Single-Photon Single-Particle Tracking
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R35 GM148237
NIGMS NIH HHS - United States
PubMed
41279482
PubMed Central
PMC12632838
DOI
10.1101/2025.01.10.632389
PII: 2025.01.10.632389
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Mobile biological particles, ranging from biomolecules to viral capsids, often diffuse faster than 1μm2/s, resulting in severe motion blur in conventional millisecond-scale imaging. While shorter exposures may help provide the data needed to capture faster dynamics, quantization of signal intensity per pixel at such exposures eventually interferes with our ability to track. In the extreme case of binary (1-bit-per-pixel) output-where going from 8-bit conventional grayscale imaging to 1-bit directly corresponds to a 255-fold faster acquisition rate-no existing tracking methods can be used, as these methods fundamentally rely on intensity-based localization, which does not leverage the binary output. For this reason, we introduce single-photon single-particle tracking (SP2T), a framework that bypasses localization and linking by estimating particle numbers and trajectories directly by jointly considering 1-bit image stacks. While cameras capable of microsecond-scale exposures, typically based on scientific CMOS (sCMOS) sensors or single-photon detectors (SPDs), are increasingly central to this effort, in this work, we focus on single-photon avalanche diode (SPAD). Single-photon detector (SPD) arrays offer microsecond exposures over large fields of view (512×512 pixels). SP2T accounts for detector-specific artifacts such as hot and cold pixels and is validated with programmed fluorescent bead trajectories and biological systems (aerolysin and ganglioside). These experiments, in addition to simulations, reveal that analysis performed with longer exposures can bias diffusion coefficient estimates (up to 70% for particles with diffusion coefficients of 5μm2/s) and distort jump-distance distributions, underscoring the need for photon-by-photon tracking in fast-diffusion regimes. Moreover, SP2T delivers substantial computational gains-achieving more than a 50-fold GPU speedup over CPU-based likelihood tracking methods that assume continuous intensity, when compared on datasets with the same frame size and number of frames. Together, these advances establish SP2T as a robust, data-efficient solution for unbiased particle tracking with millisecond-to-microsecond temporal resolution.
Center for Biological Physics Arizona State University Tempe AZ USA
Department of Physics Arizona State University Tempe AZ USA
Faculty of Science Charles University Prague Czech Republic
Institute of Bioengineering School of Engineering EPFL Lausanne Switzerland
J Heyrovský Institute of Physical Chemistry Dolejškova 2155 3 CZ 18223 Prague 8 Czech Republic
NCCR Bio Inspired Materials EPFL Lausanne Switzerland
School of Molecular Sciences Arizona State University Tempe AZ USA
Zobrazit více v PubMed
Betzig E. et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313, 1642. issn: 1095–9203 (Sept. 2006). PubMed
Rust M. J., Bates M. & Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793. issn: 1548–7105 (Aug. 2006). PubMed PMC
Hess S. T., Girirajan T. P. & Mason M. D. Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophys. J. 91, 4258. ISSN: 0006–3495 (Dec. 2006). PubMed PMC
Lee A., Tsekouras K., Calderon C., Bustamante C. & Pressé S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem. Rev. 117, 7276. ISSN: 1520–6890 (Apr. 2017). PubMed PMC
Tavakoli M., Taylor J. N., Li C.-B., Komatsuzaki T. & Pressé S. in Advances in Chemical Physics 205 (Wiley, Aug. 2017). ISBN: 9781119324560.
Kervrann C., Sanchez Sorzano C. O., Acton S. T., Olivo-Marin J.-C. & Unser M. A Guided Tour of Selected Image Processing and Analysis Methods for Fluorescence and Electron Microscopy. IEEE J. Sel. Top. Signal Process. 10, 6. ISSN: 1941–0484 (Feb. 2016).
