Antimicrobial peptides derived from human ameloblastin targeting biofilms

. 2025 Dec 02 ; 26 (1) : 24. [epub] 20251202

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41331924

Grantová podpora
RVO: 61388963 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences

Odkazy

PubMed 41331924
PubMed Central PMC12777444
DOI 10.1186/s12903-025-07433-w
PII: 10.1186/s12903-025-07433-w
Knihovny.cz E-zdroje

Oral biofilm-related diseases, such as dental caries and periodontitis, remain among the most prevalent global health issues and are increasingly complicated by antibiotic resistance and biofilm persistence, which limit the effectiveness of conventional treatments. This study addresses the challenges by exploring antimicrobial peptides (AMPs) derived from ameloblastin (AMBN), a protein integral to dental biomineralization and categorized as an intrinsically disordered protein. In humans, the AMBN gene encodes two isoforms, ISO I and ISO II, with distinct but not fully understood functions. Four AMBN ISO I-derived peptides (A, Am, B, Bm) were designed, synthesized, and tested for antimicrobial and antibiofilm activity. Peptides A and Am moderately inhibited biofilms of E. faecalis, S. aureus, and E. coli (MBIC₅₀ within 50-300 µM), including resistant isolates, while B and Bm were more effective against Gram-positive strains, showing the strongest effect against methicillin-resistant S. aureus CNCTC 6271. Cytotoxicity assays showed > 90% cell viability at 50 µM and IC₅₀ >100 µM for HCT116 and > 300 µM for HUVEC cells, with haemolytic activity > 300 µM. Stable immobilization of peptides on titanium surfaces was confirmed by XPS and QCM-D techniques, supporting their potential as low-toxicity antimicrobial coatings for medical implants.

Zobrazit více v PubMed

Gil-Bona A, Bidlack FB. Tooth enamel and its dynamic protein matrix. Int J Mol Sci. 2020;21(12):4458. PubMed DOI PMC

Vetyskova V, Zouharova M, Bednarova L, Vaněk O, Sázelová P, Kašička V, et al. Characterization of AMBN I and II isoforms and study of their Ca2+-Binding properties. Int J Mol Sci. 2020;21(23):9293. PubMed DOI PMC

Ravindranath HH, Chen L-S, Zeichner-David M, Ishima R, Ravindranath RMH. Interaction between the enamel matrix proteins amelogenin and ameloblastin. Biochem Biophys Res Commun. 2004;323(3):1075–83. PubMed DOI

Bartlett JD. Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent. 2013;2013:684607. 10.1155/2013/684607. PMID: 24159389; PMCID: PMC3789414. PubMed PMC

Spahr A, Lyngstadaas SP, Boeckh C, Andersson C, Podbielski A, Haller B. Effect of the enamel matrix derivative Emdogain PubMed DOI

Maycock J, Wood SR, Brookes SJ, Shore RC, Robinson C, Kirkham J. Characterization of a Procine amelogenin Preparation, EMADOGAIN, a biological treatment for periodontal disease. Connect Tissue Res. 2002;43(2–3):472–6. PubMed DOI

. Vetyskova V, Hubalek M, Sulc J, Prochazka J, Vondrasek J, Vydra Bousova K. Proteolytic profiles of two isoforms of human AMBN expressed in E. coli by MMP-20 and KLK-4 proteases. Heliyon. 2024;10(2):e24564. 10.1016/j.heliyon.2024.e24564. PMID: 38298721; PMCID: PMC10828707. PubMed PMC

Chun YH, Yamakoshi Y, Yamakoshi F, Fukae M, Hu JC, Bartlett JD, Simmer JP. Cleavage site specificity of MMP-20 for secretory-stage ameloblastin. J Dent Res. 2010;89(8):785–90. 10.1177/0022034510366903. Epub 2010 Apr 16. PMID: 20400724; PMCID: PMC2909333. PubMed PMC

Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2015;44(D1):D1087–93. PubMed DOI PMC

Melicherčík P, Čeřovský V, Nešuta O, Jahoda D, Landor I, Ballay R, Fulín P. Testing the efficacy of antimicrobial peptides in the topical treatment of induced osteomyelitis in rats. Folia Microbiol (Praha). 2018;63(1):97–104. 10.1007/s12223-017-0540-9. Epub 2017 Aug 2. PMID: 28770427. PubMed

Melicherčík P, Nešuta O, Čeřovský V. Antimicrobial peptides for topical treatment of osteomyelitis and implant-related infections: study in the spongy bone. Pharmaceuticals (Basel). 2018;11(1):20. 10.3390/ph11010020. PMID: 29462909; PMCID: PMC5874716. PubMed PMC

Kalia VC, Patel SK, Lee J-K. Bacterial biofilm inhibitors: an overview. Ecotoxicol Environ Saf. 2023;264:115389. PubMed DOI

Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013;6(12):1543–75. PubMed DOI PMC

Haney EF, Mansour SC, Hancock REW. Antimicrobial peptides: an introduction. In: Hansen PR, editor. Antimicrobial peptides: methods and protocols. New York, NY: Springer New York; 2017. pp. 3–22.

