephalitis virus RNA in patient samples at different stages of infection. J. Inf. Secur. 2025;90 doi: 10.1016/j.jinf.2025.106481. PubMed DOI