TYRAY-Functionalized Alginate Bioinks for 3D Bioprinting Support Stem Cell Culture and Endothelial Network Formation

. 2025 Dec 08 ; 11 (12) : 7368-7383. [epub] 20251120

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41264802

3D bioprinting is transforming tissue engineering by enabling spatial arrangement of cells and cell aggregates within supportive hydrogels. Among available materials, alginate remains widely used for its biocompatibility, printability, and cost-effectiveness. However, its bioinert nature and lack of adhesive moieties restrict its capacity to support essential processes like cell adhesion, migration, and proliferation. In this study, we propose a comprehensive approach to enhance alginate hydrogels focusing on stem, stromal, and endothelial cell types to support extended growth and vascular network formation. Key innovations include the incorporation of the TYRAY peptide in 3D alginate hydrogels─its first application in this context─to promote cell adhesion and migration, accompanied by Ca(OH)2-modified surfaces for stable hydrogel anchoring and an ultrasonic mist cross-linking to preserve 3D structure fidelity. Functionalization with the TYRAY peptide significantly enhanced cell proliferation, promoted multicellular spheroid fusion, and supported endothelial network development in comparative culture setting. Together, these findings establish this defined, xeno-free alginate system as a versatile bioink material suitable for 3D culture and bioprinting applications.

Zobrazit více v PubMed

Xie R., Pal V., Yu Y.. et al. A Comprehensive Review on 3D Tissue Models: Biofabrication Technologies and Preclinical Applications. Biomaterials. 2024;304:122408. doi: 10.1016/j.biomaterials.2023.122408. PubMed DOI PMC

Lyra-Leite D. M., Gutiérrez-Gutiérrez O. ´., Wang M.. et al. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc. 2022;3:101560. doi: 10.1016/j.xpro.2022.101560. PubMed DOI PMC

Acharya P., Choi N. Y., Shrestha S.. et al. Brain Organoids: A Revolutionary Tool for Modeling Neurological Disorders and Development of Therapeutics. Biotechnol. Bioeng. 2024;121:489–506. doi: 10.1002/bit.28606. PubMed DOI PMC

Pinton L., Khedr M., Lionello V. M.. et al. 3D human induced pluripotent stem cell–derived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nat. Protoc. 2023;18:1337–1376. doi: 10.1038/s41596-022-00790-8. PubMed DOI

Rodrigues Toste de Carvalho A. L., Liu H.-Y., Chen Y.-W., Porotto M., Moscona A., Snoeck H. W.. The in vitro multilineage differentiation and maturation of lung and airway cells from human pluripotent stem cell–derived lung progenitors in 3D. Nat. Protoc. 2021;16:1802–1829. doi: 10.1038/s41596-020-00476-z. PubMed DOI PMC

Zhang Y. S., Yue K., Aleman J.. et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann. Biomed Eng. 2017;45:148–163. doi: 10.1007/s10439-016-1612-8. PubMed DOI PMC

Matai I., Kaur G., Seyedsalehi A.. et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536. PubMed DOI

Noor N., Shapira A., Edri R., Gal I., Wertheim L., Dvir T.. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv. Sci. 2019;6:1900344. doi: 10.1002/advs.201900344. PubMed DOI PMC

Houshyar S., Pillai M. M., Saha T.. et al. Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing. RSC Adv. 2020;10:40351–40364. doi: 10.1039/D0RA06556K. PubMed DOI PMC

Murphy C., Kolan K., Li W., Semon J., Day D., Leu M.. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. Int. J. Bioprint. 2017;3:53–63. doi: 10.18063/ijb.2017.01.005. PubMed DOI PMC

Gungor-Ozkerim P. S., Inci I., Zhang Y. S.. et al. Bioinks for 3D bioprinting: an overview. Biomater. Sci. 2018;6:915–946. doi: 10.1039/C7BM00765E. PubMed DOI PMC

Lee K. Y., Mooney D. J.. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC

Tchobanian A., Van Oosterwyck H., Fardim P.. Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydr. Polym. 2019;205:601–625. doi: 10.1016/j.carbpol.2018.10.039. PubMed DOI

Piras C. C., Smith D. K.. Multicomponent polysaccharide alginate-based bioinks. J. Mater. Chem. B. 2020;8:8171–8188. doi: 10.1039/D0TB01005G. PubMed DOI

Rastogi P., Kandasubramanian B.. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11:042001. doi: 10.1088/1758-5090/ab331e. PubMed DOI

