TYRAY-Functionalized Alginate Bioinks for 3D Bioprinting Support Stem Cell Culture and Endothelial Network Formation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41264802
PubMed Central
PMC12690512
DOI
10.1021/acsbiomaterials.5c01132
Knihovny.cz E-zdroje
- Klíčová slova
- 3D bioprinting, TYRAY, alginate, bioink, endothelial networks, peptide functionalization, pluripotent stem cells, spheroid fusion, vascularization,
- MeSH
- 3D tisk * MeSH
- algináty * chemie MeSH
- bioprinting * metody MeSH
- buněčná adheze MeSH
- endoteliální buňky * cytologie MeSH
- hydrogely chemie MeSH
- inkoust MeSH
- kmenové buňky * cytologie MeSH
- kultivované buňky MeSH
- kyselina glukuronová chemie MeSH
- kyseliny hexuronové chemie MeSH
- lidé MeSH
- proliferace buněk účinky léků MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- algináty * MeSH
- hydrogely MeSH
- kyselina glukuronová MeSH
- kyseliny hexuronové MeSH
3D bioprinting is transforming tissue engineering by enabling spatial arrangement of cells and cell aggregates within supportive hydrogels. Among available materials, alginate remains widely used for its biocompatibility, printability, and cost-effectiveness. However, its bioinert nature and lack of adhesive moieties restrict its capacity to support essential processes like cell adhesion, migration, and proliferation. In this study, we propose a comprehensive approach to enhance alginate hydrogels focusing on stem, stromal, and endothelial cell types to support extended growth and vascular network formation. Key innovations include the incorporation of the TYRAY peptide in 3D alginate hydrogels─its first application in this context─to promote cell adhesion and migration, accompanied by Ca(OH)2-modified surfaces for stable hydrogel anchoring and an ultrasonic mist cross-linking to preserve 3D structure fidelity. Functionalization with the TYRAY peptide significantly enhanced cell proliferation, promoted multicellular spheroid fusion, and supported endothelial network development in comparative culture setting. Together, these findings establish this defined, xeno-free alginate system as a versatile bioink material suitable for 3D culture and bioprinting applications.
Zobrazit více v PubMed
Xie R., Pal V., Yu Y.. et al. A Comprehensive Review on 3D Tissue Models: Biofabrication Technologies and Preclinical Applications. Biomaterials. 2024;304:122408. doi: 10.1016/j.biomaterials.2023.122408. PubMed DOI PMC
Lyra-Leite D. M., Gutiérrez-Gutiérrez O. ´., Wang M.. et al. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc. 2022;3:101560. doi: 10.1016/j.xpro.2022.101560. PubMed DOI PMC
Acharya P., Choi N. Y., Shrestha S.. et al. Brain Organoids: A Revolutionary Tool for Modeling Neurological Disorders and Development of Therapeutics. Biotechnol. Bioeng. 2024;121:489–506. doi: 10.1002/bit.28606. PubMed DOI PMC
Pinton L., Khedr M., Lionello V. M.. et al. 3D human induced pluripotent stem cell–derived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nat. Protoc. 2023;18:1337–1376. doi: 10.1038/s41596-022-00790-8. PubMed DOI
Rodrigues Toste de Carvalho A. L., Liu H.-Y., Chen Y.-W., Porotto M., Moscona A., Snoeck H. W.. The in vitro multilineage differentiation and maturation of lung and airway cells from human pluripotent stem cell–derived lung progenitors in 3D. Nat. Protoc. 2021;16:1802–1829. doi: 10.1038/s41596-020-00476-z. PubMed DOI PMC
Zhang Y. S., Yue K., Aleman J.. et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann. Biomed Eng. 2017;45:148–163. doi: 10.1007/s10439-016-1612-8. PubMed DOI PMC