Smal I., Loog M., Niessen W. & Meijering E. Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy. IEEE Trans. Med. Imaging 29, 282. ISSN: 1558–254X (Feb. 2010). PubMed
Sage D. et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods 12, 717. ISSN: 1548–7105 (June 2015). PubMed
Von Diezmann L., Shechtman Y. & Moerner W. E. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. Chem. Rev. 117, 7244. ISSN: 1520–6890 (Feb. 2017). PubMed PMC
Beghin A. et al. Localization-based super-resolution imaging meets high-content screening. Nat. Methods 14, 1184. ISSN: 1548–7105 (Oct. 2017). PubMed
Patterson G., Davidson M., Manley S. & Lippincott-Schwartz J. Superresolution Imaging using Single-Molecule Localization. Ann. Rev. Phys. Chem. 61, 345. ISSN: 1545–1593 (Mar. 2010). PubMed PMC
Egner A. et al. Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters. Biophys. J. 93, 3285. ISSN: 0006–3495 (Nov. 2007). PubMed PMC
Thompson R. E., Larson D. R. & Webb W. W. Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophys. J. 82, 2775. ISSN: 0006–3495 (May 2002). PubMed PMC
Holden S. J., Uphoff S. & Kapanidis A. N. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat. Methods 8, 279. ISSN: 1548–7105 (Mar. 2011). PubMed
Balzarotti F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606. ISSN: 1095–9203 (Feb. 2017). PubMed
Reinhardt S. C. M. et al. Ångström-resolution fluorescence microscopy. Nature 617, 711. ISSN: 1476–4687 (May 2023). PubMed PMC
Padmanabhan P. et al. Single-molecule imaging reveals Tau trapping at nanometer-sized dynamic hot spots near the plasma membrane that persists after microtubule perturbation and cholesterol depletion. en. EMBO J. 41, e111265. ISSN: 1460–2075 (Oct. 2022). PubMed PMC
Yao Y. et al. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. en. Front. Mol. Biosci. 7, 193. ISSN: 2296–889X (Aug. 2020). PubMed PMC
Patel S. et al. Brief update on endocytosis of nanomedicines. Adv. Drug Deliv. Rev. 144, 90. ISSN: 0169–409X (Apr. 2019). PubMed PMC
Zhang Q. et al. Entry Dynamics of Single Ebola Virus Revealed by Force Tracing. ACS Nano 14, 7046. ISSN: 1936–086X (May 2020). PubMed
Arista-Romero M., Pujals S. & Albertazzi L. Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design. en. Front. Bioeng. Biotechnol. 9, 647874. ISSN: 2296–4185 (Mar. 2021). PubMed PMC
Adamczyk Z., Batys P. & Barbasz J. SARS-CoV-2 virion physicochemical characteristics pertinent to abiotic substrate attachment. Curr. Opin. Colloid Interface Sci. 55, 101466. ISSN: 1359–0294 (Oct. 2021). PubMed PMC
Schavemaker P. E., Boersma A. J. & Poolman B. How Important is Protein Diffusion in Prokaryotes? en. Front. Mol. Biosci. 5, 93. ISSN: 2296–889X (Nov. 2018). PubMed PMC
Marin Z. & Ries J. Evaluating MINFLUX experimental performance in silico (Apr. 2025).
Sgouralis I. et al. BNP-Track: a framework for superresolved tracking. Nat. Methods 21, 1716. ISSN: 1548–7105 (Sept. 2024). PubMed PMC
Elf J., Li G.-W. & Xie X. S. Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell. Science 316, 1191. ISSN: 1095–9203 (May 2007). PubMed PMC
Flors C. et al. A Stroboscopic Approach for Fast Photoactivation-Localization Microscopy with Dronpa Mutants. J. Am. Chem. Soc. 129, 13970. ISSN: 1520–5126 (Oct. 2007). PubMed
Heckert A., Dahal L., Tjian R. & Darzacq X. Recovering mixtures of fast-diffusing states from short single-particle trajectories. eLife 11. ISSN: 2050–084X (Sept. 2022).
Couteau C. et al. Applications of single photons to quantum communication and computing. Nat. Rev. Phys. 5, 326. ISSN: 2522–5820 (June 2023).
Bruschini C., Homulle H., Antolovic I. M., Burri S. & Charbon E. Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci. Appl. 8, 87. ISSN: 2047–7538 (Sept. 2019). PubMed PMC
Ulku A. C. et al. A 512 × 512 SPAD Image Sensor with Integrated Gating for Widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 25, 1. ISSN: 1558–4542 (Jan. 2019).
Castello M. et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods 16, 175. ISSN: 1548–7105 (Feb. 2019). PubMed
Jazani S., Sgouralis I. & Pressé S. A method for single molecule tracking using a conventional single-focus confocal setup. J. Chem. Phys. 150. ISSN: 1089–7690 (Mar. 2019).