Łabowska M. B., Cierluk K., Jankowska A. M.. et al. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials (Basel) 2021;14:858. doi: 10.3390/ma14040858. PubMed DOI PMC

Schütz K., Placht A.-M., Paul B.. et al. Three-dimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions. J. Tissue Eng. Regen Med. 2017;11:1574–1587. doi: 10.1002/term.2058. PubMed DOI

Ouyang L., Yao R., Chen X.. et al. 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions. Biofabrication. 2015;7:015010. doi: 10.1088/1758-5090/7/1/015010. PubMed DOI

Cuadros T. R., Erices A. A., Aguilera J. M.. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J. Mech. Behav. Biomed. Mater. 2015;46:331–342. doi: 10.1016/j.jmbbm.2014.08.026. PubMed DOI

Hu T., Lo A. C. Y.. Collagen–Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers. 2021;13:1852. doi: 10.3390/polym13111852. PubMed DOI PMC

Salaris F., Rosa A.. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities. Brain Res. 2019;1723:146393. doi: 10.1016/j.brainres.2019.146393. PubMed DOI

Vitillo L., Kimber S. J.. Integrin and FAK Regulation of Human Pluripotent Stem Cells. Curr. Stem Cell Rep. 2017;3:358–365. doi: 10.1007/s40778-017-0100-x. PubMed DOI PMC

Braam S. R., Zeinstra L., Litjens S.. et al. Recombinant Vitronectin Is a Functionally Defined Substrate That Supports Human Embryonic Stem Cell Self-Renewal via αVβ5 Integrin. Stem Cells. 2008;26:2257–2265. doi: 10.1634/stemcells.2008-0291. PubMed DOI

Soldi R., Mitola S., Strasly M.. et al. Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J. 1999;18:882–892. doi: 10.1093/emboj/18.4.882. PubMed DOI PMC

Diaz C., Neubauer S., Rechenmacher F., Kessler H., Missirlis D.. Recruitment of ανβ3 integrin to α5β1 integrin-induced clusters enables focal adhesion maturation and cell spreading. J. Cell Sci. 2020;133:jcs232702. doi: 10.1242/jcs.232702. PubMed DOI

Lee M.-Y., Huang J.-P., Chen Y.-Y.. et al. Angiogenesis in Differentiated Placental Multipotent Mesenchymal Stromal Cells Is Dependent on Integrin α5β1. PLoS One. 2009;4:e6913. doi: 10.1371/journal.pone.0006913. PubMed DOI PMC

Wong J. C. Y., Gao S. Y., Lees J. G.. et al. Definitive endoderm derived from human embryonic stem cells highly express the integrin receptors αV and β5. Cell Adhes. Migr. 2010;4:39–45. doi: 10.4161/cam.4.1.10627. PubMed DOI PMC

Shen J., Zhu Y., Zhang S., Lyu S., Lyu C., Feng Z., Hoyle D. L., Wang Z. Z., Cheng T.. Vitronectin-activated αvβ3 and αvβ5 integrin signalling specifies haematopoietic fate in human pluripotent stem cells. Cell Proliferation. 2021;54:e13012. doi: 10.1111/cpr.13012. PubMed DOI PMC

Liu X., Peng W., Wang Y.. et al. Synthesis of an RGD-grafted oxidized sodium alginate–N-succinyl chitosan hydrogel and an in vitro study of endothelial and osteogenic differentiation. J. Mater. Chem. B. 2013;1:4484–4492. doi: 10.1039/c3tb20552e. PubMed DOI

Dumbleton J., Agarwal P., Huang H.. et al. The effect of RGD peptide on 2D and miniaturized 3D culture of HEPM cells, MSCs, and ADSCs with alginate hydrogel. Cell Mol. Bioeng. 2016;9:277–288. doi: 10.1007/s12195-016-0428-9. PubMed DOI PMC

Kang S.-W., Cha B.-H., Park H.. et al. The Effect of Conjugating RGD into 3D Alginate Hydrogels on Adipogenic Differentiation of Human Adipose-Derived Stromal Cells. Macromol. Biosci. 2011;11:673–679. doi: 10.1002/mabi.201000479. PubMed DOI

Bidarra S. J., Oliveira P., Rocha S., Saraiva D. P., Oliveira C., Barrias C. C.. A 3D in vitro model to explore the inter-conversion between epithelial and mesenchymal states during EMT and its reversion. Sci. Rep. 2016;6:27072. doi: 10.1038/srep27072. PubMed DOI PMC

