Oxidative Stress, Metabolic Impairment and Neuroinflammation are Associated With Target Organ Damage in SHRSP

. 2025 Dec 02 ; 74 (5) : 779-795.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41329536

Stroke-prone spontaneously hypertensive rats (SHRSP) are widely used as a model to study cerebral small vessel disease (CSVD) and its association with chronic hypertension. This study investigated the relationship between metabolic, cardiovascular, and neuronal comorbidities in 32-week-old SHRSP rats versus Wistar-Kyoto (WKY) controls, with a focus on oxidative stress, inflammation, and metabolic alterations. Despite hypertension and cardiac and renal hypertrophy, no significant cerebral vascular changes or microbleeds and no cerebral edema were detected in SHRSP. NMR-based urinary metabolomics revealed reduced gut microbiome-derived metabolites, such as p-cresylglucuronide, hippurate, and phenylacetylglycine, alongside increases in methylamine and dimethylamine. These findings reflect gut dysbiosis and altered microbial composition in hypertensive conditions. Elevated markers of oxidative stress, including thiobarbituric acid-reactive substances, and increased expression of NADPH oxidase (NOX) 2 and NOX4 in peripheral tissues suggested oxidative damage in SHRSP rats. Astrocytic hyperreactivity, indicated by increased expression of glial fibrillary acidic protein in brain cortex and hippocampus, was suggestive of neuroinflammatory responses. Our findings highlight complex interplay between hypertension, metabolism, and neuroinflammation while underscoring the variability in SHRSP models. Key words SHRSP " Neuroinflammation " Oxidative stress " Metabolomics.

Zobrazit více v PubMed

Okamoto K, Yamori Y, Nagaoka A. Establishment of the stroke-prone spontaneously hypertensive rat (SHR) Circ Res. 1974;34–35:143–153.

Schrader JM, Stanisavljevic A, Xu F, Van Nostrand WE. Distinct Brain Proteomic Signatures in Cerebral Small Vessel Disease Rat Models of Hypertension and Cerebral Amyloid Angiopathy. J Neuropathol Exp Neurol. 2022;81:731–745. doi: 10.1093/jnen/nlac057. PubMed DOI PMC

Kroll DS, Feldman DE, Biesecker CL, McPherson KL, Manza P, Joseph PV, Volkow ND, Wang GJ. Neuroimaging of Sex/Gender Differences in Obesity: A Review of Structure, Function, and Neurotransmission. Nutrients. 2020;12:1942. doi: 10.3390/nu12071942. PubMed DOI PMC

Ineichen BV, Sati P, Granberg T, Absinta M, Lee NJ, Lefeuvre JA, Reich DS. Magnetic resonance imaging in multiple sclerosis animal models: A systematic review, meta-analysis, and white paper. NeuroImage Clin. 2020;28:102371. doi: 10.1016/j.nicl.2020.102371. PubMed DOI PMC

Iadecola C, Gottesman RF. Neurovascular and Cognitive Dysfunction in Hypertension. Circ Res. 2019;124:1025–1044. doi: 10.1161/CIRCRESAHA.118.313260. PubMed DOI PMC

Moser M, Roccella EJ. The treatment of hypertension: a remarkable success story. J Clin Hypertens. 2013;15:88–91. doi: 10.1111/jch.12033. PubMed DOI PMC

Yamagata K, Yamori Y. Altered Properties of Neurons and Astrocytes and the Effects of Food Components in Stroke-Prone Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol. 2021;77:718–727. doi: 10.1097/FJC.0000000000001025. PubMed DOI

Sironi L, Gianazza E, Gelosa P, Guerrini U, Nobili E, Gianella A, Cremonesi B, et al. Rosuvastatin, but not simvastatin, provides end-organ protection in stroke-prone rats by antiinflammatory effects. Arterioscler Thromb Vasc Biol. 2005;25:598–603. doi: 10.1161/01.ATV.0000157145.98200.55. PubMed DOI

