Effect of Different Prebiotic Saccharides on Listeria monocytogenes Adherence to Human Adenocarcinoma Caco-2 Cell Line
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MEYS Grant No.: LM2023064
Infrastructure for Promoting Metrology in Food and Nutrition in the Czech Republic
PubMed
41296395
PubMed Central
PMC12650974
DOI
10.3390/cimb47110891
PII: cimb47110891
Knihovny.cz E-zdroje
- Klíčová slova
- Listeria monocytogenes, adherence, beta-(1,3)-D-glucan, oligosaccharides, pathogen, prebiotics,
- Publikační typ
- časopisecké články MeSH
Listeria monocytogenes (LM) is one of the most emerging pathogens responsible for the serious foodborne disease listeriosis. The risk of disease outbreaks can be reduced by suppressing the adherence of LM to the intestinal epithelial cells. This effect can be achieved by prebiotic supplementation. The aim of this work was to determine the effect of prebiotics beta-(1,3)-D-glucan, inulin, fructooligosaccharides, galactooligosaccharides, lactulose, raffinose, stachyose, human milk oligosaccharides (HMOs), and 2'-fucosyllactose on the ability of LM to adhere to the human adenocarcinoma Caco-2 cell line. Despite strain-specific variability, a statistically significant reduction in LM adhesion to intestinal epithelial cells was observed in the presence of beta-(1,3)-D-glucan (~60% reduction), inulin (~46%), and HMOs (~44%). In contrast, the remaining tested prebiotics did not show a significant impact on LM adhesion. These findings highlight the potential of specific prebiotics, especially beta-glucans, to limit LM adherence, suggesting a protective effect for the host.
Zobrazit více v PubMed
European Food Safety Authority. European Centre for Disease Prevention and Control The European Union One Health 2020 Zoonoses Report. EFSA J. 2021;19:e06971. doi: 10.2903/j.efsa.2021.6971. PubMed DOI PMC
Bhunia A.K. Foodborne Microbial Pathogens, Mechanisms and Pathogenesis. Springer; New York, NY, USA: 2018.
Ravindhiran R., Sivarajan K., Sekar J.N., Murugesan R., Dhandapani K. Listeria monocytogenes an Emerging Pathogen: A Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions. Microb. Ecol. 2023;86:2231–2251. doi: 10.1007/s00248-023-02269-9. PubMed DOI
Schardt J., Jones G., Müller-Herbst S., Schauer K., D’Orazio S.E.F., Fuchs T.M. Comparison between Listeria sensu stricto and Listeria sensu lato Strains Identifies Novel Determinants Involved in Infection. Sci. Rep. 2017;7:17821. doi: 10.1038/s41598-017-17570-0. PubMed DOI PMC
Azari S., Johnson L.J., Webb A., Kozlowski S.M., Zhang X., Rood K., Amer A., Seveau S. Hofbauer Cells Spread Listeria monocytogenes among Placental Cells and Undergo Pro-Inflammatory Reprogramming While Retaining Production of Tolerogenic Factors. mBio. 2021;12:10-1128. doi: 10.1128/mBio.01849-21. PubMed DOI PMC
Farber J.M., Peterkin P.I. Listeria monocytogenes, a Food-Borne Pathogen. Microbiol. Rev. 1991;55:476–511. doi: 10.1128/mr.55.3.476-511.1991. PubMed DOI PMC
Shamloo E., Hosseini H., Moghadam A.Z., Larsen H.M., Haslberger A., Alebouyeh M. Importance of Listeria monocytogenes in Food Safety: A Review of Its Prevalence, Detection, and Antibiotic Resistance. Iran. J. Vet. Res. 2019;20:241. PubMed PMC
Radoshevich L., Cossart P. Listeria monocytogenes: Towards a Complete Picture of Its Physiology and Pathogenesis. Nat. Rev. Microbiol. 2018;16:32–46. doi: 10.1038/nrmicro.2017.126. PubMed DOI
