Insights Into the Pathological Glycosylation Associated With COG6-CDG
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, kazuistiky
PubMed
41362306
PubMed Central
PMC12682456
DOI
10.1155/humu/7948771
Knihovny.cz E-zdroje
- Klíčová slova
- COG6-CDG, glycomics, glycoprofile, mass spectrometry,
- MeSH
- adaptorové proteiny vezikulární transportní * genetika metabolismus chemie MeSH
- glykosylace MeSH
- kojenec MeSH
- lidé MeSH
- mutace MeSH
- polysacharidy krev MeSH
- transferin metabolismus MeSH
- vrozené poruchy glykosylace * genetika diagnóza metabolismus MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- adaptorové proteiny vezikulární transportní * MeSH
- COG6 protein, human MeSH Prohlížeč
- polysacharidy MeSH
- transferin MeSH
BACKGROUND AND AIMS: Congenital disorders of glycosylation (CDG) are rare diseases caused by defects in protein glycosylation. We present an infant with multisystemic clinical involvement, diagnosed with COG6-CDG. METHODS: Serum and transferrin-linked N-glycans, as well as serum and apolipoprotein CIII-linked O-glycans, were analyzed by MALDI mass spectrometry. Mutation analysis was performed by next-generation sequencing. Functional studies assessed COG6 subunit expression, cooperating subunits, and retrograde transport. GlycoWorks RapiFluor-MS-based N-glycan labeling with HPLC-FLD and ESI-Orbitrap mass spectrometry enabled further comprehensive glycoprofile analysis. RESULTS: Aberrant glycosylation typical of combined N- and O-glycosylation defects was detected. Mutation analysis identified a novel homozygous variant in the COG6 gene: c.906_907delinsA, p.(His302GlnfsTer4), introducing a premature stop codon and producing a truncated protein of only 304 amino acids. The diagnosis of COG6-CDG was confirmed by the complete absence of the COG6 subunit, impairment of two other cooperating subunits, and delayed retrograde transport. Independent glycoprofile analyses by HPLC-FLD and ESI-Orbitrap revealed a set of potential glycobiomarkers of COG6-CDG, including underprocessed N-glycans Hex3-5HexNAc2, Hex3-5HexNAc3, Hex3-4HexNAc4, and Hex4HexNAc3-4NeuAc1. CONCLUSION: This study describes a novel COG6 variant leading to complete loss of protein function and major glycosylation abnormalities. Multiomics analysis provided deeper insights into the molecular mechanisms of this rare disease and the function of the COG6 gene and demonstrated how the mutation results in significant alterations in the patient's (glyco)phenotype.
Ambulance of Medical Genetics Unilabs Slovakia Banská Bystrica Slovakia
Ambulance of Medical Genetics Unilabs Slovakia Košice Slovakia
Department of Glycobiology Institute of Chemistry Slovak Academy of Sciences Bratislava Slovakia
Department of Laboratory Medicine National Institute of Children's Diseases Bratislava Slovakia
Department of Neurology Faculty of Medicine Pavol Jozef Šafárik University Košice Slovakia
Institute of Molecular Biology Slovak Academy of Sciences Bratislava Slovakia
Laboratory of Medical Genetics Unilabs Slovakia Bratislava Slovakia
Zobrazit více v PubMed
Ungar D., Oka T., Vasile E., Krieger M., Hughson F. M. Subunit Architecture of the Conserved Oligomeric Golgi Complex. Journal of Biological Chemistry . 2005;280(38):32729–32735. doi: 10.1074/jbc.M504590200. PubMed DOI
Li G., Xu Y., Hu X., et al. Compound Heterozygous Variants of the COG6 Gene in a Chinese Patient With Deficiency of Subunit 6 of the Conserved Oligomeric Golgi Complex (COG6-CDG) European Journal of Medical Genetics . 2019;62(1):44–46. doi: 10.1016/j.ejmg.2018.04.017. PubMed DOI
Fotso P., Koryakina Y., Pavliv O., Tsiomenko A. B., Lupashin V. V. Cog1p Plays a Central Role in the Organization of the Yeast Conserved Oligomeric Golgi Complex. Journal of Biological Chemistry . 2005;280(30):27613–27623. doi: 10.1074/jbc.M504597200. PubMed DOI