Karakaya E., Gleichauf L., Schöbel L.. et al. Engineering peptide-modified alginate-based bioinks with cell-adhesive properties for biofabrication. RSC Adv. 2024;14:13769–13786. doi: 10.1039/D3RA08394B. PubMed DOI PMC

Kolhar P., Kotamraju V. R., Hikita S. T.. et al. Synthetic surfaces for human embryonic stem cell culture. J. Biotechnol. 2010;146:143–146. doi: 10.1016/j.jbiotec.2010.01.016. PubMed DOI

Melkoumian Z., Weber J. L., Weber D. M.. et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 2010;28:606–610. doi: 10.1038/nbt.1629. PubMed DOI

Wang W., Guo L., Yu Y.. et al. Peptide REDV-modified polysaccharide hydrogel with endothelial cell selectivity for the promotion of angiogenesis. J. Biomed. Mater. Res., Part A. 2015;103:1703–1712. doi: 10.1002/jbm.a.35306. PubMed DOI

Karakaya E., Gleichauf L., Schöbel L.. et al. Engineering peptide-modified alginate-based bioinks with cell-adhesive properties for biofabrication. RSC Adv. 2024;14:13769–13786. doi: 10.1039/D3RA08394B. PubMed DOI PMC

Guo L., Wang W., Chen Z.. et al. Promotion of microvasculature formation in alginate composite hydrogels by an immobilized peptide GYIGSRG. Sci. China Chem. 2012;55:1781–1787. doi: 10.1007/s11426-012-4513-1. DOI

Baude J. A., Li M. D., Jackson S. M., Sharma A., Walter D. I., Stowers R. S.. Engineered basement membrane mimetic hydrogels to study mammary epithelial morphogenesis and invasion. Sci. Adv. 2025;11:eadx2110. doi: 10.1126/sciadv.adx2110. PubMed DOI PMC

Tan X., Jain E., Barcellona M. N.. et al. Integrin and syndecan binding peptide-conjugated alginate hydrogel for modulation of nucleus pulposus cell phenotype. Biomaterials. 2021;277:121113. doi: 10.1016/j.biomaterials.2021.121113. PubMed DOI PMC

Li Q., Zhang H., Pan J.. et al. Tripeptide-based macroporous hydrogel improves the osteogenic microenvironment of stem cells. J. Mater. Chem. B. 2021;9:6056–6067. doi: 10.1039/D1TB01175H. PubMed DOI

Hung B. P., Gonzalez-Fernandez T., Lin J. B.. et al. Multi-peptide presentation and hydrogel mechanics jointly enhance therapeutic duo-potential of entrapped stromal cells. Biomaterials. 2020;245:119973. doi: 10.1016/j.biomaterials.2020.119973. PubMed DOI PMC

Sung V., Stubbs J. T., Fisher L.. et al. Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the alpha­(v)­beta3 and alpha­(v)­beta5 integrins. J. Cell. Physiol. 1998;176:482–494. doi: 10.1002/(SICI)1097-4652(199809)176:3<482::AID-JCP5>3.0.CO;2-K. PubMed DOI

Karadag A., Ogbureke K. U. E., Fedarko N. S.. et al. Bone sialoprotein, matrix metalloproteinase 2, and alpha­(v)­beta3 integrin in osteotropic cancer cell invasion. J. Natl. Cancer Inst. 2004;96:956–965. doi: 10.1093/jnci/djh169. PubMed DOI

Bellahcène A., Bonjean K., Fohr B.. et al. Bone sialoprotein mediates human endothelial cell attachment and migration and promotes angiogenesis. Circ. Res. 2000;86:885–891. doi: 10.1161/01.RES.86.8.885. PubMed DOI

Prowse A. B. J., Chong F., Gray P. P.. et al. Stem cell integrins: Implications for ex-vivo culture and cellular therapies. Stem Cell Res. 2011;6:1–12. doi: 10.1016/j.scr.2010.09.005. PubMed DOI

Jia J., Coyle R. C., Richards D. J.. et al. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomater. 2016;45:110–120. doi: 10.1016/j.actbio.2016.09.006. PubMed DOI PMC

Zhou P., Yin B., Zhang R.. et al. Molecular basis for RGD-containing peptides supporting adhesion and self-renewal of human pluripotent stem cells on synthetic surface. Colloids Surf., B. 2018;171:451–460. doi: 10.1016/j.colsurfb.2018.07.050. PubMed DOI

