Drug Dissolution Enhancement Using 3D-Printed Silica-Based Oral Films

. 2025 Dec 08 ; 28 (1) : 30. [epub] 20251208

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41361598
Odkazy

PubMed 41361598
DOI 10.1208/s12248-025-01185-9
PII: 10.1208/s12248-025-01185-9
Knihovny.cz E-zdroje

Orodispersible films (ODFs) are increasingly employed for individualized drug delivery due to their ease of administration and precise dosing. However, their drug loading capacity is often limited by the need to maintain thin, flexible structures, posing a particular challenge for incorporating poorly soluble drugs. This study aimed to develop and characterize porous ODF matrices optimized for 3D printing of medicated inks. The primary objective was to investigate the impact of macroporosity on the dissolution kinetics of both poorly soluble and readily soluble drugs, with a focus on enhancing the release of the poorly soluble dexamethasone. Porous ODFs were fabricated via solvent casting using silica- and silicate-based porogens, then loaded with caffeine or dexamethasone through 3D printing. The films were comprehensively characterized using structural (micro-CT, BET), mechanical, and solid-state techniques (SEM, Raman microscopy, FTIR, XRD) to assess porosity, drug crystallization behavior, and drug-matrix compatibility. Drug release was evaluated through dissolution studies. Silica-based porogens yielded films with tunable macroporosity, supporting high drug loads (up to 3-5 times the ink volume). Dexamethasone printed on the SY2 substrate exhibited markedly enhanced dissolution (79.2 ± 1.8%) compared to its powdered form (29.9 ± 11.5%), achieving 61.5% release within 20 min. In contrast, caffeine (readily soluble) showed a transient reduction in dissolution rate during the initial two minutes, attributed to increased particle size and delayed film disintegration. Overall, integrating porous matrix design with 3D printing significantly improved the dissolution of poorly soluble dexamethasone without inducing drug-matrix interactions, confirming that structural modifications drive the enhanced release.

Zobrazit více v PubMed

Easthall C, Barnett N. Using theory to explore the determinants of medication adherence; moving away from a one-size-fits-all approach. Pharmacy. 2017. https://doi.org/10.3390/pharmacy5030050 . PubMed DOI PMC

Iftimi L-D, Edinger M, Bar-Shalom D, Rantanen J, Genina N. Edible solid foams as porous substrates for inkjet-printable pharmaceuticals. Eur J Pharm Biopharm. 2019;136:38–47. PubMed DOI

Visser JC, Woerdenbag HJ, Hanff LM, Frijlink HW. Personalized medicine in pediatrics: the clinical potential of orodispersible films. AAPS PharmSciTech. 2017;18(2):267–72. PubMed DOI

Foo WC, Khong YM, Gokhale R, Chan SY. A novel unit-dose approach for the pharmaceutical compounding of an orodispersible film. Int J Pharm. 2018;539(1):165–74. PubMed DOI

Ma Q, Lu AYH. Pharmacogenetics, Pharmacogenomics, and Individualized Medicine. Pharmacol Rev. 2011;63(2):437–59. PubMed DOI

Wening K, Breitkreutz J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm. 2011;404(1):1–9. PubMed DOI

Klingmann V, Pohly CE, Meissner T, Mayatepek E, Möltner A, Flunkert K, et al. Acceptability of an orodispersible film compared to syrup in neonates and infants: a randomized controlled trial. Eur J Pharm Biopharm. 2020;151:239–45. PubMed DOI

Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm. 2020;576:118963. PubMed DOI

Janßen EM, Schliephacke R, Breitenbach A, Breitkreutz J. Drug-printing by flexographic printing technology—a new manufacturing process for orodispersible films. Int J Pharm. 2013;441(1):818–25. PubMed DOI

Muhindo D, Elkanayati R, Srinivasan P, Repka MA, Ashour EA. Recent advances in the applications of additive manufacturing (3D printing) in drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):57. PubMed DOI

Scarpa M, Stegemann S, Hsiao W-K, Pichler H, Gaisford S, Bresciani M, et al. Orodispersible films: towards drug delivery in special populations. Int J Pharm. 2017;523(1):327–35. PubMed DOI

Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156(2):179–85. PubMed DOI

Vuddanda PR, Montenegro-Nicolini M, Morales JO, Velaga S. Effect of plasticizers on the physico-mechanical properties of pullulan based pharmaceutical oral films. Eur J Pharm Sci. 2017;96:290–8. PubMed DOI

Serajuddin ATM. Challenges, current status and emerging strategies in the development of rapidly dissolving FDM 3D-printed tablets: an overview and commentary. Admet dmpk. 2023;11(1):33–55. PubMed PMC

Thanawuth K, Sutthapitaksakul L, Konthong S, Suttiruengwong S, Huanbutta K, Dass CR, et al. Impact of drug loading method on drug release from 3D-printed tablets made from filaments fabricated by hot-melt extrusion and impregnation processes. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13101607 . PubMed DOI PMC

Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one’s own medicine. Int J Pharm. 2015;494(2):568–77. PubMed DOI

Maniya NH, Patel SR, Murthy Z. Drug Delivery with Porous silicon films, MicroParticles, and nanoparticles. Reviews on Advanced Materials Science. 2016;44(3).

Vraníková B, Niederquell A, Šklubalová Z, Kuentz M. Relevance of the theoretical critical pore radius in mesoporous silica for fast crystallizing drugs. Int J Pharm. 2020;591:120019. PubMed DOI

Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85(3, Part B):1075–83. PubMed DOI

Kyobula M, Adedeji A, Alexander MR, Saleh E, Wildman R, Ashcroft I, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release. 2017;261:207–15. PubMed DOI

Elbl J, Veselý M, Blaháčková D, Ondruš J, Kulich P, Mašková E, et al. Development of 3D printed multi-layered orodispersible films with porous structure applicable as a substrate for inkjet printing. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15020714 . PubMed DOI PMC

Ehtezazi T, Algellay M, Hardy A. Next steps in 3D printing of fast dissolving oral films for commercial production. Recent Pat Drug Deliv Formul. 2020;14(1):5–20. PubMed DOI

Kean EA, Adeleke OA. Orally disintegrating drug carriers for paediatric pharmacotherapy. Eur J Pharm Sci. 2023;182:106377. PubMed DOI

Ferlak J, Guzenda W, Osmałek T. Orodispersible films—current state of the art, limitations, advances and future perspectives. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15020361 . PubMed DOI PMC

Borbolla-Jiménez FV, Peña-Corona SI, Farah SJ, Jiménez-Valdés MT, Pineda-Pérez E, Romero-Montero A, et al. Films for wound healing fabricated using a solvent casting technique. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15071914 . PubMed DOI PMC

Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M, Khinast JG, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93–100. PubMed DOI

Cheow WS, Kiew TY, Hadinoto K. Combining inkjet printing and amorphous nanonization to prepare personalized dosage forms of poorly-soluble drugs. Eur J Pharm Biopharm. 2015;96:314–21. PubMed DOI

Velaga SP, Nikjoo D, Vuddanda PR. Experimental studies and modeling of the drying kinetics of multicomponent polymer films. AAPS PharmSciTech. 2018;19(1):425–35. PubMed DOI

Xiao Q, Tong Q, Zhou Y, Deng F. Rheological properties of pullulan-sodium alginate based solutions during film formation. Carbohydr Polym. 2015;130:49–56. PubMed DOI

Borges AF, Silva C, Coelho JFJ, Simões S. Oral films: current status and future perspectives: I — galenical development and quality attributes. J Control Release. 2015;206:1–19. PubMed DOI

Bagley E, Nelson T, Scigliano J. Three-dimensional solubility parameters and their relationship to internal pressure measurements in polar and hydrogen bonding solvents. J Paint Technol. 1971;43(555):35–42.

