Drug Dissolution Enhancement Using 3D-Printed Silica-Based Oral Films
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
41361598
DOI
10.1208/s12248-025-01185-9
PII: 10.1208/s12248-025-01185-9
Knihovny.cz E-zdroje
- Klíčová slova
- Drug crystallization, Individualized therapy, Orodispersible film, Porous film, Silica,
- MeSH
- 3D tisk * MeSH
- aplikace orální MeSH
- dexamethason * chemie aplikace a dávkování MeSH
- kofein chemie aplikace a dávkování MeSH
- lékové transportní systémy * metody MeSH
- oxid křemičitý * chemie MeSH
- poréznost MeSH
- rozpustnost MeSH
- uvolňování léčiv MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dexamethason * MeSH
- kofein MeSH
- oxid křemičitý * MeSH
Orodispersible films (ODFs) are increasingly employed for individualized drug delivery due to their ease of administration and precise dosing. However, their drug loading capacity is often limited by the need to maintain thin, flexible structures, posing a particular challenge for incorporating poorly soluble drugs. This study aimed to develop and characterize porous ODF matrices optimized for 3D printing of medicated inks. The primary objective was to investigate the impact of macroporosity on the dissolution kinetics of both poorly soluble and readily soluble drugs, with a focus on enhancing the release of the poorly soluble dexamethasone. Porous ODFs were fabricated via solvent casting using silica- and silicate-based porogens, then loaded with caffeine or dexamethasone through 3D printing. The films were comprehensively characterized using structural (micro-CT, BET), mechanical, and solid-state techniques (SEM, Raman microscopy, FTIR, XRD) to assess porosity, drug crystallization behavior, and drug-matrix compatibility. Drug release was evaluated through dissolution studies. Silica-based porogens yielded films with tunable macroporosity, supporting high drug loads (up to 3-5 times the ink volume). Dexamethasone printed on the SY2 substrate exhibited markedly enhanced dissolution (79.2 ± 1.8%) compared to its powdered form (29.9 ± 11.5%), achieving 61.5% release within 20 min. In contrast, caffeine (readily soluble) showed a transient reduction in dissolution rate during the initial two minutes, attributed to increased particle size and delayed film disintegration. Overall, integrating porous matrix design with 3D printing significantly improved the dissolution of poorly soluble dexamethasone without inducing drug-matrix interactions, confirming that structural modifications drive the enhanced release.
Zobrazit více v PubMed
Easthall C, Barnett N. Using theory to explore the determinants of medication adherence; moving away from a one-size-fits-all approach. Pharmacy. 2017. https://doi.org/10.3390/pharmacy5030050 . PubMed DOI PMC
Iftimi L-D, Edinger M, Bar-Shalom D, Rantanen J, Genina N. Edible solid foams as porous substrates for inkjet-printable pharmaceuticals. Eur J Pharm Biopharm. 2019;136:38–47. PubMed DOI
Visser JC, Woerdenbag HJ, Hanff LM, Frijlink HW. Personalized medicine in pediatrics: the clinical potential of orodispersible films. AAPS PharmSciTech. 2017;18(2):267–72. PubMed DOI
Foo WC, Khong YM, Gokhale R, Chan SY. A novel unit-dose approach for the pharmaceutical compounding of an orodispersible film. Int J Pharm. 2018;539(1):165–74. PubMed DOI
Ma Q, Lu AYH. Pharmacogenetics, Pharmacogenomics, and Individualized Medicine. Pharmacol Rev. 2011;63(2):437–59. PubMed DOI
Wening K, Breitkreutz J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm. 2011;404(1):1–9. PubMed DOI
Klingmann V, Pohly CE, Meissner T, Mayatepek E, Möltner A, Flunkert K, et al. Acceptability of an orodispersible film compared to syrup in neonates and infants: a randomized controlled trial. Eur J Pharm Biopharm. 2020;151:239–45. PubMed DOI
Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm. 2020;576:118963. PubMed DOI
Janßen EM, Schliephacke R, Breitenbach A, Breitkreutz J. Drug-printing by flexographic printing technology—a new manufacturing process for orodispersible films. Int J Pharm. 2013;441(1):818–25. PubMed DOI