Buttafava M. et al. SPAD-based asynchronous-readout array detectors for image-scanning microscopy. Optica 7, 755. ISSN: 2334–2536 (July 2020).
Smith J. T. et al. In vitro and in vivo NIR fluorescence lifetime imaging with a time-gated SPAD camera. Optica 9, 532. ISSN: 2334–2536 (May 2022). PubMed PMC
Jazani S., Xu L. W. Q., Sgouralis I., Shepherd D. P. & Pressé S. Computational Proposal for Tracking Multiple Molecules in a Multifocus Confocal Setup. ACS Photonics 9, 2489. ISSN: 2330–4022 (July 2022). PubMed PMC
Bucci A. et al. 4D Single-particle tracking with asynchronous read-out single-photon avalanche diode array detector. Nat. Commun. 15, 6188. ISSN: 2041–1723 (July 2024). PubMed PMC
Ceccarelli F. et al. Recent Advances and Future Perspectives of Single-Photon Avalanche Diodes for Quantum Photonics Applications. Adv. Quantum Technol. 4, 2000102. ISSN: 2511–9044 (Feb. 2021).
Slenders E. et al. Confocal-based fluorescence fluctuation spectroscopy with a SPAD array detector. Light Sci. Appl. 10, 31. ISSN: 2047–7538 (Feb. 2021). PubMed PMC
Madonini F. & Villa F. Single Photon Avalanche Diode Arrays for Time-Resolved Raman Spectroscopy. Sens. 21, 4287. ISSN: 1424–8220 (June 2021).
Cusini I. et al. Historical Perspectives, State of Art and Research Trends of SPAD Arrays and Their Applications (Part II: SPAD Arrays). Front. Phys. 10. ISSN: 2296–424X (July 2022).
Lelek M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39. ISSN: 2662–8449 (June 2021). PubMed PMC
Gyongy I. et al. High-speed particle tracking in microscopy using SPAD image sensors in High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management (eds Tsia K. K. & Goda K.) (SPIE, Feb. 2018), 105050A.
Kilic Z., Sgouralis I. & Pressé S. Generalizing HMMs to Continuous Time for Fast Kinetics: Hidden Markov Jump Processes. Biophys. J. 120, 409. ISSN: 0006–3495 (Feb. 2021). PubMed PMC
Kilic Z. et al. Extraction of rapid kinetics from smFRET measurements using integrative detectors. Cell Rep. Phys. Sci. 2, 100409. ISSN: 2666–3864 (May 2021). PubMed PMC
Bryan IV J. S., Sgouralis I. & Pressé S. Diffraction-limited molecular cluster quantification with Bayesian nonparametrics. Nat. Comput. Sci. 2, 102. ISSN: 2662–8457 (Feb. 2022). PubMed PMC
Phillips R., Kondev J., Theriot J. & Garcia H. Physical biology of the cell Second edition, first issued in paperback (ed Phillips R.) Hier auch später erschienene, unveränderte Nachdrucke. 1057 pp. ISBN: 9780815344506 (CRC Press, Boca Raton, 2019).
Pressé S. & Sgouralis I. Data Modeling for the Sciences: Applications, Basics, Computations ISBN: 9781009098502 (Cambridge University Press, Aug. 2023).
Tinevez J.-Y. et al. TrackMate: An open and extensible platform for single-particle tracking. Methods 115, 80. ISSN: 1046–2023 (Feb. 2017). PubMed
Kay S. M. Fundamentals of Statistical Signal Processing 20. pr. (ed Kay S. M.) Estimation theory. 595 pp. ISBN: 0133457117 (Prentice Hall PTR, Upper Saddle River, NJ, 2013).
Cressiot B. et al. Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. ACS Sens. 4., 530. ISSN: 2379–3694 (Feb. 2019). PubMed
Mayer S. F., Cao C. & Dal Peraro M. Biological nanopores for single-molecule sensing. Science 25 (2022).
Sarmento M. J. et al. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. Biophy. J. 120, 5530. ISSN: 0006–3495 (Dec. 2021).