Matai I., Kaur G., Seyedsalehi A.. et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536. PubMed DOI
Noor N., Shapira A., Edri R., Gal I., Wertheim L., Dvir T.. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv. Sci. 2019;6:1900344. doi: 10.1002/advs.201900344. PubMed DOI PMC
Houshyar S., Pillai M. M., Saha T.. et al. Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing. RSC Adv. 2020;10:40351–40364. doi: 10.1039/D0RA06556K. PubMed DOI PMC
Murphy C., Kolan K., Li W., Semon J., Day D., Leu M.. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. Int. J. Bioprint. 2017;3:53–63. doi: 10.18063/ijb.2017.01.005. PubMed DOI PMC
Gungor-Ozkerim P. S., Inci I., Zhang Y. S.. et al. Bioinks for 3D bioprinting: an overview. Biomater. Sci. 2018;6:915–946. doi: 10.1039/C7BM00765E. PubMed DOI PMC
Lee K. Y., Mooney D. J.. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC
Tchobanian A., Van Oosterwyck H., Fardim P.. Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydr. Polym. 2019;205:601–625. doi: 10.1016/j.carbpol.2018.10.039. PubMed DOI
Piras C. C., Smith D. K.. Multicomponent polysaccharide alginate-based bioinks. J. Mater. Chem. B. 2020;8:8171–8188. doi: 10.1039/D0TB01005G. PubMed DOI
Rastogi P., Kandasubramanian B.. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11:042001. doi: 10.1088/1758-5090/ab331e. PubMed DOI
Łabowska M. B., Cierluk K., Jankowska A. M.. et al. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials (Basel) 2021;14:858. doi: 10.3390/ma14040858. PubMed DOI PMC
Schütz K., Placht A.-M., Paul B.. et al. Three-dimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions. J. Tissue Eng. Regen Med. 2017;11:1574–1587. doi: 10.1002/term.2058. PubMed DOI
Ouyang L., Yao R., Chen X.. et al. 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions. Biofabrication. 2015;7:015010. doi: 10.1088/1758-5090/7/1/015010. PubMed DOI
Cuadros T. R., Erices A. A., Aguilera J. M.. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J. Mech. Behav. Biomed. Mater. 2015;46:331–342. doi: 10.1016/j.jmbbm.2014.08.026. PubMed DOI
Hu T., Lo A. C. Y.. Collagen–Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers. 2021;13:1852. doi: 10.3390/polym13111852. PubMed DOI PMC
Salaris F., Rosa A.. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities. Brain Res. 2019;1723:146393. doi: 10.1016/j.brainres.2019.146393. PubMed DOI
Vitillo L., Kimber S. J.. Integrin and FAK Regulation of Human Pluripotent Stem Cells. Curr. Stem Cell Rep. 2017;3:358–365. doi: 10.1007/s40778-017-0100-x. PubMed DOI PMC
Braam S. R., Zeinstra L., Litjens S.. et al. Recombinant Vitronectin Is a Functionally Defined Substrate That Supports Human Embryonic Stem Cell Self-Renewal via αVβ5 Integrin. Stem Cells. 2008;26:2257–2265. doi: 10.1634/stemcells.2008-0291. PubMed DOI
Soldi R., Mitola S., Strasly M.. et al. Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 1999;18:882–892. doi: 10.1093/emboj/18.4.882. PubMed DOI PMC
Diaz C., Neubauer S., Rechenmacher F., Kessler H., Missirlis D.. Recruitment of ανβ3 integrin to α5β1 integrin-induced clusters enables focal adhesion maturation and cell spreading. J. Cell Sci. 2020;133:jcs232702. doi: 10.1242/jcs.232702. PubMed DOI
Lee M.-Y., Huang J.-P., Chen Y.-Y.. et al. Angiogenesis in Differentiated Placental Multipotent Mesenchymal Stromal Cells Is Dependent on Integrin α5β1. PLoS One. 2009;4:e6913. doi: 10.1371/journal.pone.0006913. PubMed DOI PMC