Gelosa P, Pignieri A, Fändriks L, de Gasparo M, Hallberg A, Banfi C, Castiglioni L, et al. Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: focus on renal damage. J Hypertens. 2009;27:2444–2451. doi: 10.1097/HJH.0b013e3283311ba1. PubMed DOI

Gelosa P, Banfi C, Gianella A, Brioschi M, Pignieri A, Nobili E, Castiglioni L, et al. Peroxisome proliferator-activated receptor {alpha} agonism prevents renal damage and the oxidative stress and inflammatory processes affecting the brains of stroke-prone rats. J Pharmacol Exp Ther. 2010;335:324–331. doi: 10.1124/jpet.110.171090. PubMed DOI

Pelantová H, Tomášová P, Šedivá B, Neprašová B, Mráziková L, Kuneš J, Železná B, et al. Metabolomic Study of Aging in fa/fa Rats: Multiplatform Urine and Serum Analysis. Metabolites. 2023;13:552. doi: 10.3390/metabo13040552. PubMed DOI PMC

Silva MA, Bruder-Nascimento T, Cau SB, Lopes RA, Mestriner FL, Fais RS, Touyz RM, Tostes RC. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling. Front Physiol. 2015;6:269. doi: 10.3389/fphys.2015.00269. PubMed DOI PMC

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI

Vaněčková I, Kujal P, Husková Z, Vaňourková Z, Vernerová Z, Certíková Chábová V, et al. Effects of combined endothelin A receptor and renin-angiotensin system blockade on the course of end-organ damage in 5/6 nephrectomized Ren-2 hypertensive rats. Kidney Blood Press Res. 2012;35:382–392. doi: 10.1159/000336823. PubMed DOI

Kujal P, Chábová V, Vernerová Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, Vaňourková Z, et al. Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol. 2010;37:1159–1169. doi: 10.1111/j.1440-1681.2010.05453.x. PubMed DOI

Holubová M, Hrubá L, Neprašová B, Majerčíková Z, Lacinová Z, Kuneš J, Maletínská L, Železná B. Prolactin-releasing peptide improved leptin hypothalamic signaling in obese mice. J Mol Endocrinol. 2018;60:85–94. doi: 10.1530/JME-17-0171. PubMed DOI

Kořínková L, Holubová M, Neprašová B, Hrubá L, Pražienková V, Bencze M, Haluzík M, et al. Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. J Mol Endocrinol. 2020;64:77–90. doi: 10.1530/JME-19-0188. PubMed DOI

Pražienková V, Funda J, Pirník Z, Karnošová A, Hrubá L, Kořínková L, Neprašová B, et al. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene. 2021;774:145427. doi: 10.1016/j.gene.2021.145427. PubMed DOI

Zahid HM, Ferdaus MZ, Ohara H, Isomura M, Nabika T. Effect of p22phox depletion on sympathetic regulation of blood pressure in SHRSP: evaluation in a new congenic strain. Sci Rep. 2016;6:36739. doi: 10.1038/srep36739. PubMed DOI PMC

Takeuchi F, Liang YQ, Isono M, Tajima M, Cui ZH, Iizuka Y, Gotoda T, Nabika T, Kato N. Integrative genomic analysis of blood pressure and related phenotypes in rats. Dis Model Mech. 2021;14:dmm048090. doi: 10.1242/dmm.048090. PubMed DOI PMC

Mary S, Boder P, Rossitto G, Graham L, Scott K, Flynn A, Kipgen D, Graham D, Delles C. Salt loading decreases urinary excretion and increases intracellular accumulation of uromodulin in stroke-prone spontaneously hypertensive rats. Clin Sci. 2021;135:2749–2761. doi: 10.1042/CS20211017. PubMed DOI PMC

Takemori K, Inoue T, Ito H. Effects of angiotensin II type 1 receptor blocker and adiponectin on adipocyte dysfunction in stroke-prone spontaneously hypertensive rats. Lipids Health Dis. 2013;12:108. doi: 10.1186/1476-511X-12-108. PubMed DOI PMC