Golunova A., Velychkivska N., Mikšovská Z.. et al. Direct and Indirect Biomimetic Peptide Modification of Alginate: Efficiency, Side Reactions, and Cell Response. Int. J. Mol. Sci. 2021;22:5731. doi: 10.3390/ijms22115731. PubMed DOI PMC

Vuckovac M., Backholm M., Timonen J. V. I., Ras R. H. A.. Viscosity-enhanced droplet motion in sealed superhydrophobic capillaries. Sci. Adv. 2020;6:eaba5197. doi: 10.1126/sciadv.aba5197. PubMed DOI PMC

Varagnolo S., Mistura G., Pierno M., Sbragaglia M.. Sliding droplets of Xanthan solutions: A joint experimental and numerical study. Eur. Phys. J. E. 2015;38:126. doi: 10.1140/epje/i2015-15126-0. PubMed DOI

Li Z., Huang S., Liu Y., Yao B., Hu T., Shi H., Xie J., Fu X.. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Sci. Rep. 2018;8:8020. doi: 10.1038/s41598-018-26407-3. PubMed DOI PMC

Li H., Tan Y. J., Leong K. F.. et al. 3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. ACS Appl. Mater. Interfaces. 2017;9:20086–20097. doi: 10.1021/acsami.7b04216. PubMed DOI

Jia W., Gungor-Ozkerim P. S., Zhang Y. S.. et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58–68. doi: 10.1016/j.biomaterials.2016.07.038. PubMed DOI PMC

Aflatoonian B., Ahrlund-Richter L.. The International Stem Cell Initiative et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 2007;25:803–816. doi: 10.1038/nbt1318. PubMed DOI

Streit L., Jaros J., Sedlakova V.. et al. A Comprehensive In Vitro Comparison of Preparation Techniques for Fat Grafting. Plast. Reconstr. Surg. 2017;139:670e–682e. doi: 10.1097/PRS.0000000000003124. PubMed DOI

Ouyang L., Yao R., Zhao Y.. et al. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8:035020. doi: 10.1088/1758-5090/8/3/035020. PubMed DOI

Schneider C. A., Rasband W. S., Eliceiri K. W.. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Zudaire E., Gambardella L., Kurcz C.. et al. A Computational Tool for Quantitative Analysis of Vascular Networks. PLoS One. 2011;6:e27385. doi: 10.1371/journal.pone.0027385. PubMed DOI PMC

R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.

Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, 2016.

Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2021. https://CRAN.R-project.org/package=rstatix (accessed January 14, 2025).

Dawson, C. ggprism: A ‘ggplot2’ Extension Inspired by ‘GraphPad Prism’. 2021. https://CRAN.R-project.org/package=ggprism (accessed January 14, 2025).

Siti-Ismail N., Bishop A. E., Polak J. M.. et al. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials. 2008;29:3946–3952. doi: 10.1016/j.biomaterials.2008.04.027. PubMed DOI

Chaudhuri O., Koshy S. T., Branco da C. C.. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 2014;13:970–978. doi: 10.1038/nmat4009. PubMed DOI

Engler A. J., Sen S., Sweeney H. L.. et al. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI

Sun M., Chi G., Xu J., Tan Y., Xu J., Lv S., Xu Z., Xia Y., Li L., Li Y.. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Res. Therapy. 2018;9:52. doi: 10.1186/s13287-018-0798-0. PubMed DOI PMC

Rowley J. A., Madlambayan G., Mooney D. J.. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53. doi: 10.1016/S0142-9612(98)00107-0. PubMed DOI

Lorson T., Ruopp M., Nadernezhad A.. et al. Sterilization Methods and Their Influence on Physicochemical Properties and Bioprinting of Alginate as a Bioink Component. ACS Omega. 2020;5:6481–6486. doi: 10.1021/acsomega.9b04096. PubMed DOI PMC

Chansoria P., Narayanan L. K., Wood M.. et al. Effects of Autoclaving, EtOH, and UV Sterilization on the Chemical, Mechanical, Printability, and Biocompatibility Characteristics of Alginate. ACS Biomater. Sci. Eng. 2020;6:5191–5201. doi: 10.1021/acsbiomaterials.0c00806. PubMed DOI

ISO . ISO 11137–2:2013­(en), Sterilization of health care products  Radiation  Part 2: Establishing the sterilization dose. ISO/TC 198 - Sterilization of health care products. 2013. https://www.iso.org/obp/ui/en/#iso:std:iso:11137:-2:ed-3:v1:en (accessed Dec 1, 2024).