Wong J. C. Y., Gao S. Y., Lees J. G.. et al. Definitive endoderm derived from human embryonic stem cells highly express the integrin receptors αV and β5. Cell Adhes. Migr. 2010;4:39–45. doi: 10.4161/cam.4.1.10627. PubMed DOI PMC
Shen J., Zhu Y., Zhang S., Lyu S., Lyu C., Feng Z., Hoyle D. L., Wang Z. Z., Cheng T.. Vitronectin-activated αvβ3 and αvβ5 integrin signalling specifies haematopoietic fate in human pluripotent stem cells. Cell Proliferation. 2021;54:e13012. doi: 10.1111/cpr.13012. PubMed DOI PMC
Liu X., Peng W., Wang Y.. et al. Synthesis of an RGD-grafted oxidized sodium alginate–N-succinyl chitosan hydrogel and an in vitro study of endothelial and osteogenic differentiation. J. Mater. Chem. B. 2013;1:4484–4492. doi: 10.1039/c3tb20552e. PubMed DOI
Dumbleton J., Agarwal P., Huang H.. et al. The effect of RGD peptide on 2D and miniaturized 3D culture of HEPM cells, MSCs, and ADSCs with alginate hydrogel. Cell Mol. Bioeng. 2016;9:277–288. doi: 10.1007/s12195-016-0428-9. PubMed DOI PMC
Kang S.-W., Cha B.-H., Park H.. et al. The Effect of Conjugating RGD into 3D Alginate Hydrogels on Adipogenic Differentiation of Human Adipose-Derived Stromal Cells. Macromol. Biosci. 2011;11:673–679. doi: 10.1002/mabi.201000479. PubMed DOI
Bidarra S. J., Oliveira P., Rocha S., Saraiva D. P., Oliveira C., Barrias C. C.. A 3D in vitro model to explore the inter-conversion between epithelial and mesenchymal states during EMT and its reversion. Sci. Rep. 2016;6:27072. doi: 10.1038/srep27072. PubMed DOI PMC
Karakaya E., Gleichauf L., Schöbel L.. et al. Engineering peptide-modified alginate-based bioinks with cell-adhesive properties for biofabrication. RSC Adv. 2024;14:13769–13786. doi: 10.1039/D3RA08394B. PubMed DOI PMC
Kolhar P., Kotamraju V. R., Hikita S. T.. et al. Synthetic surfaces for human embryonic stem cell culture. J. Biotechnol. 2010;146:143–146. doi: 10.1016/j.jbiotec.2010.01.016. PubMed DOI
Melkoumian Z., Weber J. L., Weber D. M.. et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 2010;28:606–610. doi: 10.1038/nbt.1629. PubMed DOI
Wang W., Guo L., Yu Y.. et al. Peptide REDV-modified polysaccharide hydrogel with endothelial cell selectivity for the promotion of angiogenesis. J. Biomed. Mater. Res., Part A. 2015;103:1703–1712. doi: 10.1002/jbm.a.35306. PubMed DOI
Karakaya E., Gleichauf L., Schöbel L.. et al. Engineering peptide-modified alginate-based bioinks with cell-adhesive properties for biofabrication. RSC Adv. 2024;14:13769–13786. doi: 10.1039/D3RA08394B. PubMed DOI PMC
Guo L., Wang W., Chen Z.. et al. Promotion of microvasculature formation in alginate composite hydrogels by an immobilized peptide GYIGSRG. Sci. China Chem. 2012;55:1781–1787. doi: 10.1007/s11426-012-4513-1. DOI
Baude J. A., Li M. D., Jackson S. M., Sharma A., Walter D. I., Stowers R. S.. Engineered basement membrane mimetic hydrogels to study mammary epithelial morphogenesis and invasion. Sci. Adv. 2025;11:eadx2110. doi: 10.1126/sciadv.adx2110. PubMed DOI PMC
Tan X., Jain E., Barcellona M. N.. et al. Integrin and syndecan binding peptide-conjugated alginate hydrogel for modulation of nucleus pulposus cell phenotype. Biomaterials. 2021;277:121113. doi: 10.1016/j.biomaterials.2021.121113. PubMed DOI PMC
Li Q., Zhang H., Pan J.. et al. Tripeptide-based macroporous hydrogel improves the osteogenic microenvironment of stem cells. J. Mater. Chem. B. 2021;9:6056–6067. doi: 10.1039/D1TB01175H. PubMed DOI