Yoshimoto S, Sakamoto K, Wakabayashi I, Masui H. Effect of chromium administration on glucose tolerance in stroke-prone spontaneously hypertensive rats with streptozotocin-induced diabetes. Metabolism. 1992;41:636–642. doi: 10.1016/0026-0495(92)90056-G. PubMed DOI

Hashimoto Y, Kurosawa Y, Minami K, Fushimi K, Narita H. A novel angiotensin II-receptor antagonist, 606A, induces regression of cardiac hypertrophy, augments endothelium-dependent relaxation and improves renal function in stroke-prone spontaneously hypertensive rats. Jpn J Pharmacol. 1998;76:185–192. doi: 10.1254/jjp.76.185. PubMed DOI

Takemori K, Ishida H, Ito H. Continuous inhibition of the renin-angiotensin system and protection from hypertensive end-organ damage by brief treatment with angiotensin II type 1 receptor blocker in stroke-prone spontaneously hypertensive rats. Life Sci. 2005;77:2233–2245. doi: 10.1016/j.lfs.2004.12.048. PubMed DOI

Watanabe-Kamiyama M, Kamiyama S, Horiuchi K, Ohinata K, Shirakawa H, Furukawa Y, Komai M. Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats. Br J Nutr. 2008;99:756–763. doi: 10.1017/S0007114507841122. PubMed DOI

Castiglioni L, Pignieri A, Fiaschè M, Giudici M, Crestani M, Mitro N, Abbate M, et al. Fenofibrate attenuates cardiac and renal alterations in young salt-loaded spontaneously hypertensive stroke-prone rats through mitochondrial protection. J Hypertens. 2018;36:1129–1146. doi: 10.1097/HJH.0000000000001651. PubMed DOI

Berry C, Brosnan MJ, Fennell J, Hamilton CA, Dominiczak AF. Oxidative stress and vascular damage in hypertension. Curr Opin Nephrol Hypertens. 2001;10:247–255. doi: 10.1097/00041552-200103000-00014. PubMed DOI

Manning RD, Jr, Meng S, Tian N. Renal and vascular oxidative stress and salt-sensitivity of arterial pressure. Acta Physiol Scand. 2003;179:243–250. doi: 10.1046/j.0001-6772.2003.01204.x. PubMed DOI

Park JB, Touyz RM, Chen X, Schiffrin EL. Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens. 2002;15:78–84. doi: 10.1016/S0895-7061(01)02233-6. PubMed DOI

Umemoto S, Tanaka M, Kawahara S, Kubo M, Umeji K, Hashimoto R, Matsuzaki M. Calcium antagonist reduces oxidative stress by upregulating Cu/Zn superoxide dismutase in stroke-prone spontaneously hypertensive rats. Hypertens Res. 2004;27:877–885. doi: 10.1291/hypres.27.877. PubMed DOI

Akasaki T, Ohya Y, Kuroda J, Eto K, Abe I, Sumimoto H, Iida M. Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin-angiotensin system. Hypertens Res. 2006;29:813–820. doi: 10.1291/hypres.29.813. PubMed DOI

Zhang Y, Sheikh AM, Tabassum S, Iwasa K, Shibly AZ, Zhou X, Wang R, et al. Effect of high-fat diet on cerebral pathological changes of cerebral small vessel disease in SHR/SP rats. GeroScience. 2024;46:3779–3800. doi: 10.1007/s11357-024-01074-7. PubMed DOI PMC

Michihara A, Oda A, Mido M. High Expression Levels of NADPH Oxidase 3 in the Cerebrum of Ten-Week-Old Stroke-Prone Spontaneously Hypertensive Rats. Biol Pharm Bull. 2016;39:252–258. doi: 10.1248/bpb.b15-00663. PubMed DOI