Yount NY, Yeaman MR. Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept Lett. 2005;12(1):49–67. PubMed DOI

Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–75. PubMed DOI

Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277. PubMed PMC

Lin B, Li R, Handley TN, Wade JD, Li W, O’Brien-Simpson NM. Cationic antimicrobial peptides are leading the way to combat oropathogenic infections. ACS Infect Dis. 2021;7(11):2959–70. PubMed DOI

Ma X, Aminov R, Franco OL, de la Fuente-Nunez C, Wang G, Wang J. Editorial: Antimicrobial peptides and their druggability, bio-safety, stability, and resistance. Front Microbiol. 2024;15:1425952. 10.3389/fmicb.2024.1425952. PMID: 38846567; PMCID: PMC11154904. PubMed PMC

Nedyalkova M, Paluch AS, Vecini DP, Lattuada M. Progress and future of the computational design of antimicrobial peptides (AMPs): bio-inspired functional molecules. Digit Discovery. 2024;3(1):9–22. DOI

Yadav A, Yadav K. Nano-enhanced peptides: bridging cutting-edge tech and biology to outsmart resilient microbes. Acad Nano Sci Mater Technol. 2025;1. 10.20935/AcadNano7454.

Ahmad A, Khan JM, Bandy A. A systematic review of the design and applications of antimicrobial peptides in wound healing. Cureus. 2024;16(4):e58178. 10.7759/cureus.58178. PMID: 38741875; PMCID: PMC11089580. PubMed PMC

Zheng S, Tu Y, Li B, Qu G, Li A, Peng X, et al. Antimicrobial peptide biological activity, delivery systems and clinical translation status and challenges. J Translational Med. 2025;23(1):292. PubMed DOI PMC

Min KH, Kim KH, Ki M-R, Pack SP. Antimicrobial peptides and their biomedical applications: A review. Antibiotics. 2024;13(9):794. PubMed DOI PMC

Mirzaei R, Esmaeili Gouvarchin Ghaleh H, Ranjbar R. Antibiofilm effect of Melittin alone and in combination with conventional antibiotics toward strong biofilm of MDR-MRSA and-Pseudomonas aeruginosa. Front Microbiol. 2023;14:1030401. PubMed DOI PMC

Wu K-C, Hua K-F, Yu Y-H, Cheng Y-H, Cheng T-T, Huang Y-K, et al. Antibacterial and antibiofilm activities of novel antimicrobial peptides against multidrug-resistant enterotoxigenic Escherichia coli. Int J Mol Sci. 2021;22(8):3926. PubMed DOI PMC

Fontanot A, Ellinger I, Unger WW, Hays JP. A comprehensive review of recent research into the effects of antimicrobial peptides on biofilms—January 2020 to September 2023. Antibiotics. 2024;13(4):343. PubMed DOI PMC

Cruz CD, Shah S, Tammela P. Defining conditions for biofilm Inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiol. 2018;18:1–9. PubMed DOI PMC

Schromm AB, Paulowski L, Kaconis Y, Kopp F, Koistinen M, Donoghue A et al. Cathelicidin and PMB neutralize endotoxins by multifactorial mechanisms including LPS interaction and targeting of host cell membranes. Proceedings of the National Academy of Sciences. 2021;118(27):e2101721118. PubMed PMC

Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, et al. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant acinetobacter baumannii strains. Antimicrob Agents Chemother. 2014;58(3):1622–9. PubMed DOI PMC

Bechinger B, Gorr S-U. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2017;96(3):254–60. PubMed DOI PMC

Avci FG, Sariyar Akbulut B, Ozkirimli E. Membrane active peptides and their biophysical characterization. Biomolecules. 2018;8(3):77. PubMed DOI PMC

Yasir M, Willcox MDP, Dutta D. Action of antimicrobial peptides against bacterial biofilms. Materials. 2018;11(12):2468. PubMed DOI PMC