Hung B. P., Gonzalez-Fernandez T., Lin J. B.. et al. Multi-peptide presentation and hydrogel mechanics jointly enhance therapeutic duo-potential of entrapped stromal cells. Biomaterials. 2020;245:119973. doi: 10.1016/j.biomaterials.2020.119973. PubMed DOI PMC
Sung V., Stubbs J. T., Fisher L.. et al. Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the alpha(v)beta3 and alpha(v)beta5 integrins. J. Cell. Physiol. 1998;176:482–494. doi: 10.1002/(SICI)1097-4652(199809)176:3<482::AID-JCP5>3.0.CO;2-K. PubMed DOI
Karadag A., Ogbureke K. U. E., Fedarko N. S.. et al. Bone sialoprotein, matrix metalloproteinase 2, and alpha(v)beta3 integrin in osteotropic cancer cell invasion. J. Natl. Cancer Inst. 2004;96:956–965. doi: 10.1093/jnci/djh169. PubMed DOI
Bellahcène A., Bonjean K., Fohr B.. et al. Bone sialoprotein mediates human endothelial cell attachment and migration and promotes angiogenesis. Circ. Res. 2000;86:885–891. doi: 10.1161/01.RES.86.8.885. PubMed DOI
Prowse A. B. J., Chong F., Gray P. P.. et al. Stem cell integrins: Implications for ex-vivo culture and cellular therapies. Stem Cell Res. 2011;6:1–12. doi: 10.1016/j.scr.2010.09.005. PubMed DOI
Jia J., Coyle R. C., Richards D. J.. et al. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomater. 2016;45:110–120. doi: 10.1016/j.actbio.2016.09.006. PubMed DOI PMC
Zhou P., Yin B., Zhang R.. et al. Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface. Colloids Surf., B. 2018;171:451–460. doi: 10.1016/j.colsurfb.2018.07.050. PubMed DOI
Golunova A., Velychkivska N., Mikšovská Z.. et al. Direct and Indirect Biomimetic Peptide Modification of Alginate: Efficiency, Side Reactions, and Cell Response. Int. J. Mol. Sci. 2021;22:5731. doi: 10.3390/ijms22115731. PubMed DOI PMC
Vuckovac M., Backholm M., Timonen J. V. I., Ras R. H. A.. Viscosity-enhanced droplet motion in sealed superhydrophobic capillaries. Sci. Adv. 2020;6:eaba5197. doi: 10.1126/sciadv.aba5197. PubMed DOI PMC
Varagnolo S., Mistura G., Pierno M., Sbragaglia M.. Sliding droplets of Xanthan solutions: A joint experimental and numerical study. Eur. Phys. J. E. 2015;38:126. doi: 10.1140/epje/i2015-15126-0. PubMed DOI
Li Z., Huang S., Liu Y., Yao B., Hu T., Shi H., Xie J., Fu X.. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Sci. Rep. 2018;8:8020. doi: 10.1038/s41598-018-26407-3. PubMed DOI PMC
Li H., Tan Y. J., Leong K. F.. et al. 3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. ACS Appl. Mater. Interfaces. 2017;9:20086–20097. doi: 10.1021/acsami.7b04216. PubMed DOI
Jia W., Gungor-Ozkerim P. S., Zhang Y. S.. et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58–68. doi: 10.1016/j.biomaterials.2016.07.038. PubMed DOI PMC
Aflatoonian B., Ahrlund-Richter L.. The International Stem Cell Initiative et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007;25:803–816. doi: 10.1038/nbt1318. PubMed DOI
Streit L., Jaros J., Sedlakova V.. et al. A Comprehensive In Vitro Comparison of Preparation Techniques for Fat Grafting. Plast. Reconstr. Surg. 2017;139:670e–682e. doi: 10.1097/PRS.0000000000003124. PubMed DOI
Ouyang L., Yao R., Zhao Y.. et al. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8:035020. doi: 10.1088/1758-5090/8/3/035020. PubMed DOI
Schneider C. A., Rasband W. S., Eliceiri K. W.. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Zudaire E., Gambardella L., Kurcz C.. et al. A Computational Tool for Quantitative Analysis of Vascular Networks. PLoS One. 2011;6:e27385. doi: 10.1371/journal.pone.0027385. PubMed DOI PMC
R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, 2016.
Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2021. https://CRAN.R-project.org/package=rstatix (accessed January 14, 2025).
Dawson, C. ggprism: A ‘ggplot2’ Extension Inspired by ‘GraphPad Prism’. 2021. https://CRAN.R-project.org/package=ggprism (accessed January 14, 2025).
Siti-Ismail N., Bishop A. E., Polak J. M.. et al. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials. 2008;29:3946–3952. doi: 10.1016/j.biomaterials.2008.04.027. PubMed DOI
Chaudhuri O., Koshy S. T., Branco da C. C.. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 2014;13:970–978. doi: 10.1038/nmat4009. PubMed DOI
Engler A. J., Sen S., Sweeney H. L.. et al. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI
Sun M., Chi G., Xu J., Tan Y., Xu J., Lv S., Xu Z., Xia Y., Li L., Li Y.. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Res. Therapy. 2018;9:52. doi: 10.1186/s13287-018-0798-0. PubMed DOI PMC
Rowley J. A., Madlambayan G., Mooney D. J.. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53. doi: 10.1016/S0142-9612(98)00107-0. PubMed DOI
Lorson T., Ruopp M., Nadernezhad A.. et al. Sterilization Methods and Their Influence on Physicochemical Properties and Bioprinting of Alginate as a Bioink Component. ACS Omega. 2020;5:6481–6486. doi: 10.1021/acsomega.9b04096. PubMed DOI PMC
Chansoria P., Narayanan L. K., Wood M.. et al. Effects of Autoclaving, EtOH, and UV Sterilization on the Chemical, Mechanical, Printability, and Biocompatibility Characteristics of Alginate. ACS Biomater. Sci. Eng. 2020;6:5191–5201. doi: 10.1021/acsbiomaterials.0c00806. PubMed DOI
ISO . ISO 11137–2:2013(en), Sterilization of health care products Radiation Part 2: Establishing the sterilization dose. ISO/TC 198 - Sterilization of health care products. 2013. https://www.iso.org/obp/ui/en/#iso:std:iso:11137:-2:ed-3:v1:en (accessed Dec 1, 2024).
Lee D. W., Choi W. S., Byun M. W.. et al. Effect of γ-Irradiation on Degradation of Alginate. J. Agric. Food Chem. 2003;51:4819–4823. doi: 10.1021/jf021053y. PubMed DOI
King K.. Changes in the functional properties and molecular weight of sodium alginate following γ irradiation. Food Hydrocolloids. 1994;8:83–96. doi: 10.1016/S0268-005X(09)80035-0. DOI
Cai B., Kilian D., Ramos M. D.. et al. Diffusion-Based 3D Bioprinting Strategies. Adv. Sci. (Weinh) 2023;11:2306470. doi: 10.1002/advs.202306470. PubMed DOI PMC
Raddatz L., Lavrentieva A., Pepelanova I.. et al. Development and Application of an Additively Manufactured Calcium Chloride Nebulizer for Alginate 3D-Bioprinting Purposes. J. Funct. Biomater. 2018;9:63. doi: 10.3390/jfb9040063. PubMed DOI PMC
Naumenko E., Akhatova F., Rozhina E.. et al. Revisiting the Cytotoxicity of Cationic Polyelectrolytes as a Principal Component in Layer-by-Layer Assembly Fabrication. Pharmaceutics. 2021;13:1230. doi: 10.3390/pharmaceutics13081230. PubMed DOI PMC
Mayandi V., Xi Q., Leng Goh E. T., Koh S. K., Jie Toh T. Y., Barathi V. A., Urf Turabe Fazil M. H., Somaraju Chalasani M. L., Varadarajan J., Jeng Ting D. S.. et al. Rational Substitution of ε-Lysine for α-Lysine Enhances the Cell and Membrane Selectivity of Pore-Forming Melittin. J. Med. Chem. 2020;63:3522–3537. doi: 10.1021/acs.jmedchem.9b01846. PubMed DOI