Muhindo D, Elkanayati R, Srinivasan P, Repka MA, Ashour EA. Recent advances in the applications of additive manufacturing (3D printing) in drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):57. PubMed DOI
Scarpa M, Stegemann S, Hsiao W-K, Pichler H, Gaisford S, Bresciani M, et al. Orodispersible films: towards drug delivery in special populations. Int J Pharm. 2017;523(1):327–35. PubMed DOI
Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156(2):179–85. PubMed DOI
Vuddanda PR, Montenegro-Nicolini M, Morales JO, Velaga S. Effect of plasticizers on the physico-mechanical properties of pullulan based pharmaceutical oral films. Eur J Pharm Sci. 2017;96:290–8. PubMed DOI
Serajuddin ATM. Challenges, current status and emerging strategies in the development of rapidly dissolving FDM 3D-printed tablets: an overview and commentary. Admet dmpk. 2023;11(1):33–55. PubMed PMC
Thanawuth K, Sutthapitaksakul L, Konthong S, Suttiruengwong S, Huanbutta K, Dass CR, et al. Impact of drug loading method on drug release from 3D-printed tablets made from filaments fabricated by hot-melt extrusion and impregnation processes. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13101607 . PubMed DOI PMC
Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one’s own medicine. Int J Pharm. 2015;494(2):568–77. PubMed DOI
Maniya NH, Patel SR, Murthy Z. Drug Delivery with Porous silicon films, MicroParticles, and nanoparticles. Reviews on Advanced Materials Science. 2016;44(3).
Vraníková B, Niederquell A, Šklubalová Z, Kuentz M. Relevance of the theoretical critical pore radius in mesoporous silica for fast crystallizing drugs. Int J Pharm. 2020;591:120019. PubMed DOI
Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85(3, Part B):1075–83. PubMed DOI
Kyobula M, Adedeji A, Alexander MR, Saleh E, Wildman R, Ashcroft I, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release. 2017;261:207–15. PubMed DOI
Elbl J, Veselý M, Blaháčková D, Ondruš J, Kulich P, Mašková E, et al. Development of 3D printed multi-layered orodispersible films with porous structure applicable as a substrate for inkjet printing. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15020714 . PubMed DOI PMC
Ehtezazi T, Algellay M, Hardy A. Next steps in 3D printing of fast dissolving oral films for commercial production. Recent Pat Drug Deliv Formul. 2020;14(1):5–20. PubMed DOI
Kean EA, Adeleke OA. Orally disintegrating drug carriers for paediatric pharmacotherapy. Eur J Pharm Sci. 2023;182:106377. PubMed DOI
Ferlak J, Guzenda W, Osmałek T. Orodispersible films—current state of the art, limitations, advances and future perspectives. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15020361 . PubMed DOI PMC
Borbolla-Jiménez FV, Peña-Corona SI, Farah SJ, Jiménez-Valdés MT, Pineda-Pérez E, Romero-Montero A, et al. Films for wound healing fabricated using a solvent casting technique. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15071914 . PubMed DOI PMC
Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M, Khinast JG, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93–100. PubMed DOI
Cheow WS, Kiew TY, Hadinoto K. Combining inkjet printing and amorphous nanonization to prepare personalized dosage forms of poorly-soluble drugs. Eur J Pharm Biopharm. 2015;96:314–21. PubMed DOI
Velaga SP, Nikjoo D, Vuddanda PR. Experimental studies and modeling of the drying kinetics of multicomponent polymer films. AAPS PharmSciTech. 2018;19(1):425–35. PubMed DOI
Xiao Q, Tong Q, Zhou Y, Deng F. Rheological properties of pullulan-sodium alginate based solutions during film formation. Carbohydr Polym. 2015;130:49–56. PubMed DOI
Borges AF, Silva C, Coelho JFJ, Simões S. Oral films: current status and future perspectives: I — galenical development and quality attributes. J Control Release. 2015;206:1–19. PubMed DOI
Bagley E, Nelson T, Scigliano J. Three-dimensional solubility parameters and their relationship to internal pressure measurements in polar and hydrogen bonding solvents. J Paint Technol. 1971;43(555):35–42.