Bae D., Seo K.S., Zhang T., Wang C. Characterization of a Potential Listeria monocytogenes Virulence Factor Associated with Attachment to Fresh Produce. Appl. Environ. Microbiol. 2013;79:6855. doi: 10.1128/AEM.01006-13. PubMed DOI PMC
Burkholder K.M., Bhunia A.K. Listeria monocytogenes Uses Listeria Adhesion Protein (LAP) To Promote Bacterial Transepithelial Translocation and Induces Expression of LAP Receptor Hsp60. Infect. Immun. 2010;78:5062. doi: 10.1128/IAI.00516-10. PubMed DOI PMC
Sauer J.-D., Herskovits A.A., O’Riordan M.X.D. Metabolism of the Gram-Positive Bacterial Pathogen Listeria monocytogenes. Microbiol. Spectr. 2019;7 doi: 10.1128/microbiolspec.GPP3-0066-2019. PubMed DOI PMC
Feltham L., Moran J., Goldrick M., Lord E., Spiller D.G., Cavet J.S., Muldoon M., Roberts I.S., Paszek P. Bacterial Aggregation Facilitates Internalin-Mediated Invasion of Listeria monocytogenes. Front. Cell Infect. Microbiol. 2024;14:1411124. doi: 10.3389/fcimb.2024.1411124. PubMed DOI PMC
Renzoni A., Cossart P., Dramsl S. PrfA, the Transcriptional Activator of Virulence Genes, Is Upregulated during Interaction of Listeria monocytogenes with Mammalian Cells and in Eukaryotic Cell Extracts. Mol. Microbiol. 1999;34:552–561. doi: 10.1046/j.1365-2958.1999.01621.x. PubMed DOI
Alvarez D.E., Agaisse H. The Metalloprotease Mpl Supports Listeria monocytogenes Dissemination through Resolution of Membrane Protrusions into Vacuoles. Infect. Immun. 2016;84:1806. doi: 10.1128/IAI.00130-16. PubMed DOI PMC
Koh S.Y., George S., Brözel V., Moxley R., Francis D., Kaushik R.S. Porcine Intestinal Epithelial Cell Lines as a New in Vitro Model for Studying Adherence and Pathogenesis of Enterotoxigenic Escherichia coli. Vet. Microbiol. 2008;130:191–197. doi: 10.1016/j.vetmic.2007.12.018. PubMed DOI
Hascoët A.S., Ripolles-avila C., Cervantes-huamán B.R.H., Rodríguez-jerez J.J. In Vitro Preformed Biofilms of Bacillus Safensis Inhibit the Adhesion and Subsequent Development of Listeria monocytogenes on Stainless-Steel Surfaces. Biomolecules. 2021;11:475. doi: 10.3390/biom11030475. PubMed DOI PMC
Dong Q., Lu X., Gao B., Liu Y., Aslam M.Z., Wang X., Li Z. Lactiplantibacillus Plantarum Subsp. Plantarum and Fructooligosaccharides Combination Inhibits the Growth, Adhesion, Invasion, and Virulence of Listeria monocytogenes. Foods. 2022;11:170. doi: 10.3390/foods11020170. PubMed DOI PMC
Becattini S., Pamer E.G. Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen. Pathogens. 2017;7:1. doi: 10.3390/pathogens7010001. PubMed DOI PMC
Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017;14:491–502. doi: 10.1038/nrgastro.2017.75. PubMed DOI
Kupfahl C., Geginat G., Hof H. Lentinan Has a Stimulatory Effect on Innate and Adaptive Immunity against Murine Listeria monocytogenes Infection. Int. Immunopharmacol. 2006;6:686–696. doi: 10.1016/j.intimp.2005.10.008. PubMed DOI
Tlaskalová-Hogenová H., Štěpánková R., Hudcovic T., Tučková L., Cukrowska B., Lodinová-Žádníková R., Kozáková H., Rossmann P., Bártová J., Sokol D., et al. Commensal Bacteria (Normal Microflora), Mucosal Immunity and Chronic Inflammatory and Autoimmune Diseases. Immunol. Lett. 2004;93:97–108. doi: 10.1016/j.imlet.2004.02.005. PubMed DOI
de Souza V.R., Menezes C.C., Cunha L.R., Pereira P.A.P., Pinto U.M. Probiotics and Prebiotics: Current Research and Future Trends. Caister Academic Press; Wymondham, NR, USA: 2015. Prebiotics: Technological Aspects and Human Health; pp. 275–288. DOI