Chen YH, Chen HL, Fan HC, Tung YT, Kuo CW, Tu MY, Chen CM. Anti-Inflammatory, Antioxidant, and Antifibrotic Effects of Kefir Peptides on Salt-Induced Renal Vascular Damage and Dysfunction in Aged Stroke-Prone Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020;9:790. doi: 10.3390/antiox9090790. PubMed DOI PMC

Shi H, Nelson JW, Phillips S, Petrosino JF, Bryan RM, Durgan DJ. Alterations of the gut microbial community structure and function with aging in the spontaneously hypertensive stroke prone rat. Sci Rep. 2022;12:8534. doi: 10.1038/s41598-022-12578-7. PubMed DOI PMC

Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–1340. doi: 10.1161/HYPERTENSIONAHA.115.05315. PubMed DOI PMC

Akira K, Masu S, Imachi M, Mitome H, Hashimoto T. A metabonomic study of biochemical changes characteristic of genetically hypertensive rats based on (1)H NMR spectroscopic urinalysis. Hypertens Res. 2012;35:404–412. doi: 10.1038/hr.2011.182. PubMed DOI

Čermáková M, Pelantová H, Neprašová B, Šedivá B, Maletínská L, Kuneš J, Tomášová P, et al. Metabolomic Study of Obesity and Its Treatment with Palmitoylated Prolactin-Releasing Peptide Analog in Spontaneously Hypertensive and Normotensive Rats. J Proteome Res. 2019;18:1735–1750. doi: 10.1021/acs.jproteome.8b00964. PubMed DOI

Brial F, Chilloux J, Nielsen T, Vieira-Silva S, Falony G, Andrikopoulos P, Olanipekun M, et al. Human and preclinical studies of the host-gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut. 2021;70:2105–2114. doi: 10.1136/gutjnl-2020-323314. PubMed DOI PMC

Calvani R, Miccheli A, Capuani G, Tomassini Miccheli A, Puccetti C, Delfini M, Iaconelli A, et al. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. Int J Obes (Lond) 2010;34:1095–1098. doi: 10.1038/ijo.2010.44. PubMed DOI

Mogilnicka I, Jaworska K, Koper M, Maksymiuk K, Szudzik M, Radkiewicz M, Chabowski D, Ufnal M. Hypertensive rats show increased renal excretion and decreased tissue concentrations of glycine betaine, a protective osmolyte with diuretic properties. PLoS One. 2024;19:e0294926. doi: 10.1371/journal.pone.0294926. PubMed DOI PMC

Chachaj A, Matkowski R, Gröbner G, Szuba A, Dudka I. Metabolomics of Interstitial Fluid, Plasma and Urine in Patients with Arterial Hypertension: New Insights into the Underlying Mechanisms. Diagnostics (Basel) 2020;10:936. doi: 10.3390/diagnostics10110936. PubMed DOI PMC

Bartuś M, Łomnicka M, Kostogrys RB, Kaźmierczak P, Watała C, Słominska EM, Smoleński RT, et al. 1-Methylnicotinamide (MNA) prevents endothelial dysfunction in hypertriglyceridemic and diabetic rats. Pharmacol Rep. 2008;60:127–138. PubMed

Choi YJ, Yoon Y, Lee KY, Kang YP, Lim DK, Kwon SW, Kang KW, et al. Orotic acid induces hypertension associated with impaired endothelial nitric oxide synthesis. Toxicol Sci. 2015;144:307–317. doi: 10.1093/toxsci/kfv003. PubMed DOI

Taylor EN, Mount DB, Forman JP, Curhan GC. Association of prevalent hypertension with 24-hour urinary excretion of calcium, citrate, and other factors. Am J Kidney Dis. 2006;47:780–789. doi: 10.1053/j.ajkd.2006.01.024. PubMed DOI

Jung I, Nam S, Lee DY, Park SY, Yu JH, Seo JA, Lee DH, Kim NH. Association of Succinate and Adenosine Nucleotide Metabolic Pathways with Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J. 2024;48:1126–1134. doi: 10.4093/dmj.2023.0377. PubMed DOI PMC