Lee D. W., Choi W. S., Byun M. W.. et al. Effect of γ-Irradiation on Degradation of Alginate. J. Agric. Food Chem. 2003;51:4819–4823. doi: 10.1021/jf021053y. PubMed DOI

King K.. Changes in the functional properties and molecular weight of sodium alginate following γ irradiation. Food Hydrocolloids. 1994;8:83–96. doi: 10.1016/S0268-005X(09)80035-0. DOI

Cai B., Kilian D., Ramos M. D.. et al. Diffusion-Based 3D Bioprinting Strategies. Adv. Sci. (Weinh) 2023;11:2306470. doi: 10.1002/advs.202306470. PubMed DOI PMC

Raddatz L., Lavrentieva A., Pepelanova I.. et al. Development and Application of an Additively Manufactured Calcium Chloride Nebulizer for Alginate 3D-Bioprinting Purposes. J. Funct. Biomater. 2018;9:63. doi: 10.3390/jfb9040063. PubMed DOI PMC

Naumenko E., Akhatova F., Rozhina E.. et al. Revisiting the Cytotoxicity of Cationic Polyelectrolytes as a Principal Component in Layer-by-Layer Assembly Fabrication. Pharmaceutics. 2021;13:1230. doi: 10.3390/pharmaceutics13081230. PubMed DOI PMC

Mayandi V., Xi Q., Leng Goh E. T., Koh S. K., Jie Toh T. Y., Barathi V. A., Urf Turabe Fazil M. H., Somaraju Chalasani M. L., Varadarajan J., Jeng Ting D. S.. et al. Rational Substitution of ε-Lysine for α-Lysine Enhances the Cell and Membrane Selectivity of Pore-Forming Melittin. J. Med. Chem. 2020;63:3522–3537. doi: 10.1021/acs.jmedchem.9b01846. PubMed DOI

Armstrong J. P. K., Burke M., Carter B. M.. et al. 3D Bioprinting Using a Templated Porous Bioink. Adv. Healthcare Mater. 2016;5:1724–1730. doi: 10.1002/adhm.201600022. PubMed DOI

Chu Y., Huang L., Hao W.. et al. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Biomed Mater. 2021;16:064102. doi: 10.1088/1748-605X/ac2595. PubMed DOI

Simpson N. E., Stabler C. L., Simpson C. P.. et al. The role of the CaCl2–guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials. 2004;25:2603–2610. doi: 10.1016/j.biomaterials.2003.09.046. PubMed DOI

Lee M. N., Hwang H.-S., Oh S.-H.. et al. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp. Mol. Med. 2018;50:1–16. doi: 10.1038/s12276-018-0170-6. PubMed DOI PMC

Zhang H., Sun F., Wang J.. et al. Combining Injectable Plasma Scaffold with Mesenchymal Stem/Stromal Cells for Repairing Infarct Cavity after Ischemic Stroke. Aging Dis. 2017;8:203–214. doi: 10.14336/AD.2017.0305. PubMed DOI PMC

Faulkner-Jones A., Zamora V., Hortigon-Vinagre M. P.. et al. A Bioprinted Heart-on-a-Chip with Human Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Evaluation. Bioengineering. 2022;9:32. doi: 10.3390/bioengineering9010032. PubMed DOI PMC

Fonseca K. B., Bidarra S. J., Oliveira M. J.. et al. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Acta Biomater. 2011;7:1674–1682. doi: 10.1016/j.actbio.2010.12.029. PubMed DOI

Mironov V., Visconti R. P., Kasyanov V.. et al. Organ printing: Tissue spheroids as building blocks. Biomaterials. 2009;30:2164–2174. doi: 10.1016/j.biomaterials.2008.12.084. PubMed DOI PMC

Banerjee D., Singh Y. P., Datta P.. et al. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials. 2022;291:121881. doi: 10.1016/j.biomaterials.2022.121881. PubMed DOI

Neves M. I., Moroni L., Barrias C. C.. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Front Bioeng Biotechnol. 2020;8:665. doi: 10.3389/fbioe.2020.00665. PubMed DOI PMC

Rosiak P., Latanska I., Paul P.. et al. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules. 2021;26:7264. doi: 10.3390/molecules26237264. PubMed DOI PMC

Cavalcanti-Adam E. A., Aydin D., Hirschfeld-Warneken V. C.. et al. Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location. HFSP J. 2008;2:276–285. doi: 10.2976/1.2976662. PubMed DOI PMC

Maheshwari G., Brown G., Lauffenburger D. A.. et al. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 2000;113:1677–1686. doi: 10.1242/jcs.113.10.1677. PubMed DOI