Domján A, Bajdik J, Pintye-Hódi K. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy. Macromolecules. 2009;42(13):4667–73. DOI

Shojaee Kang Sofla M, Mortazavi S, Seyfi J. Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol. Carbohydr Polym. 2020;232:115784. PubMed DOI

Wang T, Markham A, Thomas SJ, Wang N, Huang L, Clemens M, et al. Solution stability of poloxamer 188 under stress conditions. J Pharm Sci. 2019;108(3):1264–71. PubMed DOI

Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–28. PubMed DOI

Takeuchi Y, Nishimatsu T, Tahara K, Takeuchi H. Novel use of insoluble particles as disintegration enhancers for orally disintegrating films. J Drug Deliv Sci Technol. 2019;54:101310. DOI

Al-Mogherah AI, Ibrahim MA, Hassan MA. Optimization and evaluation of venlafaxine hydrochloride fast dissolving oral films. Saudi Pharm J. 2020;28(11):1374–82. PubMed DOI PMC

Pacheco MS, Barbieri D, da Silva CF, de Moraes MA. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Int J Biol Macromol. 2021;178:504–13. PubMed DOI

Panraksa P, Tipduangta P, Jantanasakulwong K, Jantrawut P. Formulation of orally disintegrating films as an amorphous solid solution of a poorly water-soluble drug. Membranes. 2020. https://doi.org/10.3390/membranes10120376 . PubMed DOI PMC

Sandler N, Määttänen A, Ihalainen P, Kronberg L, Meierjohann A, Viitala T, et al. Inkjet printing of drug substances and use of porous substrates‐towards individualized dosing. J Pharm Sci. 2011;100(8):3386–95. PubMed DOI

Edinger M, Bar-Shalom D, Sandler N, Rantanen J, Genina N. QR encoded smart oral dosage forms by inkjet printing. Int J Pharm. 2018;536(1):138–45. PubMed DOI

Elbl J, Gajdziok J, Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int J Pharm. 2020;575:118883. PubMed DOI

Preis M, Knop K, Breitkreutz J. Mechanical strength test for orodispersible and buccal films. Int J Pharm. 2014;461(1):22–9. PubMed DOI

European Pharmacopoeia 11.0. Available from: https://pheur.edqm.eu/subhome/11-0 . Accessed 30 Sep 2022

Turković E, Vasiljević I, Drašković M, Parojčić J. Orodispersible films — pharmaceutical development for improved performance: a review. J Drug Deliv Sci Technol. 2022;75:103708. DOI

Sakellariou P, Hassan A, Rowe RC. Plasticization of aqueous poly(vinyl alcohol) and hydroxypropyl methylcellulose with polyethylene glycols and glycerol. Eur Polym J. 1993;29(7):937–43. DOI

Vraníková B, Pavloková S, Gajdziok J. Experimental design for determination of effects of superdisintegrant combinations on liquisolid system properties. J Pharm Sci. 2017;106(3):817–25. PubMed DOI

Kostelanská K, Prudilová BB, Holešová S, Vlček J, Vetchý D, Gajdziok J. Comparative study of powder carriers physical and structural properties. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14040818 . PubMed DOI PMC

Borges AF, Cláudia S, J. CJF, Simões S. Outlining critical quality attributes (CQAs) as guidance for the development of orodispersible films. Pharm Dev Technol. 2017;22(2):237–45. PubMed DOI

Salawi A. An insight into preparatory methods and characterization of orodispersible film—a review. Pharmaceuticals. 2022. https://doi.org/10.3390/ph15070844 . PubMed DOI PMC

Takeuchi Y, Hayakawa F, Tahara K, Takeuchi H. Orally disintegrating films: the effects of water content on disintegration and mechanical properties. J Drug Deliv Sci Technol. 2021;66:102893. DOI

Janigová N, Elbl J, Pavloková S, Gajdziok J. Effects of various drying times on the properties of 3D printed orodispersible films. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14020250 . PubMed DOI PMC

FDA. Orally disintegrating tablets 2008. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets . Accessed 1 Oct 2022

Speer I, Steiner D, Thabet Y, Breitkreutz J, Kwade A. Comparative study on disintegration methods for oral film preparations. Eur J Pharm Biopharm. 2018;132:50–61. PubMed DOI

López-Esparza R, Balderas Altamirano MA, Pérez E, Gama Goicochea A. Importance of molecular interactions in colloidal dispersions. Adv Condens Matter Phys. 2015;2015(1):683716.