Roberfroid M., Gibson G.R., Hoyles L., McCartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., et al. Prebiotic Effects: Metabolic and Health Benefits. Br. J. Nutr. 2010;104((Suppl. S2)):S1–S63. doi: 10.1017/S0007114510003363. PubMed DOI
Kong C., de Jong A., de Haan B.J., Kok J., de Vos P. Human Milk Oligosaccharides and Non-Digestible Carbohydrates Reduce Pathogen Adhesion to Intestinal Epithelial Cells by Decoy Effects or by Attenuating Bacterial Virulence. Food Res. Int. 2022;151:110867. doi: 10.1016/j.foodres.2021.110867. PubMed DOI
Monteagudo-Mera A., Rastall R.A., Gibson G.R., Charalampopoulos D., Chatzifragkou A. Adhesion Mechanisms Mediated by Probiotics and Prebiotics and Their Potential Impact on Human Health. Appl. Microbiol. Biotechnol. 2019;103:6463. doi: 10.1007/s00253-019-09978-7. PubMed DOI PMC
Shoaf K., Mulvey G.L., Armstrong G.D., Hutkins R.W. Prebiotic Galactooligosaccharides Reduce Adherence of Enteropathogenic Escherichia coli to Tissue Culture Cells. Infect. Immun. 2006;74:6920–6928. doi: 10.1128/IAI.01030-06. PubMed DOI PMC
Ebersbach T., Andersen J.B., Bergström A., Hutkins R.W., Licht T.R. Xylo-Oligosaccharides Inhibit Pathogen Adhesion to Enterocytes In Vitro. Res. Microbiol. 2012;163:22–27. doi: 10.1016/j.resmic.2011.10.003. PubMed DOI
Gibson G.R., Probert H.M., Van Loo J., Rastall R.A., Roberfroid M.B. Dietary Modulation of the Human Colonic Microbiota: Updating the Concept of Prebiotics. Nutr. Res. Rev. 2004;17:259–275. doi: 10.1079/NRR200479. PubMed DOI
Pujari R., Banerjee G. Impact of Prebiotics on Immune Response: From the Bench to the Clinic. Immunol. Cell Biol. 2021;99:255–273. doi: 10.1111/imcb.12409. PubMed DOI
Moroni O., Kheadr E., Boutin Y., Lacroix C., Fliss I. Inactivation of Adhesion and Invasion of Food-Borne Listeria monocytogenes by Bacteriocin-Producing Bifidobacterium Strains of Human Origin. Appl. Environ. Microbiol. 2006;72:6894–6901. doi: 10.1128/AEM.00928-06. PubMed DOI PMC
Poimenidou S.V., Skarveli A., Saxami G., Mitsou E.K., Kotsou M., Kyriacou A. Inhibition of Listeria monocytogenes Growth, Adherence and Invasion in Caco-2 Cells by Potential Probiotic Lactic Acid Bacteria Isolated from Fecal Samples of Healthy Neonates. Microorganisms. 2023;11:363. doi: 10.3390/microorganisms11020363. PubMed DOI PMC
Garriga M., Rubio R., Aymerich T., Ruas-Madiedo P. Potentially Probiotic and Bioprotective Lactic Acid Bacteria Starter Cultures Antagonise the Listeria monocytogenes Adhesion to HT29 Colonocyte-like Cells. Benef. Microbes. 2015;6:337–343. doi: 10.3920/BM2014.0056. PubMed DOI
Chen P., Reiter T., Huang B., Kong N., Weimer B.C. Prebiotic Oligosaccharides Potentiate Host Protective Responses Against L. monocytogenes Infection. Pathogens. 2017;6:68. doi: 10.3390/pathogens6040068. PubMed DOI PMC
Kodešová T., Mašlejová A., Vlková E., Musilová Š., Horváthová K., Salmonová H.Š. In Vitro Utilization of Prebiotics by Listeria monocytogenes. Microorganisms. 2024;12:1876. doi: 10.3390/microorganisms12091876. PubMed DOI PMC
Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria Spp.—Part 1: Detection Method. International Organization for Standardization (ISO); Geneva, Switzerland: [(accessed on 6 September 2024)]. Available online: https://www.iso.org/standard/60313.html.
Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC
McGinnis S., Madden T.L. BLAST: At the Core of a Powerful and Diverse Set of Sequence Analysis Tools. Nucleic Acids Res. 2004;32:W20–W25. doi: 10.1093/nar/gkh435. PubMed DOI PMC
Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A Taxonomically United Database of 16S RRNA Gene Sequences and Whole-Genome Assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC
Liu D., Lawrence M.L., Austin F.W., Ainsworth A.J. A Multiplex PCR for Species- and Virulence-Specific Determination of Listeria monocytogenes. J. Microbiol. Methods. 2007;71:133–140. doi: 10.1016/j.mimet.2007.08.007. PubMed DOI
Furrer B., Candrian U., Hoefelein C., Luethy J. Detection and Identification of Listeria monocytogenes in Cooked Sausage Products and in Milk by In Vitro Amplification of Haemolysin Gene Fragments. J. Appl. Bacteriol. 1991;70:372–379. doi: 10.1111/j.1365-2672.1991.tb02951.x. PubMed DOI
Zhang W., Knabel S.J. Multiplex PCR Assay Simplifies Serotyping and Sequence Typing of Listeria monocytogenes Associated with Human Outbreaks. J. Food Prot. 2005;68:1907–1910. doi: 10.4315/0362-028X-68.9.1907. PubMed DOI
Rockova S., Nevoral J., Rada V., Marsik P., Sklenar J., Hinkova A., Vlkova E., Marounek M. Factors Affecting the Growth of Bifidobacteria in Human Milk. Int. Dairy. J. 2011;21:504–508. doi: 10.1016/j.idairyj.2011.02.005. DOI
Musilova S., Modrackova N., Doskocil I., Svejstil R., Rada V. Influence of Human Milk Oligosaccharides on Adherence of Bifidobacteria and Clostridia to Cell Lines. Acta Microbiol. Immunol. Hung. 2017;64:415–422. doi: 10.1556/030.64.2017.029. PubMed DOI
Davani-Davari D., Negahdaripour M., Karimzadeh I., Seifan M., Mohkam M., Masoumi S.J., Berenjian A., Ghasemi Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019;8:92. doi: 10.3390/foods8030092. PubMed DOI PMC
Vetvicka V., Vannucci L., Sima P., Richter J. Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules. 2019;24:1251. doi: 10.3390/molecules24071251. PubMed DOI PMC
Bai Y.P., Zhou H.M., Zhu K.R., Li Q. Effect of Thermal Processing on the Molecular, Structural, and Antioxidant Characteristics of Highland Barley β-Glucan. Carbohydr. Polym. 2021;271:118416. doi: 10.1016/j.carbpol.2021.118416. PubMed DOI
Zhao Y., Zhou H.M., Huang Z.H., Zhao R.Y. Different Aggregation States of Barley β-Glucan Molecules Affects Their Solution Behavior: A Comparative Analysis. Food Hydrocoll. 2020;101:105543. doi: 10.1016/j.foodhyd.2019.105543. DOI
Letourneau J., Levesque C., Berthiaume F., Jacques M., Mourez M. In Vitro Assay of Bacterial Adhesion onto Mammalian Epithelial Cells. J. Vis. Exp. 2011;51:e2783. doi: 10.3791/2783. PubMed DOI PMC
Kushwaha K., Muriana P.M. Comparison of Invasiveness Among Surface-Adherent Variants of Listeria monocytogenes in Caco-2 Cell Culture Assays. Int. J. Food Microbiol. 2010;138:166–171. doi: 10.1016/j.ijfoodmicro.2009.11.024. PubMed DOI
Yamada F., Ueda F., Ochiai Y., Mochizuki M., Shoji H., Ogawa-Goto K., Sata T., Ogasawara K., Fujima A., Hondo R. Invasion Assay of Listeria monocytogenes Using Vero and Caco-2 Cells. J. Microbiol. Methods. 2006;66:96–103. doi: 10.1016/j.mimet.2005.10.017. PubMed DOI
Preter V.D., Verbeke K. Probiotics and Prebiotics: Current Research and Future Trends. Caister Academic Press; Wymondham, NR, USA: 2015. Functional Aspects of Prebiotics and the Impact on Human Health; pp. 13–26. DOI
Kaur A.P., Bhardwaj S., Dhanjal D.S., Nepovimova E., Cruz-martins N., Kuča K., Chopra C., Singh R., Kumar H., Șen F., et al. Plant Prebiotics and Their Role in the Amelioration of Diseases. Biomolecules. 2021;11:440. doi: 10.3390/biom11030440. PubMed DOI PMC
Cao T.N., Joyet P., Ake F.M.D., Milohanic E., Deutscher J. Studies of the Listeria monocytogenes Cellobiose Transport Components and Their Impact on Virulence Gene Repression. J. Mol. Microbiol. Biotechnol. 2019;29:10–26. doi: 10.1159/000500090. PubMed DOI