Shestakova A., Zolov S., Lupashin V. COG Complex-Mediated Recycling of Golgi Glycosyltransferases is Essential for Normal Protein Glycosylation. Traffic . 2006;7(2):191–204. doi: 10.1111/j.1600-0854.2005.00376.x. PubMed DOI
Zeevaert R., Foulquier F., Jaeken J., Matthijs G. Deficiencies in Subunits of the Conserved Oligomeric Golgi (COG) Complex Define a Novel Group of Congenital Disorders of Glycosylation. Molecular Genetics and Metabolism . 2008;93(1):15–21. doi: 10.1016/j.ymgme.2007.08.118. PubMed DOI
Lübbehusen J., Thiel C., Rind N., et al. Fatal Outcome due to Deficiency of Subunit 6 of the Conserved Oligomeric Golgi Complex Leading to a New Type of Congenital Disorders of Glycosylation. Human Molecular Genetics . 2010;19(18):3623–3633. doi: 10.1093/hmg/ddq278. PubMed DOI
Rymen D., Winter J., Van Hasselt P. M., et al. Key Features and Clinical Variability of COG6-CDG. Molecular Genetics and Metabolism . 2015;116(3):163–170. doi: 10.1016/j.ymgme.2015.07.003. PubMed DOI
Alsubhi S., Alhashem A., Faqeih E., et al. Congenital Disorders of Glycosylation: The Saudi Experience. American Journal of Medical Genetics Part A . 2017;173(10):2614–2621. doi: 10.1002/ajmg.a.38358. PubMed DOI
Althonaian N., Alsultan A., Morava E., Alfadhel M. Secondary Hemophagocytic Syndrome Associated With COG6 Gene Defect: Report and Review. In: Morava E., Baumgartner M., Patterson M., Rahman S., Zschocke J., Peters V., editors. JIMD Reports, Volume 42 . Springer; 2018. PubMed DOI PMC
Cirnigliaro L., Bianchi P., Sturiale L., et al. COG6-CDG: Novel Variants and Novel Malformation. Birth Defects Research . 2022;114(5–6):165–174. doi: 10.1002/bdr2.1981. PubMed DOI PMC
Huybrechts S., De Laet C., Bontems P., et al. Deficiency of Subunit 6 of the Conserved Oligomeric Golgi Complex (COG6-CDG): Second Patient, Different Phenotype. JIMD Reports . 2012;4:103–108. doi: 10.1007/8904_2011_79. PubMed DOI PMC
Komlosi K., Gläser S., Kopp J., et al. Neonatal Presentation of COG6-CDG With Prominent Skin Phenotype. JIMD Reports . 2020;55(1):51–58. doi: 10.1002/jmd2.12154. PubMed DOI PMC
Lugli L., Bariola M. C., Ferri L., et al. Disorder of Sex Development Associated With a Novel Homozygous Nonsense Mutation in COG6 Expands the Phenotypic Spectrum of COG6-CDG. American Journal of Medical Genetics Part A . 2021;185(4):1187–1194. doi: 10.1002/ajmg.a.62061. PubMed DOI
Lugli L., Pollazzon M., Bigoni S., et al. Correspondence on "Disorder of Sex Development Associated With a Novel Homozygous Nonsense Mutation in COG6 Expands the Phenotypic Spectrum of COG6-CDG". American Journal of Medical Genetics Part A . 2022;188(1):382–383. doi: 10.1002/ajmg.a.62511. PubMed DOI
Mandel H., Cohen Kfir N., Fedida A., et al. COG6-CDG: Expanding the Phenotype With Emphasis on Glycosylation Defects Involved in the Causation of Male Disorders of Sex Development. Clinical Genetics . 2020;98(4):402–407. doi: 10.1111/cge.13816. PubMed DOI
Pérez-Cerdá C., Girós M. L., Serrano M., et al. A Population-Based Study on Congenital Disorders of Protein N- and Combined with O-Glycosylation Experience in Clinical and Genetic Diagnosis. Journal of Pediatrics . 2017;183:170–177.e1. doi: 10.1016/j.jpeds.2016.12.060. PubMed DOI
Shaheen R., Ansari S., Alshammari M. J., et al. A Novel Syndrome of Hypohidrosis and Intellectual Disability is Linked to COG6 Deficiency. Journal of Medical Genetics . 2013;50(7):431–436. doi: 10.1136/jmedgenet-2013-101527. PubMed DOI
Wu B. B., Li W. X., Yang L., Wang H. J., Zhou W. H. A Case of Neonatal Congenital Disorders of Glycosylation Caused by COG6 Gene Mutation and Literature Review. Chinese Journal of Evidence-Based Pediatrics . 2017;12(1):49–53.