Olechno K, Basa A, Winnicka K. Success depends on your backbone”—about the use of polymers as essential materials forming orodispersible films. Materials. 2021. https://doi.org/10.3390/ma14174872 . PubMed DOI PMC

Gupta MS, Kumar TP, Gowda DV, Rosenholm JM. Orodispersible films: conception to quality by design. Adv Drug Deliv Rev. 2021;178:113983. PubMed DOI

Yan T-T, Zhu-Fen L, Pan T, Min-Mei L, Wei L, Si-Yu H, et al. Semi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacy. Drug Dev Ind Pharm. 2020;46(4):531–8. PubMed DOI

Panraksa P, Qi S, Udomsom S, Tipduangta P, Rachtanapun P, Jantanasakulwong K, et al. Characterization of hydrophilic polymers as a syringe extrusion 3D printing material for orodispersible film. Polymers. 2021. https://doi.org/10.3390/polym13203454 . PubMed DOI PMC

Planchette C, Pichler H, Wimmer-Teubenbacher M, Gruber M, Gruber-Woelfler H, Mohr S, et al. Printing medicines as orodispersible dosage forms: effect of substrate on the printed micro-structure. Int J Pharm. 2016;509(1):518–27. PubMed DOI

Oba T, Tahara K, Kato Y, Sonoda R, Kawashima Y, Takeuchi H. Development of a simple and practical method for estimating the liquid absorption of pharmaceutical porous materials using a capillary rise technique. Adv Powder Technol. 2018;29(12):3210–9. DOI

Abdelbary A, Chang Li. 2 - Properties and characteristics of tribo-surfaces. In: Abdelbary A, Chang L, editors. Principles of Engineering Tribology: Academic Press. 2023; p. 33–75. https://www.sciencedirect.com/science/article/pii/B9780323991155000098 .

Ghafar H, Khan MI, Sarwar HS, Yaqoob S, Hussain SZ, Tariq I, et al. Development and characterization of bioadhesive film embedded with lignocaine and calcium fluoride nanoparticles. AAPS PharmSciTech. 2020;21(2):60. PubMed DOI

Oh B-C, Jin G, Park C, Park J-B, Lee B-J. Preparation and evaluation of identifiable quick response (QR)-coded orodispersible films using 3D printer with directly feeding nozzle. Int J Pharm. 2020;584:119405. PubMed DOI

Ṣen Karaman D, Patrignani G, Rosqvist E, Smått J-H, Orłowska A, Mustafa R, et al. Mesoporous silica nanoparticles facilitating the dissolution of poorly soluble drugs in orodispersible films. Eur J Pharm Sci. 2018;122:152–9. PubMed DOI

Cilurzo F, Musazzi UM, Franzé S, Selmin F, Minghetti P. Orodispersible dosage forms: biopharmaceutical improvements and regulatory requirements. Drug Discov Today. 2018;23(2):251–9. PubMed DOI

Khajuria DK, Patil ON, Karasik D, Razdan R. Development and evaluation of novel biodegradable chitosan based metformin intrapocket dental film for the management of periodontitis and alveolar bone loss in a rat model. Arch Oral Biol. 2018;85:120–9. PubMed DOI

Speer I, Lenhart V, Preis M, Breitkreutz J. Prolonged release from orodispersible films by incorporation of diclofenac-loaded micropellets. Int J Pharm. 2019;554:149–60. PubMed DOI

Kumari P, Rathi P, Kumar V, Lal J, Kaur H, Singh J. Kozeny–carman permeability relationship with disintegration process predicted from early dissolution profiles of immediate release tablets. Drug Dev Ind Pharm. 2017;43(7):1143–53. PubMed DOI

Shtyka O, Przybysz Ł, Błaszczyk M, Sęk J. Kozeny-carman theory for modeling of porous granular structures saturation with emulsion during imbibition process. PLoS One. 2017;12(12):e0188376. PubMed DOI PMC

