Effect of Methylprednisolone on Ischemic Brain Edema After Temporary Occlusion of the Middle Cerebral Artery in Rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
41329542
PubMed Central
PMC12746862
DOI
10.33549/physiolres.935600
PII: 935600
Knihovny.cz E-zdroje
- MeSH
- edém mozku * farmakoterapie etiologie diagnostické zobrazování patologie MeSH
- infarkt arteria cerebri media * komplikace farmakoterapie diagnostické zobrazování MeSH
- ischemie mozku * farmakoterapie MeSH
- krysa rodu Rattus MeSH
- methylprednisolon * terapeutické užití farmakologie MeSH
- neuroprotektivní látky * terapeutické užití farmakologie MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- methylprednisolon * MeSH
- neuroprotektivní látky * MeSH
We studied the effect of Methylpredisolone (MP) on ischemic brain edema after temporary occlusion of the middle cerebral artery for 90 min (MCAo90). We verified the presence of ischemic edema by determining the brain water content (BWC) by measuring dry/wet weight and by examining MRI - T2-weighted imaging, T2 relaxation times and apparent diffusion coefficient (ADC). In another group, animals were administered MP intraperitoneally 30 min after MCAo90, followed by 24 h reperfusion (MCAoMP). Edema changes were documented by the same MRI examinations. A statistically significant increase in BWC was found between the post-MCAo90 group of animals and the intact animals, demonstrating the presence of edema in the former group. A statistically significant increase in ADC was observed in the MCAo group, indicating the presence of vasogenic edema. A statistically significant difference was demonstrated between the MCAo and MCAoMP groups, with no statistically significant difference between the CG and MCAoMP groups, demonstrating a reduction in ischemic brain swelling after MP administration. The main effect of MP on ischemic brain edema is attributed to its antioxidant capacity. It can be assumed that this capacity of MP, with its complex impact on cellular metabolism, affects the movement of water in the brain and reduces ischemic brain edema. Key words Temporary occlusion of the middle cerebral artery " Brain water content " T2 relaxation " Apparent Diffusion Coefficient " Methylprednisolone.
Zobrazit více v PubMed
https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html .
Gu Y, Zhou C, Piao Z, Yuan H, Jiang H, Wei H, Zhou Y, et al. Cerebral edema after ischemic stroke: Pathophysiology and underlying mechanisms. Front Neurosci. 2022;16:988283. doi: 10.3389/fnins.2022.988283. PubMed DOI PMC
Simard JM, Wilhelmy B, Tsymbalyuk N, Shim B, Stokum JA, Evans M, Gaur A, et al. Brain Swelling versus Infarct Size: A Problematizing Review. Brain Sci. 2024;14:229. doi: 10.3390/brainsci14030229. PubMed DOI PMC
Kozler P, Marešová D, Pokorný J. Methylprednisolone modulates intracranial pressure in the brain cellular edema induced by water intoxication. Physiol Res. 2017;66(Suppl 4):S511–S516. doi: 10.33549/physiolres.933797. PubMed DOI
Kozler P, Herynek V, Marešová D, Perez PD, Šefc L, Pokorný J. Effect of methylprednisolone on experimental brain edema in magnetic resonance imaging. Physiol Res. 2020;69:919–926. doi: 10.33549/physiolres.934460. PubMed DOI PMC
Kozler P, Marešová D, Pokorný J. Effect of methylprednisolone on experimental brain edema in rats - own experience reviewed. Physiol Res. 2021;70(Suppl 3):S289–S300. doi: 10.33549/physiolres.934818. PubMed DOI PMC
Kozler P, Marešová D, Pokorný J. Determination of brain water content by dry/wet weight measurement for the detection of experimental brain edema. Physiol Res. 2022;71(Suppl 2):S277–S283. doi: 10.33549/physiolres.934996. PubMed DOI PMC
Kozler P, Marešová D, Hrachovina M, Pokorný J. Cerebral perfusion pressure and behavior monitoring in freely moving rats. Physiol Res. 2023;72(Suppl 5):S543–S549. doi: 10.33549/physiolres.935219. PubMed DOI PMC
Park CO. The effects of methylprednisolone on prevention of brain edema after experimental moderate diffuse brain injury in rats: comparison between dosage, injection time, and treatment methods. Yonsei Med J. 1998;39:395–403. doi: 10.3349/ymj.1998.39.5.395. PubMed DOI
Schwab M, Bauer R, Zwiener U. The distribution of normal brain water content in Wistar rats and its increase due to ischemia. Brain Res. 1997;749:82–87. doi: 10.1016/S0006-8993(96)01165-1. PubMed DOI
Ma R, Xie Q, Li Y, Chen Z, Ren M, Chen H, Li H, Li J, Wang J. Animal models of cerebral ischemia: A review. Biomed Pharmacother. 2020;131:110686. doi: 10.1016/j.biopha.2020.110686. PubMed DOI
Kozler P, Marešová D, Pokorný J. Assessment of Blood-Brain Barrier Permeability in a Cerebral Ischemia-Reperfusion Model in Rats; A Pilot Study. Physiol Res. 2024;73:1099–1105. doi: 10.33549/physiolres.935432. PubMed DOI PMC
https://go.drugbank.com/drugs/DB00959 .
https://labeling.pfizer.com/ShowLabeling.aspx?id=15288 .
Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42:3323–3328. doi: 10.1161/STROKEAHA.110.608257. PubMed DOI PMC
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol. 2020;18:1187–1212. doi: 10.2174/1570159X18666200528143301. PubMed DOI PMC
Herynek V, Wagnerová D, Hejlová I, Dezortová M, Hájek M. Changes in the brain during long-term follow-up after liver transplantation. JMRI. 2012;35:1332–1337. doi: 10.1002/jmri.23599. PubMed DOI
Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–268. doi: 10.1016/S1474-4422(07)70055-8. PubMed DOI PMC
Stokum JA, Kurland DB, Gerzanich V, Simard JM. Mechanisms of astrocyte-mediated cerebral edema. Neurochem Res. 2015;40:317–328. doi: 10.1007/s11064-014-1374-3. PubMed DOI PMC
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, et al. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci. 2021;22:11899. doi: 10.3390/ijms222111899. PubMed DOI PMC
Wang L, Deng L, Yuan R, Liu J, Li Y, Liu M. Association of Matrix Metalloproteinase 9 and Cellular Fibronectin and Outcome in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Front Neurol. 2020;11:523506. doi: 10.3389/fneur.2020.523506. PubMed DOI PMC
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol. 2021;12:678744. doi: 10.3389/fimmu.2021.678744. PubMed DOI PMC
Bonaventura A, Liberale L, Vecchié A, Casula M, Carbone F, Dallegri F, Montecucco F. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke. Int J Mol Sci. 2016;17:1967. doi: 10.3390/ijms17121967. PubMed DOI PMC
Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med. 2011;17:1391–1401. doi: 10.1038/nm.2507. PubMed DOI PMC
Ng FC, Yassi N, Sharma G, Brown SB, Goyal M, Majoie C, Jovin TG, et al. Cerebral Edema in Patients with Large Hemispheric Infarct Undergoing Reperfusion Treatment: A HERMES Meta-Analysis. Stroke. 2021;52:3450–3458. doi: 10.1161/STROKEAHA.120.033246. PubMed DOI PMC
Winkler L, Blasig R, Breitkreuz-Korff O, Berndt P, Dithmer S, Helms HC, Puchkov D, et al. Tight junctions in the blood-brain barrier promote edema formation and infarct size in stroke - Ambivalent effects of sealing proteins. J Cereb Blood Flow Metab. 2021;41:132–145. doi: 10.1177/0271678X20904687. PubMed DOI PMC
Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN, Yang Y. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxid Med Cell Longev. 2018;2018:3804979. doi: 10.1155/2018/3804979. PubMed DOI PMC
Sandercock PA, Soane T. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev. 2011;2011:CD000064. doi: 10.1002/14651858.CD000064.pub2. PubMed DOI PMC
Wijdicks EFM. Corticosteroids in Acute Neurology and Neurosurgery: Promises, Promises, Promises. Neurocrit Care. 2024 doi: 10.1007/s12028-024-02154-4. PubMed DOI
Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings, et al. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up: Results of the third national acute spinal cord injury randomized controlled trial. J Neurosurg. 1998;89:699–706. doi: 10.3171/jns.1998.89.5.0699. PubMed DOI
Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000;6:159–163. doi: 10.1038/72256. PubMed DOI
Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery. 1998;42:1083–1100. doi: 10.1097/00006123-199805000-00082. PubMed DOI
Ito J, Marmarou A, Barzó P, Fatouros P, Crowin F. Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury. J Neurosurg. 1996;84:97–103. doi: 10.3171/jns.1996.84.1.0097. PubMed DOI
Loubinoux I, Volk A, Borredon J, Guirimand S, Tiffon B, Seylaz J, Méric P. Spreading of vasogenic edema and cytotoxic edema assessed by quantitative diffusion and T2 magnetic resonance imaging. Stroke. 1997;28:419–426. doi: 10.1161/01.STR.28.2.419. PubMed DOI
Bremer AM, Yamada K, West CR. Ischemic cerebral edema in primates: effects of acetazolamide, phenytoin, sorbitol, dexamethasone, and methylprednisolone on brain water and electrolytes. Neurosurgery. 1980;6:149–154. doi: 10.1227/00006123-198002000-00006. PubMed DOI
Katayama Y, Shimizu J, Suzuki S, Memezawa H, Kashiwagi F, Kamiya T, Terashi A. Role of arachidonic acid metabolism on ischemic brain edema and metabolism. Adv Neurol. 1990;52:105–108. PubMed
Kalayci O, Cataltepe S, Cataltepe O. The effect of bolus methylprednisolone in prevention of brain edema in hypoxic ischemic brain injury: an experimental study in 7-day-old rat pups. Brain Res. 1992;569:112–116. doi: 10.1016/0006-8993(92)90376-K. PubMed DOI
de Courten-Myers GM, Kleinholz M, Wagner KR, Xi G, Myers RE. Efficacious experimental stroke treatment with high-dose methylprednisolone. Stroke. 1994;25:487–492. doi: 10.1161/01.STR.25.2.487. discussion 493. PubMed DOI
Slivka AP, Murphy EJ. High-dose methylprednisolone treatment in experimental focal cerebral ischemia. Exp Neurol. 2001;167:166–172. doi: 10.1006/exnr.2000.7532. PubMed DOI
Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl. 1980;492:91–119. PubMed
Hall ED, Braughler JM, McCall JM. Antioxidant effects in brain and spinal cord injury. J Neurotrauma. 1992;9(Suppl 1):S165–S172. PubMed
Hall ED. The neuroprotective pharmacology of methylprednisolone. J Neurosurg. 1992;76:13–22. doi: 10.3171/jns.1992.76.1.0013. PubMed DOI
Faden AI, Salzman S. Pharmacological strategies in CNS trauma. Trends Pharmacol Sci. 1992;13:29–35. doi: 10.1016/0165-6147(92)90013-V. PubMed DOI
Hall ED. The role of oxygen radicals in traumatic injury: Clinical implications. J Emerg Med. 1993;11(Suppl 1):31–36. PubMed
Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery. 1999;44:1027–1040. doi: 10.1097/00006123-199905000-00052. PubMed DOI