Xia Z. J., Ng B. G., Jennions E., et al. The Swedish COG6-CDG Experience and a Comprehensive Literature Review. JIMD Reports . 2023;64(1):79–89. doi: 10.1002/jmd2.12338. PubMed DOI PMC
Zhao P., Zhang L., Tan L., et al. Genetic Analysis and Prenatal Diagnosis in a Chinese With Growth Retardation, Abnormal Liver Function, and Microcephaly. Molecular Genetics & Genomic Medicine . 2021;9(9) doi: 10.1002/mgg3.1751.e1751 PubMed DOI PMC
Ververi A., Stathopoulou T., Kontou A., et al. Lethal COG6-CDG in Neonatal Patient With Arachnodactyly, Joint Contractures, and Skin Manifestations: Founder Mutation in the Southeastern European Population? Pediatric Dermatology . 2022;39(2):314–315. doi: 10.1111/pde.14922. PubMed DOI
den Dunnen J. T., Dalgleish R., Maglott D. R., et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Human Mutation . 2016;37(6):564–569. doi: 10.1002/humu.22981. PubMed DOI
Richards S., Aziz N., Bale S., et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine . 2015;17(5):405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Rehm H. L., Bale S. J., Bayrak-Toydemir P., et al. ACMG Clinical Laboratory Standards for Next-Generation Sequencing. Genetics in Medicine . 2013;15(9):733–747. doi: 10.1038/gim.2013.92. PubMed DOI PMC
Duvaud S., Gabella C., Lisacek F., Stockinger H., Ioannidis V., Durinx C. Expasy, the Swiss Bioinformatics Resource Portal, as Designed by Its Users. Nucleic Acids Research . 2021;49(W1):W216–W227. doi: 10.1093/nar/gkab225. PubMed DOI PMC
Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A. ExPASy: The Proteomics Server for In-Depth Protein Knowledge and Analysis. Nucleic Acids Research . 2003;31(13):3784–3788. doi: 10.1093/nar/gkg563. PubMed DOI PMC
Ondruskova N., Honzik T., Vondrackova A., et al. Severe Phenotype of ATP6AP1-CDG in Two Siblings With a Novel Mutation Leading to a Differential Tissue-Specific ATP6AP1 Protein Pattern, Cellular Oxidative Stress and Hepatic Copper Accumulation. Journal of Inherited Metabolic Disease . 2020;43(4):694–700. doi: 10.1002/jimd.12237. PubMed DOI PMC
Ziburová J., Nemčovič M., Šesták S., et al. A Novel Homozygous Mutation in the Human ALG12 Gene Results in an Aberrant Profile of Oligomannose N-Glycans in Patient's Serum. American Journal of Medical Genetics Part A . 2021;185(11):3494–3501. doi: 10.1002/ajmg.a.62474. PubMed DOI PMC
Kodríková R., Pakanová Z., Krchňák M., et al. N-Glycoprofiling of SLC35A2-CDG: Patient With a Novel Hemizygous Variant. Biomedicine . 2023;11(2):p. 580. doi: 10.3390/biomedicines11020580. PubMed DOI PMC
Kianičková K., Pakanová Z., Květoň F., et al. O-Glycoprofiling of Serum Apolipoprotein C-III in Colorectal Cancer. Frontiers in Bioscience . 2024;29(1):p. 32. doi: 10.31083/j.fbl2901032. PubMed DOI
Steet R., Kornfeld S. COG-7-Deficient Human Fibroblasts Exhibit Altered Recycling of Golgi Proteins. Molecular Biology of the Cell . 2006;17(5):2312–2321. doi: 10.1091/mbc.e05-08-0822. PubMed DOI PMC
Watanabe Y., Aoki-Kinoshita K. F., Ishihama Y., Okuda S. GlycoPOST Realizes FAIR Principles for Glycomics Mass Spectrometry Data. Nucleic Acids Research . 2021;49(D1):D1523–D1528. doi: 10.1093/nar/gkaa1012. PubMed DOI PMC