Borjigin T, Zhan X, Li J, Meda A, Tran KK. Predicting mini-tablet dissolution performance utilizing X-ray computed tomography. Eur J Pharm Sci. 2023;181:106346. PubMed DOI

Steiner D, Finke JH, Kwade A. SOFTs – structured orodispersible film templates. Eur J Pharm Biopharm. 2019;137:209–17. PubMed DOI

Rongthong T, Qnouch A, Maue Gehrke M, Paccou L, Oliveira P, Danede F, et al. Silicone matrices for controlled dexamethasone release: toward a better understanding of the underlying mass transport mechanisms. Regen Biomater. 2023;10:rbad008. PubMed DOI PMC

Al-Hajri S, Mahmood SM, Abdulelah H, Akbari S. An overview on polymer retention in porous media. Energies. 2018. https://doi.org/10.3390/en11102751 . DOI

Kiefer O, Fischer B, Breitkreutz J. Fundamental investigations into metoprolol tartrate deposition on orodispersible films by inkjet printing for individualised drug dosing. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13020247 . PubMed DOI PMC

Gupta MS, Kumar TP, Davidson R, Kuppu GR, Pathak K, Gowda DV. Printing methods in the production of orodispersible films. AAPS PharmSciTech. 2021;22(3):129. PubMed DOI

Muralter F, Perrotta A, Coclite AM. Thickness-dependent swelling behavior of vapor-deposited smart polymer thin films. Macromolecules. 2018;51(23):9692–9. PubMed DOI PMC

Park S-J, Yeo S-D. Recrystallization of caffeine using gas antisolvent process. J Supercrit Fluids. 2008;47(1):85–92. DOI

Genina N, Fors D, Palo M, Peltonen J, Sandler N. Behavior of printable formulations of loperamide and caffeine on different substrates—effect of print density in inkjet printing. Int J Pharm. 2013;453(2):488–97. PubMed DOI

Oliveira PFM, Willart J-F, Siepmann J, Siepmann F, Descamps M. Using milling to explore physical states: the amorphous and polymorphic forms of Dexamethasone. Crystal Growth & Design. 2018;18(3):1748–57. DOI

Noyes AA, Whitney WR. THE RATE OF SOLUTION OF SOLID SUBSTANCES IN THEIR OWN SOLUTIONS. J Am Chem Soc. 1897;19(12):930–4. DOI

Richardson A. Multiple comparisons using R by Frank Bretz, Torsten Hothorn, Peter Westfall. Int Stat Rev. 2011;79:297. DOI

Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1. PubMed

Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35. DOI

Deng M, Hida N, Yamazaki T, Morishima R, Kato Y, Fujita Y, et al. Comparison of bitterness intensity between prednisolone and quinine in a human sensory test indicated individual differences in bitter-taste perception. Pharmaceutics. 2022;14(11):2454. PubMed DOI PMC

Keast RS, Roper J. A complex relationship among chemical concentration, detection threshold, and suprathreshold intensity of bitter compounds. Chem Senses. 2007;32(3):245–53. PubMed DOI

Pistone M, Racaniello GF, Arduino I, Laquintana V, Lopalco A, Cutrignelli A, et al. Direct cyclodextrin-based powder extrusion 3D printing for one-step production of the BCS class II model drug niclosamide. Drug Deliv Transl Res. 2022;12(8):1895–910. PubMed DOI PMC

Adamkiewicz L, Szeleszczuk Ł. Review of applications of cyclodextrins as taste-masking excipients for pharmaceutical purposes. Molecules. 2023. https://doi.org/10.3390/molecules28196964 . PubMed DOI PMC

Desai N, Masen M, Cann P, Hanson B, Tuleu C, Orlu M. Modernising orodispersible film characterisation to improve palatability and acceptability using a toolbox of techniques. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14040732 . PubMed DOI PMC

Spiridon I, Anghel N. Cyclodextrins as multifunctional platforms in drug delivery and beyond: structural features, functional applications, and future trends. Molecules. 2025. https://doi.org/10.3390/molecules30143044 . PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...