Davidović D. et al. Which Moiety Drives Gangliosides to Form Nanodomains? J. Phys. Chem. Lett. 14, 5791. ISSN: 1948–7185 (June 2023). PubMed PMC
Svobodová B. et al. Revised Diffusion Law Permits Quantitative Nanoscale Characterization of Membrane Organization. Anal. Chem. 97, 11478 (2025). PubMed PMC
Hsieh C.-L., Spindler S., Ehrig J. & Sandoghdar V. Tracking Single Particles on Supported Lipid Membranes: Multimobility Diffusion and Nanoscopic Confinement. J. Phys. Chem. B 118, 1545. ISSN: 1520–5207 (Jan. 2014). PubMed
Kiessling V., Yang S.-T. & Tamm L. K. in Lipid Domains 1 (Elsevier, 2015).
Peraro M. D. & van der Goot F. G. Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol. 14, 77. ISSN: 1740–1534 (Jan. 2016). PubMed
Cirauqui N., Abriata L. A., van der Goot F. G. & Dal Peraro M. Structural, physico-chemical and dynamic features conserved within the aerolysin pore-forming toxin family. Sci. Rep. 7, 13932. ISSN: 2045–2322 (Oct. 2017). PubMed PMC
Chenouard N., Bloch I. & Olivo-Marin J. Multiple Hypothesis Tracking for Cluttered Biological Image Sequences. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2736. ISSN: 2160–9292 (Nov. 2013). PubMed
Chenouard N. et al. Objective comparison of particle tracking methods. Nat. Methods 11, 281. ISSN: 1548–7105 (Jan. 2014). PubMed PMC
Prokazov Y., Turbin E., Weber A., Hartig R. & Zuschratter W. Position sensitive detector for fluorescence lifetime imaging. J. Instrum. 9, C12015. ISSN: 1748–0221 (Dec. 2014).
Stonehill L. C. et al. Cross-Strip Anodes for High-Rate Single-Photon Imaging in 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) (2009), 1417.
Cook J. M. et al. A photon-counting camera system developed from a crossed-strip detector in Biosensing and Nanomedicine V (eds Mohseni H., Agahi M. H. & Razeghi M.) 8460 (SPIE, Oct. 2012), 84601C.
Siegmund O. H. W. et al. Cross strip microchannel plate imaging photon counters with high time resolution in Advanced Photon Counting Techniques IV (eds Itzler M. A. & Campbell J. C.) 7681 (SPIE, Apr. 2010), 768109.
Fazel M. et al. Building Fluorescence Lifetime Maps Photon-by-Photon by Leveraging Spatial Correlations. ACS Photonics 10, 3558. ISSN: 2330–4022 (Sept. 2023). PubMed PMC
Fluorescence Quantum Yields and Lifetimes for Alexa Fluor Dyes—Table https://www.thermofisher.com/us/en/home/references/molecular-probes-the-handbook/tables/fluorescence-quantum-yields-and-lifetimes-for-alexa-fluor-dyes.html.
Fazel M. et al. Fluorescence microscopy: A statistics-optics perspective. Rev. Mod. Phys. 96, 025003. ISSN: 1539–0756 (2 June 2024).
Goudie R. J. B., Turner R. M., De Angelis D. & Thomas A. MultiBUGS: A Parallel Implementation of the BUGS Modeling Framework for Faster Bayesian Inference. J. Stat. Softw. 95, 1. ISSN: 1548–7660 (2020).
Luengo D., Martino L., Bugallo M., Elvira V. & Särkkä S. A survey of Monte Carlo methods for parameter estimation. EURASIP J. Adv. Signal Process. 2020, 25. ISSN: 1687–6180 (May 2020).
Wang X., Jin Y., Schmitt S. & Olhofer M. Recent Advances in Bayesian Optimization. ACM Comput. Surv. 55, 1. ISSN: 1557–7341 (July 2023).
Foreman-Mackey D., Hogg D. W., Lang D. & Goodman J. emcee: The MCMC Hammer. Publ. Astron. Soc. Pac. 125, 306. ISSN: 1538–3873 (Mar. 2013).
Ronceray N. et al. Wide-field fluorescence lifetime imaging of single molecules with a gated single-photon camera. Light Sci. Appl. 14. ISSN: 2047–7538 (Aug. 2025).
Ronceray N. et al. Liquid-activated quantum emission from pristine hexagonal boron nitride for nanofluidic sensing. Nat. Mater. 22, 1236. ISSN: 1476–4660 (Aug. 2023). PubMed PMC
Mayer S. F. et al. Lumen charge governs ion transport in