Park S.F., Kroll R.G. Expression of Listeriolysin and Phosphatidylinositol-Specific Phospholipase C Is Repressed by the Plant-Derived Molecule Cellobiose in Listeria monocytogenes. Mol. Microbiol. 1993;8:653–661. doi: 10.1111/j.1365-2958.1993.tb01609.x. PubMed DOI
Laparra J.M., Sanz Y. Comparison of in Vitro Models to Study Bacterial Adhesion to the Intestinal Epithelium. Lett. Appl. Microbiol. 2009;49:695–701. doi: 10.1111/j.1472-765X.2009.02729.x. PubMed DOI
Jaradat Z.W., Bhunia A.K. Adhesion, Invasion, and Translocation Characteristics of Listeria monocytogenes Serotypes in Caco-2 Cell and Mouse Models. Appl. Environ. Microbiol. 2003;69:3640–3645. doi: 10.1128/AEM.69.6.3640-3645.2003. Correction in Appl. Environ. Microbiol. 2003, 69, 5736. PubMed DOI PMC
Jaradat Z.W., Bhunia A.K. Glucose and Nutrient Concentrations Affect the Expression of a 104-Kilodalton Listeria Adhesion Protein in Listeria monocytogenes. Appl. Environ. Microbiol. 2002;68:4876–4883. doi: 10.1128/AEM.68.10.4876-4883.2002. PubMed DOI PMC
Li W., Yajima T., Saito K., Nishimura H., Fushimi T., Ohshima Y., Tsukamoto Y., Yoshikai Y. Immunostimulating Properties of Intragastrically Administered Acetobacter-Derived Soluble Branched (1,4)-β-D-Glucans Decrease Murine Susceptibility to Listeria monocytogenes. Infect. Immun. 2004;72:7005–7011. doi: 10.1128/IAI.72.12.7005-7011.2004. PubMed DOI PMC
Torello C.O., De Souza Queiroz J., Oliveira S.C., Queiroz M.L.S. Immunohematopoietic Modulation by Oral β-1,3-Glucan in Mice Infected with Listeria monocytogenes. Int. Immunopharmacol. 2010;10:1573–1579. doi: 10.1016/j.intimp.2010.09.009. PubMed DOI
Tan M.S.F., Rahman S., Dykes G.A. Pectin and Xyloglucan Influence the Attachment of Salmonella enterica and Listeria monocytogenes to Bacterial Cellulose-Derived Plant Cell Wall Models. Appl. Environ. Microbiol. 2016;82:680–688. doi: 10.1128/AEM.02609-15. PubMed DOI PMC
Tan M.S.F., Wang Y., Dykes G.A. Attachment of Bacterial Pathogens to a Bacterial Cellulose-Derived Plant Cell Wall Model: A Proof of Concept. Foodborne Pathog. Dis. 2013;10:992–994. doi: 10.1089/fpd.2013.1536. PubMed DOI
Alwan A., Deignan T., O’Sullivan M., Kelly J., O’Farrelly C. Quantitative Assay of Salmonella Adherence to Intestinal Epithelial Cells: A New Method for Assessing Novel Intervention Products. J. Microbiol. Methods. 1998;33:163–170. doi: 10.1016/S0167-7012(98)00052-9. DOI
Rada V., Nevoral J., Trojanová I., Tománková E., Šmehilová M., Killer J. Growth of Infant Faecal Bifidobacteria and Clostridia on Prebiotic Oligosaccharides in In Vitro Conditions. Anaerobe. 2008;14:205–208. doi: 10.1016/j.anaerobe.2008.05.003. PubMed DOI
Soccol C.R., Porto De Souza Vandenberghe L., Spier M.R., Bianchi A., Medeiros P., Yamaguishi C.T., De J., Lindner D., Pandey A., Thomaz-Soccol V. The Potential of Probiotics: A Review. Food Technol. Biotechnol. 2010;48:413–434.
Uyeno Y., Shigemori S., Shimosato T. Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes Environ. 2015;30:126. doi: 10.1264/jsme2.ME14176. PubMed DOI PMC
Musilova S., Rada V., Vlkova E., Bunesova V. Beneficial Effects of Human Milk Oligosaccharides on Gut Microbiota. Benef. Microbes. 2014;5:273–283. doi: 10.3920/BM2013.0080. PubMed DOI
Den Besten G., Van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The Role of Short-Chain Fatty Acids in the Interplay Between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013;54:2325. doi: 10.1194/jlr.R036012. PubMed DOI PMC
Ramos O.S., Malcata F.X. Comprehensive Biotechnology. 2nd ed. Volume 3. Academic Press; New York, NY, USA: 2011. Food-Grade Enzymes; pp. 555–569. DOI
Romick T.L., Fleming H.P., Mcfeeters R.F. Aerobic and Anaerobic Metabolism of Listeria monocytogenes in Defined Glucose Medium. Appl. Environ. Microbiol. 1996;62:304–307. doi: 10.1128/aem.62.1.304-307.1996. PubMed DOI PMC
Kunová G., Rada V., Lisová I., Ročková Š., Vlková E. In Vitro Fermentability of Prebiotic Oligosaccharides by Lactobacilli. Czech J. Food Sci. 2011;29:49–54. doi: 10.17221/306/2011-CJFS. DOI