Domján A, Bajdik J, Pintye-Hódi K. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy. Macromolecules. 2009;42(13):4667–73. DOI
Shojaee Kang Sofla M, Mortazavi S, Seyfi J. Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol. Carbohydr Polym. 2020;232:115784. PubMed DOI
Wang T, Markham A, Thomas SJ, Wang N, Huang L, Clemens M, et al. Solution stability of poloxamer 188 under stress conditions. J Pharm Sci. 2019;108(3):1264–71. PubMed DOI
Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–28. PubMed DOI
Takeuchi Y, Nishimatsu T, Tahara K, Takeuchi H. Novel use of insoluble particles as disintegration enhancers for orally disintegrating films. J Drug Deliv Sci Technol. 2019;54:101310. DOI
Al-Mogherah AI, Ibrahim MA, Hassan MA. Optimization and evaluation of venlafaxine hydrochloride fast dissolving oral films. Saudi Pharm J. 2020;28(11):1374–82. PubMed DOI PMC
Pacheco MS, Barbieri D, da Silva CF, de Moraes MA. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Int J Biol Macromol. 2021;178:504–13. PubMed DOI
Panraksa P, Tipduangta P, Jantanasakulwong K, Jantrawut P. Formulation of orally disintegrating films as an amorphous solid solution of a poorly water-soluble drug. Membranes. 2020. https://doi.org/10.3390/membranes10120376 . PubMed DOI PMC
Sandler N, Määttänen A, Ihalainen P, Kronberg L, Meierjohann A, Viitala T, et al. Inkjet printing of drug substances and use of porous substrates‐towards individualized dosing. J Pharm Sci. 2011;100(8):3386–95. PubMed DOI
Edinger M, Bar-Shalom D, Sandler N, Rantanen J, Genina N. QR encoded smart oral dosage forms by inkjet printing. Int J Pharm. 2018;536(1):138–45. PubMed DOI
Elbl J, Gajdziok J, Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int J Pharm. 2020;575:118883. PubMed DOI
Preis M, Knop K, Breitkreutz J. Mechanical strength test for orodispersible and buccal films. Int J Pharm. 2014;461(1):22–9. PubMed DOI
European Pharmacopoeia 11.0. Available from: https://pheur.edqm.eu/subhome/11-0 . Accessed 30 Sep 2022
Turković E, Vasiljević I, Drašković M, Parojčić J. Orodispersible films — pharmaceutical development for improved performance: a review. J Drug Deliv Sci Technol. 2022;75:103708. DOI
Sakellariou P, Hassan A, Rowe RC. Plasticization of aqueous poly(vinyl alcohol) and hydroxypropyl methylcellulose with polyethylene glycols and glycerol. Eur Polym J. 1993;29(7):937–43. DOI
Vraníková B, Pavloková S, Gajdziok J. Experimental design for determination of effects of superdisintegrant combinations on liquisolid system properties. J Pharm Sci. 2017;106(3):817–25. PubMed DOI
Kostelanská K, Prudilová BB, Holešová S, Vlček J, Vetchý D, Gajdziok J. Comparative study of powder carriers physical and structural properties. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14040818 . PubMed DOI PMC
Borges AF, Cláudia S, J. CJF, Simões S. Outlining critical quality attributes (CQAs) as guidance for the development of orodispersible films. Pharm Dev Technol. 2017;22(2):237–45. PubMed DOI
Salawi A. An insight into preparatory methods and characterization of orodispersible film—a review. Pharmaceuticals. 2022. https://doi.org/10.3390/ph15070844 . PubMed DOI PMC
Takeuchi Y, Hayakawa F, Tahara K, Takeuchi H. Orally disintegrating films: the effects of water content on disintegration and mechanical properties. J Drug Deliv Sci Technol. 2021;66:102893. DOI
Janigová N, Elbl J, Pavloková S, Gajdziok J. Effects of various drying times on the properties of 3D printed orodispersible films. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14020250 . PubMed DOI PMC
FDA. Orally disintegrating tablets 2008. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets . Accessed 1 Oct 2022
Speer I, Steiner D, Thabet Y, Breitkreutz J, Kwade A. Comparative study on disintegration methods for oral film preparations. Eur J Pharm Biopharm. 2018;132:50–61. PubMed DOI
López-Esparza R, Balderas Altamirano MA, Pérez E, Gama Goicochea A. Importance of molecular interactions in colloidal dispersions. Adv Condens Matter Phys. 2015;2015(1):683716.