Zhang L, Xue Y, Gopalakrishnan S, Li K, Han Y, Rotello VM. Antimicrobial peptide-loaded pectolite nanorods for enhancing wound-healing and biocidal activity of titanium. ACS Appl Mater Interfaces. 2021;13(24):28764–73. PubMed DOI PMC

Petzold C, Monjo M, Rubert M, Reinholt FP, Gomez-Florit M, Ramis JM, Ellingsen JE, Lyngstadaas SP. Effect of proline-rich synthetic peptide-coated titanium implants on bone healing in a rabbit model. Int J Oral Maxillofac Implants. 2013;28(6):e547–55. 10.11607/jomi.te35. PMID: 24278960. PubMed

Oliveira WF, Arruda IR, Silva GM, Machado G, Coelho LC, Correia MT. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater Sci Engineering: C. 2017;81:597–606. PubMed DOI

Lu Y, Papagerakis P, Yamakoshi Y, Hu JC, Bartlett JD, Simmer JP. Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem. 2008;389(6):695–700. 10.1515/BC.2008.080. PMID: 18627287; PMCID: PMC2688471. PubMed PMC

Nagano T, Kakegawa A, Yamakoshi Y, Tsuchiya S, Hu J-C, Gomi K, et al. Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. J Dent Res. 2009;88(9):823–8. PubMed DOI PMC

Zaatout N. Presence of non-oral bacteria in the oral cavity. Arch Microbiol. 2021;203(6):2747–60. PubMed DOI PMC

Poeta P, Igrejas G, Gonçalves A, Martins E, Araújo C, Carvalho C, et al. Influence of oral hygiene in patients with fixed appliances in the oral carriage of antimicrobial-resistant Escherichia coli and Enterococcus isolates. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontology. 2009;108(4):557–64. PubMed DOI

Thurnheer T, Belibasakis GN. Integration of non-oral bacteria into in vitro oral biofilms. Virulence. 2015;6(3):258–64. PubMed DOI PMC

Burdukiewicz M, Sidorczuk K, Rafacz D, Pietluch F, Chilimoniuk J, Rödiger S, et al. Proteomic screening for prediction and design of antimicrobial peptides with ampgram. Int J Mol Sci. 2020;21(12):4310. PubMed DOI PMC

Bhadra P, Yan J, Li J, Fong S, Siu SWI. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep-Uk. 2018;8(1):1697. PubMed DOI PMC

Agrawal P, Raghava GPS. Prediction of antimicrobial potential of a chemically modified peptide from its tertiary structure. Front Microbiol. 2018;9:2551. PubMed DOI PMC

Gogoladze G, Grigolava M, Vishnepolsky B, Chubinidze M, Duroux P, Lefranc M-P, et al. DBAASP: database of antimicrobial activity and structure of peptides. FEMS Microbiol Lett. 2014;357(1):63–8. PubMed DOI

Thévenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, Tufféry P. PEP-FOLD: an updated de Novo structure prediction server for both linear and disulfide bonded Cyclic peptides. Nucleic Acids Res. 2012;40(Web Server issue):W288–93. PubMed PMC

Kemmish H, Fasnacht M, Yan L. Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS One. 2017;12(5):e0177923. 10.1371/journal.pone.0177923. PMID: 28542300; PMCID: PMC5436848. PubMed PMC

Matatkova O, Gharwalova L, Zimola M, Rezanka T, Masak J, Kolouchova I. Using Odd-Alkanes as a carbon source to increase the content of nutritionally important fatty acids in < i > Candida krusei, trichosporon cutaneum, and < i > Yarrowia lipolytica. Int J Anal Chem. 2017;2017:8195329. PubMed DOI PMC

Vaňková E, Paldrychová M, Kašparová P, Lokočová K, Kodeš Z, Maťátková O, et al. Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive Cocci. World J Microbiol Biotechnol. 2020;36(7):101. PubMed DOI

Mariscal A, Lopez-Gigosos RM, Carnero-Varo M, Fernandez-Crehuet J. Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Appl Microbiol Biotechnol. 2009;82:773–83. PubMed DOI

Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000;287(2):252–60. PubMed DOI

Rønold HJ, Ellingsen JE. Effect of micro-roughness produced by TiO2 blasting—tensile testing of bone attachment by using coin-shaped implants. Biomaterials. 2002;23(21):4211–9. PubMed DOI

Lee H. Polydopamine surface Chemistry-A decade of discovery. 한국고분자학회 학술대회 연구논문 초록집. 2018;43(1):38. PubMed PMC

Lamolle SF, Monjo M, Rubert M, Haugen HJ, Lyngstadaas SP, Ellingsen JE. The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials. 2009;30(5):736–42. PubMed DOI

Raghuraman H, Chattopadhyay A. Melittin: a membrane-active peptide with diverse functions. Biosci Rep. 2007;27(4–5):189–223. PubMed DOI

Sauerbrey G. Verwendung von Schwingquarzen Zur Wagung Dunner schichten und Zur Mikrowagung. Z Angew Phys. 1959;155(2):206–22.