Armstrong J. P. K., Burke M., Carter B. M.. et al. 3D Bioprinting Using a Templated Porous Bioink. Adv. Healthcare Mater. 2016;5:1724–1730. doi: 10.1002/adhm.201600022. PubMed DOI
Chu Y., Huang L., Hao W.. et al. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Biomed Mater. 2021;16:064102. doi: 10.1088/1748-605X/ac2595. PubMed DOI
Simpson N. E., Stabler C. L., Simpson C. P.. et al. The role of the CaCl2–guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials. 2004;25:2603–2610. doi: 10.1016/j.biomaterials.2003.09.046. PubMed DOI
Lee M. N., Hwang H.-S., Oh S.-H.. et al. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp. Mol. Med. 2018;50:1–16. doi: 10.1038/s12276-018-0170-6. PubMed DOI PMC
Zhang H., Sun F., Wang J.. et al. Combining Injectable Plasma Scaffold with Mesenchymal Stem/Stromal Cells for Repairing Infarct Cavity after Ischemic Stroke. Aging Dis. 2017;8:203–214. doi: 10.14336/AD.2017.0305. PubMed DOI PMC
Faulkner-Jones A., Zamora V., Hortigon-Vinagre M. P.. et al. A Bioprinted Heart-on-a-Chip with Human Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Evaluation. Bioengineering. 2022;9:32. doi: 10.3390/bioengineering9010032. PubMed DOI PMC
Fonseca K. B., Bidarra S. J., Oliveira M. J.. et al. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Acta Biomater. 2011;7:1674–1682. doi: 10.1016/j.actbio.2010.12.029. PubMed DOI
Mironov V., Visconti R. P., Kasyanov V.. et al. Organ printing: Tissue spheroids as building blocks. Biomaterials. 2009;30:2164–2174. doi: 10.1016/j.biomaterials.2008.12.084. PubMed DOI PMC
Banerjee D., Singh Y. P., Datta P.. et al. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials. 2022;291:121881. doi: 10.1016/j.biomaterials.2022.121881. PubMed DOI
Neves M. I., Moroni L., Barrias C. C.. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Front Bioeng Biotechnol. 2020;8:665. doi: 10.3389/fbioe.2020.00665. PubMed DOI PMC
Rosiak P., Latanska I., Paul P.. et al. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules. 2021;26:7264. doi: 10.3390/molecules26237264. PubMed DOI PMC
Cavalcanti-Adam E. A., Aydin D., Hirschfeld-Warneken V. C.. et al. Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location. HFSP J. 2008;2:276–285. doi: 10.2976/1.2976662. PubMed DOI PMC
Maheshwari G., Brown G., Lauffenburger D. A.. et al. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 2000;113:1677–1686. doi: 10.1242/jcs.113.10.1677. PubMed DOI
Lee J. W., Kim H., Lee K. Y.. Effect of spacer arm length between adhesion ligand and alginate hydrogel on stem cell differentiation. Carbohydr. Polym. 2016;139:82–89. doi: 10.1016/j.carbpol.2015.12.024. PubMed DOI
Follin B., Juhl M., Cohen S.. et al. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: Phenotypic and immunomodulatory evaluation. Cytotherapy. 2015;17:1104–1118. doi: 10.1016/j.jcyt.2015.04.008. PubMed DOI