Olechno K, Basa A, Winnicka K. Success depends on your backbone”—about the use of polymers as essential materials forming orodispersible films. Materials. 2021. https://doi.org/10.3390/ma14174872 . PubMed DOI PMC
Gupta MS, Kumar TP, Gowda DV, Rosenholm JM. Orodispersible films: conception to quality by design. Adv Drug Deliv Rev. 2021;178:113983. PubMed DOI
Yan T-T, Zhu-Fen L, Pan T, Min-Mei L, Wei L, Si-Yu H, et al. Semi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacy. Drug Dev Ind Pharm. 2020;46(4):531–8. PubMed DOI
Panraksa P, Qi S, Udomsom S, Tipduangta P, Rachtanapun P, Jantanasakulwong K, et al. Characterization of hydrophilic polymers as a syringe extrusion 3D printing material for orodispersible film. Polymers. 2021. https://doi.org/10.3390/polym13203454 . PubMed DOI PMC
Planchette C, Pichler H, Wimmer-Teubenbacher M, Gruber M, Gruber-Woelfler H, Mohr S, et al. Printing medicines as orodispersible dosage forms: effect of substrate on the printed micro-structure. Int J Pharm. 2016;509(1):518–27. PubMed DOI
Oba T, Tahara K, Kato Y, Sonoda R, Kawashima Y, Takeuchi H. Development of a simple and practical method for estimating the liquid absorption of pharmaceutical porous materials using a capillary rise technique. Adv Powder Technol. 2018;29(12):3210–9. DOI
Abdelbary A, Chang Li. 2 - Properties and characteristics of tribo-surfaces. In: Abdelbary A, Chang L, editors. Principles of Engineering Tribology: Academic Press. 2023; p. 33–75. https://www.sciencedirect.com/science/article/pii/B9780323991155000098 .
Ghafar H, Khan MI, Sarwar HS, Yaqoob S, Hussain SZ, Tariq I, et al. Development and characterization of bioadhesive film embedded with lignocaine and calcium fluoride nanoparticles. AAPS PharmSciTech. 2020;21(2):60. PubMed DOI
Oh B-C, Jin G, Park C, Park J-B, Lee B-J. Preparation and evaluation of identifiable quick response (QR)-coded orodispersible films using 3D printer with directly feeding nozzle. Int J Pharm. 2020;584:119405. PubMed DOI
Ṣen Karaman D, Patrignani G, Rosqvist E, Smått J-H, Orłowska A, Mustafa R, et al. Mesoporous silica nanoparticles facilitating the dissolution of poorly soluble drugs in orodispersible films. Eur J Pharm Sci. 2018;122:152–9. PubMed DOI
Cilurzo F, Musazzi UM, Franzé S, Selmin F, Minghetti P. Orodispersible dosage forms: biopharmaceutical improvements and regulatory requirements. Drug Discov Today. 2018;23(2):251–9. PubMed DOI
Khajuria DK, Patil ON, Karasik D, Razdan R. Development and evaluation of novel biodegradable chitosan based metformin intrapocket dental film for the management of periodontitis and alveolar bone loss in a rat model. Arch Oral Biol. 2018;85:120–9. PubMed DOI
Speer I, Lenhart V, Preis M, Breitkreutz J. Prolonged release from orodispersible films by incorporation of diclofenac-loaded micropellets. Int J Pharm. 2019;554:149–60. PubMed DOI
Kumari P, Rathi P, Kumar V, Lal J, Kaur H, Singh J. Kozeny–carman permeability relationship with disintegration process predicted from early dissolution profiles of immediate release tablets. Drug Dev Ind Pharm. 2017;43(7):1143–53. PubMed DOI
Shtyka O, Przybysz Ł, Błaszczyk M, Sęk J. Kozeny-carman theory for modeling of porous granular structures saturation with emulsion during imbibition process. PLoS One. 2017;12(12):e0188376. PubMed DOI PMC
Borjigin T, Zhan X, Li J, Meda A, Tran KK. Predicting mini-tablet dissolution performance utilizing X-ray computed tomography. Eur J Pharm Sci. 2023;181:106346. PubMed DOI