Voinova MV, Rodahl M, Jonson M, Kasemo B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr. 1999;59(5):391–6. DOI

Rodahl M, Hook F, Krozer A, Brzezinski P, Kasemo B. Quartz-Crystal microbalance setup for frequency and Q-Factor measurements in gaseous and liquid environments. Rev Sci Instrum. 1995;66(7):3924–30. DOI

Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, et al. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 1997;107:229–46. PubMed DOI

Hook F, Rodahl M, Kasemo B, Brzezinski P. Structural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding. Proc Natl Acad Sci USA. 1998;95(21):12271–6. PubMed DOI PMC

Zhang D, Yuan Y, Zeng Q, Xiong J, Gan Y, Jiang K, et al. Plant protein-derived anti-breast cancer peptides: sources, therapeutic approaches, mechanisms, and nanoparticle design. Front Pharmacol. 2025;15:1468977. PubMed DOI PMC

Bastos P, Trindade F, Ferreira R, Casteleiro MA, Stevens R, Klein J, et al. Unveiling antimicrobial peptide–generating human proteases using PROTEASIX. J Proteom. 2018;171:53–62. PubMed DOI

Papareddy P, Rydengård V, Pasupuleti M, Walse B, Mörgelin M, Chalupka A, et al. Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog. 2010;6(4):e1000857. PubMed DOI PMC

Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. Antimicrobial and antibiofilm peptides. Biomolecules. 2020;10(4):652. PubMed DOI PMC

Vymětal Ji BednárováL, Vondrášek J. Effect of TFE on the helical content of AK17 and HAL-1 peptides: theoretical insights into the mechanism of helix stabilization. J Phys Chem B. 2016;120(6):1048–59. PubMed DOI

Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect. 2017;50(4):405–10. PubMed DOI

Almaaytah A, Qaoud MT, Abualhaijaa A, Al-Balas Q, Alzoubi KH. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect Drug Resist. 2018;11:835–47. 10.2147/IDR.S166236. PMID: 29910626; PMCID: PMC5987794. PubMed PMC

Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution. Science. 2020;368(6490):eaau5480. PubMed DOI PMC

Ghoreishi FS, Roghanian R, Emtiazi G. Novel chronic wound healing by anti-biofilm peptides and protease. Adv Pharm Bull. 2021;12(3):424. PubMed DOI PMC

Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131–41. PubMed DOI PMC

Roque-Borda CA, Primo LMDG, Medina‐Alarcón KP, Campos IC, Nascimento CF, Saraiva MM, et al. Antimicrobial peptides: a promising alternative to conventional antimicrobials for combating polymicrobial biofilms. Adv Sci. 2025;12(1):2410893. PubMed DOI PMC

Duarte-Mata DI, Salinas-Carmona MC. Antimicrobial peptides immune modulation role in intracellular bacterial infection. Front Immunol. 2023;14:1119574. PubMed DOI PMC

Ahn T-K, Lee DH, Kim T-s, Gc J, Choi S, Oh JB et al. Modification of titanium implant and titanium dioxide for bone tissue engineering. Novel biomaterials for regenerative medicine. 2018:355 – 68. PubMed

Sarraf M, Rezvani Ghomi E, Alipour S, Ramakrishna S, Liana Sukiman N. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-design Manuf. 2021:1–25. PubMed PMC

Silva RR, Avelino K, Ribeiro KL, Franco OL, Oliveira M, Andrade C. Chemical immobilization of antimicrobial peptides on biomaterial surfaces. Front Biosci. 2016;8(1):129–42. PubMed DOI

Nicolas M, Beito B, Oliveira M, Tudela Martins M, Gallas B, Salmain M, et al. Strategies for antimicrobial peptides immobilization on surfaces to prevent biofilm growth on biomedical devices. Antibiotics. 2021;11(1):13. PubMed DOI PMC

Gil-Bona A, Bidlack FB. Tooth enamel and its dynamic protein matrix. Int J Mol Sci. 2020;21(12):4458. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...