Lee J. W., Kim H., Lee K. Y.. Effect of spacer arm length between adhesion ligand and alginate hydrogel on stem cell differentiation. Carbohydr. Polym. 2016;139:82–89. doi: 10.1016/j.carbpol.2015.12.024. PubMed DOI

Follin B., Juhl M., Cohen S.. et al. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: Phenotypic and immunomodulatory evaluation. Cytotherapy. 2015;17:1104–1118. doi: 10.1016/j.jcyt.2015.04.008. PubMed DOI

Indana D., Agarwal P., Bhutani N., Chaudhuri O.. Viscoelasticity and Adhesion Signaling in Biomaterials Control Human Pluripotent Stem Cell Morphogenesis in 3D Culture. Adv. Mater. 2021;33:e2101966. doi: 10.1002/adma.202101966. PubMed DOI

Son J., Mohamed H. J., Ha W.. et al. Bioprinting of pre-vascularized constructs for enhanced in vivo neo-vascularization. Biofabrication. 2023;15:034101. doi: 10.1088/1758-5090/acc9de. PubMed DOI

Wang X., Liu X., Liu W., Liu Y., Li A., Qiu D., Zheng X., Gu Q.. 3D bioprinting microgels to construct implantable vascular tissue. Cell Proliferation. 2023;56:e13456. doi: 10.1111/cpr.13456. PubMed DOI PMC

Fowler M., Moreno Lozano A., Krause J., Bednarz P., Pandey S., Ghayour M., Zhang Q., Veiseh O.. Guiding vascular infiltration through architected GelMA/PEGDA hydrogels: an in vivo study of channel diameter, length, and complexity. Biomater. Sci. 2025;13:2951–2960. doi: 10.1039/d5bm00193e. PubMed DOI

Nulty J., Freeman F. E., Browe D. C.. et al. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021;126:154–169. doi: 10.1016/j.actbio.2021.03.003. PubMed DOI

Onak Pulat G., Gökmen O., Çevik Z. B. Y., Karaman O.. Role of functionalized self-assembled peptide hydrogels in in vitro vasculogenesis. Soft Matter. 2021;17:6616–6626. doi: 10.1039/d1sm00680k. PubMed DOI

Yu Y., Guo L., Wang W.. et al. Dual-peptide-modified alginate hydrogels for the promotion of angiogenesis. Sci. China Chem. 2015;58:1866–1874. doi: 10.1007/s11426-015-5451-5. DOI

Kambe Y., Murakoshi A., Urakawa H.. et al. Vascular induction and cell infiltration into peptide-modified bioactive silk fibroin hydrogels. J. Mater. Chem. B. 2017;5:7557–7571. doi: 10.1039/C7TB02109G. PubMed DOI

Abdul Sisak M. A., Louis F., Matsusaki M.. In vitro fabrication and application of engineered vascular hydrogels. Polym. J. 2020;52:871–881. doi: 10.1038/s41428-020-0331-z. DOI

Xie R., Zheng W., Guan L., Ai Y., Liang Q.. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues. Small. 2020;16:1902838. doi: 10.1002/smll.201902838. PubMed DOI

O’Connor C., Brady E., Zheng Y.. et al. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 2022;7:702–716. doi: 10.1038/s41578-022-00447-8. PubMed DOI PMC

Yang G., Mahadik B., Choi J. Y.. et al. Vascularization in tissue engineering: fundamentals and state-of-art. Prog. Biomed Eng. (Bristol) 2020;2:012002. doi: 10.1088/2516-1091/ab5637. PubMed DOI PMC

Antunes M., Bonani W., Reis R. L.. et al. Development of alginate-based hydrogels for blood vessel engineering. Biomater. Adv. 2022;134:112588. doi: 10.1016/j.msec.2021.112588. PubMed DOI

Teixeira F. C., Chaves S., Torres A. L.. et al. Engineering a Vascularized 3D Hybrid System to Model Tumor-Stroma Interactions in Breast Cancer. Front Bioeng Biotechnol. 2021;9:647031. doi: 10.3389/fbioe.2021.647031. PubMed DOI PMC

Bidarra S. J., Barrias C. C., Fonseca K. B.. et al. Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials. 2011;32:7897–7904. doi: 10.1016/j.biomaterials.2011.07.013. PubMed DOI

Jeon O., Lee Y. B., Hinton T. J., Feinberg A., Alsberg E.. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. Mater. Today Chem. 2019;12:61–70. doi: 10.1016/j.mtchem.2018.11.009. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...