Indana D., Agarwal P., Bhutani N., Chaudhuri O.. Viscoelasticity and Adhesion Signaling in Biomaterials Control Human Pluripotent Stem Cell Morphogenesis in 3D Culture. Adv. Mater. 2021;33:e2101966. doi: 10.1002/adma.202101966. PubMed DOI
Son J., Mohamed H. J., Ha W.. et al. Bioprinting of pre-vascularized constructs for enhanced in vivo neo-vascularization. Biofabrication. 2023;15:034101. doi: 10.1088/1758-5090/acc9de. PubMed DOI
Wang X., Liu X., Liu W., Liu Y., Li A., Qiu D., Zheng X., Gu Q.. 3D bioprinting microgels to construct implantable vascular tissue. Cell Proliferation. 2023;56:e13456. doi: 10.1111/cpr.13456. PubMed DOI PMC
Fowler M., Moreno Lozano A., Krause J., Bednarz P., Pandey S., Ghayour M., Zhang Q., Veiseh O.. Guiding vascular infiltration through architected GelMA/PEGDA hydrogels: an in vivo study of channel diameter, length, and complexity. Biomater. Sci. 2025;13:2951–2960. doi: 10.1039/d5bm00193e. PubMed DOI
Nulty J., Freeman F. E., Browe D. C.. et al. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021;126:154–169. doi: 10.1016/j.actbio.2021.03.003. PubMed DOI
Onak Pulat G., Gökmen O., Çevik Z. B. Y., Karaman O.. Role of functionalized self-assembled peptide hydrogels in in vitro vasculogenesis. Soft Matter. 2021;17:6616–6626. doi: 10.1039/d1sm00680k. PubMed DOI
Yu Y., Guo L., Wang W.. et al. Dual-peptide-modified alginate hydrogels for the promotion of angiogenesis. Sci. China Chem. 2015;58:1866–1874. doi: 10.1007/s11426-015-5451-5. DOI
Kambe Y., Murakoshi A., Urakawa H.. et al. Vascular induction and cell infiltration into peptide-modified bioactive silk fibroin hydrogels. J. Mater. Chem. B. 2017;5:7557–7571. doi: 10.1039/C7TB02109G. PubMed DOI
Abdul Sisak M. A., Louis F., Matsusaki M.. In vitro fabrication and application of engineered vascular hydrogels. Polym. J. 2020;52:871–881. doi: 10.1038/s41428-020-0331-z. DOI
Xie R., Zheng W., Guan L., Ai Y., Liang Q.. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues. Small. 2020;16:1902838. doi: 10.1002/smll.201902838. PubMed DOI
O’Connor C., Brady E., Zheng Y.. et al. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 2022;7:702–716. doi: 10.1038/s41578-022-00447-8. PubMed DOI PMC
Yang G., Mahadik B., Choi J. Y.. et al. Vascularization in tissue engineering: fundamentals and state-of-art. Prog. Biomed Eng. (Bristol) 2020;2:012002. doi: 10.1088/2516-1091/ab5637. PubMed DOI PMC
Antunes M., Bonani W., Reis R. L.. et al. Development of alginate-based hydrogels for blood vessel engineering. Biomater. Adv. 2022;134:112588. doi: 10.1016/j.msec.2021.112588. PubMed DOI
Teixeira F. C., Chaves S., Torres A. L.. et al. Engineering a Vascularized 3D Hybrid System to Model Tumor-Stroma Interactions in Breast Cancer. Front Bioeng Biotechnol. 2021;9:647031. doi: 10.3389/fbioe.2021.647031. PubMed DOI PMC
Bidarra S. J., Barrias C. C., Fonseca K. B.. et al. Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials. 2011;32:7897–7904. doi: 10.1016/j.biomaterials.2011.07.013. PubMed DOI
Jeon O., Lee Y. B., Hinton T. J., Feinberg A., Alsberg E.. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater. Today Chem. 2019;12:61–70. doi: 10.1016/j.mtchem.2018.11.009. PubMed DOI PMC