Carvalho M, Chaskar J, Bhabal M, Fatema T, Sherlekar A, Tiwari A, Singh DP, Chaskar A. Ultrasensitive impedimetric detection of Succinate- A biomarker for Chronic kidney disease on Picomolar level using boron doped carbon nitride nanosheet. Microchem J. 2025;209:112855. doi: 10.1016/j.microc.2025.112855. DOI

Il’yasova D, Scarbrough P, Spasojevic I. Urinary biomarkers of oxidative status. Clin Chim Acta. 2012;413:1446–1453. doi: 10.1016/j.cca.2012.06.012. PubMed DOI PMC

Chen MF, Tsai JT, Chen LJ, Wu TP, Yang JJ, Yin LT, Yang YL, et al. Antihypertensive action of allantoin in animals. BioMed Res Int. 2014;2014:690135. doi: 10.1155/2014/690135. PubMed DOI PMC

Mutter S, Valo E, Aittomäki V, Nybo K, Raivonen L, Thorn LM, Forsblom C, Sandholm N, Würtz P, Groop PH. Urinary metabolite profiling and risk of progression of diabetic nephropathy in 2670 individuals with type 1 diabetes. Diabetologia. 2022;65:140–149. doi: 10.1007/s00125-021-05584-3. PubMed DOI PMC

Nicholson JK, Timbrell JA, Sadler PJ. Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats. Mol Pharmacol. 1985;27:644–651. doi: 10.1016/S0026-895X(25)12559-5. PubMed DOI

Kim-Mitsuyama S, Yamamoto E, Tanaka T, Zhan Y, Izumi Y, Izumiya Y, Ioroi T, et al. Critical role of angiotensin II in excess salt-induced brain oxidative stress of stroke-prone spontaneously hypertensive rats. Stroke. 2005;36:1083–1088. doi: 10.1161/01.STR.0000163084.16505.e3. PubMed DOI

Schreiber S, Bueche CZ, Garz C, Kropf S, Angenstein F, Goldschmidt J, Neumann J, et al. The pathologic cascade of cerebrovascular lesions in SHRSP: is erythrocyte accumulation an early phase? J Cereb Blood Flow Metab. 2012;32:278–290. doi: 10.1038/jcbfm.2011.122. PubMed DOI PMC

Stanisavljevic A, Schrader JM, Zhu X, Mattar JM, Hanks A, Xu F, Majchrzak M, et al. Impact of Non-pharmacological Chronic Hypertension on a Transgenic Rat Model of Cerebral Amyloid Angiopathy. Front Neurosci. 2022;16:811371. doi: 10.3389/fnins.2022.811371. PubMed DOI PMC

Schreiber S, Bueche CZ, Garz C, Braun H. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? - New insights from a rat model. Exp Transl Stroke Med. 2013;5:4. doi: 10.1186/2040-7378-5-4. PubMed DOI PMC

Baumbach GL, Dobrin PB, Hart MN, Heistad DD. Mechanics of cerebral arterioles in hypertensive rats. Circ Res. 1988;62:56–64. doi: 10.1161/01.RES.62.1.56. PubMed DOI

Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. Hypertension. 1989;13:968–972. doi: 10.1161/01.HYP.13.6.968. PubMed DOI

Allan S. The neurovascular unit and the key role of astrocytes in the regulation of cerebral blood flow. Cerebrovasc Dis. 2006;21:137–138. doi: 10.1159/000090447. PubMed DOI

Koehler RC, Gebremedhin D, Harder DR. Role of astrocytes in cerebrovascular regulation. J Appl Physiol. 2006;100:307–317. doi: 10.1152/japplphysiol.00938.2005. PubMed DOI PMC

Holash JA, Noden DM, Stewart PA. Re-evaluating the role of astrocytes in blood-brain barrier induction. Dev Dyn. 1993;197:14–25. doi: 10.1002/aja.1001970103. PubMed DOI

Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997;20:570–577. doi: 10.1016/S0166-2236(97)01139-9. PubMed DOI

Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G, Bogerts B. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci. 2007;8:2. doi: 10.1186/1471-2202-8-2. PubMed DOI PMC

Chistyakov DV, Aleshin S, Sergeeva MG, Reiser G. Regulation of peroxisome proliferator-activated receptor β/Δ expression and activity levels by toll-like receptor agonists and MAP kinase inhibitors in rat astrocytes. J Neurochem. 2014;130:563–574. doi: 10.1111/jnc.12757. PubMed DOI

Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017;36:11–19. doi: 10.1016/j.arr.2017.02.004. PubMed DOI

Ritz MF, Fluri F, Engelter ST, Schaeren-Wiemers N, Lyrer PA. Cortical and putamen age-related changes in the microvessel density and astrocyte deficiency in spontaneously hypertensive and stroke-prone spontaneously hypertensive rats. Curr Neurovasc Res. 2009;6:279–287. doi: 10.2174/156720209789630311. PubMed DOI

Gao F, Jing Y, Zang P, Hu X, Gu C, Wu R, Chai B, Zhang Y. Vascular Cognitive Impairment Caused by Cerebral Small Vessel Disease Is Associated with the TLR4 in the Hippocampus. J Alzheimers Dis. 2019;70:563–572. doi: 10.3233/JAD-190240. PubMed DOI

Higashino H, Niwa A, Satou T, Ohta Y, Hashimoto S, Tabuchi M, Ooshima K. Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid- (ONO-2506) treated stroke-prone spontaneously hypertensive rats. J Neural Transm. 2009;116:1209–1219. doi: 10.1007/s00702-009-0278-x. PubMed DOI PMC

Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002;22:367–378. doi: 10.1097/00004647-200204000-00001. PubMed DOI

Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17:171–180. doi: 10.1523/JNEUROSCI.17-01-00171.1997. PubMed DOI PMC

Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–163. doi: 10.1038/72256. PubMed DOI

Takemori K, Murakami T, Kometani T, Ito H. Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats. Microvasc Res. 2013;90:169–172. doi: 10.1016/j.mvr.2013.08.005. PubMed DOI

Zhang H, Xu R, Wang Z. Contribution of Oxidative Stress to HIF-1-Mediated Profibrotic Changes during the Kidney Damage. Oxid Med Cell Longev. 2021;2021:6114132. doi: 10.1155/2021/6114132. PubMed DOI PMC

Barallobre-Barreiro J, Loeys B, Mayr M, Rienks M, Verstraeten A, Kovacic JC. Extracellular Matrix in Vascular Disease, Part 2/4: JACC Focus Seminar. J Am Coll Cardiol. 2020;75:2189–2203. doi: 10.1016/j.jacc.2020.03.018. PubMed DOI

Martinez-Quinones P, McCarthy CG, Watts SW, Klee NS, Komic A, Calmasini FB, Priviero F, et al. Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. Am J Hypertens. 2018;31:1067–1078. doi: 10.1093/ajh/hpy083. PubMed DOI PMC

Sansawa H, Takahashi M, Tsuchikura S, Endo H. Effect of chlorella and its fractions on blood pressure, cerebral stroke lesions, and life-span in stroke-prone spontaneously hypertensive rats. J Nutr Sci Vitaminol. 2006;52:457–466. doi: 10.3177/jnsv.52.457. PubMed DOI

Yamori Y. Overview: studies on spontaneous hypertension-development from animal models toward man. Clin Exp Hypertens. 1991;13:631–644. doi: 10.3109/10641969109042066. PubMed DOI

Mráziková L, Hojná S, Pačesová A, Hrubá L, Strnadová V, Neprašová B, Železná B, et al. Palmitoylated prolactin-releasing peptide treatment had neuroprotective but not anti-obesity effect in fa/fa rats with leptin signaling disturbances. Nutr Diabetes. 2022;12:26. doi: 10.1038/s41387-022-00205-3. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...