Steiner D, Finke JH, Kwade A. SOFTs – structured orodispersible film templates. Eur J Pharm Biopharm. 2019;137:209–17. PubMed DOI
Rongthong T, Qnouch A, Maue Gehrke M, Paccou L, Oliveira P, Danede F, et al. Silicone matrices for controlled dexamethasone release: toward a better understanding of the underlying mass transport mechanisms. Regen Biomater. 2023;10:rbad008. PubMed DOI PMC
Al-Hajri S, Mahmood SM, Abdulelah H, Akbari S. An overview on polymer retention in porous media. Energies. 2018. https://doi.org/10.3390/en11102751 . DOI
Kiefer O, Fischer B, Breitkreutz J. Fundamental investigations into metoprolol tartrate deposition on orodispersible films by inkjet printing for individualised drug dosing. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13020247 . PubMed DOI PMC
Gupta MS, Kumar TP, Davidson R, Kuppu GR, Pathak K, Gowda DV. Printing methods in the production of orodispersible films. AAPS PharmSciTech. 2021;22(3):129. PubMed DOI
Muralter F, Perrotta A, Coclite AM. Thickness-dependent swelling behavior of vapor-deposited smart polymer thin films. Macromolecules. 2018;51(23):9692–9. PubMed DOI PMC
Park S-J, Yeo S-D. Recrystallization of caffeine using gas antisolvent process. J Supercrit Fluids. 2008;47(1):85–92. DOI
Genina N, Fors D, Palo M, Peltonen J, Sandler N. Behavior of printable formulations of loperamide and caffeine on different substrates—effect of print density in inkjet printing. Int J Pharm. 2013;453(2):488–97. PubMed DOI
Oliveira PFM, Willart J-F, Siepmann J, Siepmann F, Descamps M. Using milling to explore physical states: the amorphous and polymorphic forms of Dexamethasone. Crystal Growth & Design. 2018;18(3):1748–57. DOI
Noyes AA, Whitney WR. THE RATE OF SOLUTION OF SOLID SUBSTANCES IN THEIR OWN SOLUTIONS. J Am Chem Soc. 1897;19(12):930–4. DOI
Richardson A. Multiple comparisons using R by Frank Bretz, Torsten Hothorn, Peter Westfall. Int Stat Rev. 2011;79:297. DOI
Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1. PubMed
Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35. DOI
Deng M, Hida N, Yamazaki T, Morishima R, Kato Y, Fujita Y, et al. Comparison of bitterness intensity between prednisolone and quinine in a human sensory test indicated individual differences in bitter-taste perception. Pharmaceutics. 2022;14(11):2454. PubMed DOI PMC
Keast RS, Roper J. A complex relationship among chemical concentration, detection threshold, and suprathreshold intensity of bitter compounds. Chem Senses. 2007;32(3):245–53. PubMed DOI
Pistone M, Racaniello GF, Arduino I, Laquintana V, Lopalco A, Cutrignelli A, et al. Direct cyclodextrin-based powder extrusion 3D printing for one-step production of the BCS class II model drug niclosamide. Drug Deliv Transl Res. 2022;12(8):1895–910. PubMed DOI PMC
Adamkiewicz L, Szeleszczuk Ł. Review of applications of cyclodextrins as taste-masking excipients for pharmaceutical purposes. Molecules. 2023. https://doi.org/10.3390/molecules28196964 . PubMed DOI PMC
Desai N, Masen M, Cann P, Hanson B, Tuleu C, Orlu M. Modernising orodispersible film characterisation to improve palatability and acceptability using a toolbox of techniques. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14040732 . PubMed DOI PMC
Spiridon I, Anghel N. Cyclodextrins as multifunctional platforms in drug delivery and beyond: structural features, functional applications, and future trends. Molecules. 2025. https://doi.org/10.3390/molecules30143044 . PubMed DOI PMC