Smith R. D., Lupashin V. V. Role of the Conserved Oligomeric Golgi (COG) Complex in Protein Glycosylation. Carbohydrate Research . 2008;343(12):2024–2031. doi: 10.1016/j.carres.2008.01.034. PubMed DOI PMC
Ungar D., Oka T., Brittle E. E., et al. Characterization of a Mammalian Golgi-Localized Protein Complex, COG, That Is Required for Normal Golgi Morphology and Function. Journal of Cell Biology . 2002;157(3):405–415. doi: 10.1083/jcb.200202016. PubMed DOI PMC
Foulquier F. COG Defects, Birth and Rise! Biochimica et Biophysica Acta . 2009;1792(9):896–902. doi: 10.1016/j.bbadis.2008.10.020. PubMed DOI
Rabouille C., Linstedt A. D. GRASP: A Multitasking Tether. Frontiers in Cell and Development Biology . 2016;4:p. 1. doi: 10.3389/fcell.2016.00001. PubMed DOI PMC
Laufman O., Freeze H. H., Hong W., Lev S. Deficiency of the Cog8 Subunit in Normal and CDG-Derived Cells Impairs the Assembly of the COG and Golgi SNARE Complexes. Traffic . 2013;14(10):1065–1077. doi: 10.1111/tra.12093. PubMed DOI PMC
Eskelinen E. L. Roles of LAMP-1 and LAMP-2 in Lysosome Biogenesis and Autophagy. Molecular Aspects of Medicine . 2006;27(5–6):495–502. doi: 10.1016/j.mam.2006.08.005. PubMed DOI
Tseng Y. H., Chang C. C., Lin K. H. Thyroid Hormone Upregulates LAMP2 Expression and Lysosome Activity. Biochemical and Biophysical Research Communications . 2023;662:66–75. doi: 10.1016/j.bbrc.2023.04.061. PubMed DOI
Anitei M., Wassmer T., Stange C., Hoflack B. Bidirectional Transport Between the Trans-Golgi Network and the Endosomal System. Molecular Membrane Biology . 2010;27(8):443–456. doi: 10.3109/09687688.2010.522601. PubMed DOI
Yen W. L., Shintani T., Nair U., et al. The Conserved Oligomeric Golgi Complex Is Involved in Double-Membrane Vesicle Formation During Autophagy. Journal of Cell Biology . 2010;188(1):101–114. doi: 10.1083/jcb.200904075. PubMed DOI PMC
D'Souza Z., Blackburn J. B., Kudlyk T., Pokrovskaya I. D., Lupashin V. V. Defects in COG-Mediated Golgi Trafficking Alter Endo-Lysosomal System in Human Cells. Frontiers in Cell and Development Biology . 2019;7(7):p. 118. doi: 10.3389/fcell.2019.00118. PubMed DOI PMC
Dong X., Cheng J., Li J., Wang Y. Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS. Analytical Chemistry . 2010;82(14):6208–6214. doi: 10.1021/ac101022m. PubMed DOI PMC
Zhang W., James P. M., Ng B. G., et al. A Novel N-Tetrasaccharide in Patients With Congenital Disorders of Glycosylation, Including Asparagine-Linked Glycosylation Protein 1, Phosphomannomutase 2, and Mannose Phosphate Isomerase Deficiencies. Clinical Chemistry . 2016;62(1):208–217. doi: 10.1373/clinchem.2015.243279. PubMed DOI PMC
Reily C., Stewart T. J., Renfrow M. B., Novak J. Glycosylation in Health and Disease. Nature Reviews Nephrology . 2019;15(6):346–366. doi: 10.1038/s41581-019-0129-4. PubMed DOI PMC
Gülbakan B., Özgül R. K., Yüzbaşıoğlu A., Kohl M., Deigner H. P., Özgüç M. Discovery of Biomarkers in Rare Diseases: Innovative Approaches by Predictive and Personalized Medicine. EPMA Journal . 2016;7(1):p. 24. doi: 10.1186/s13167-016-0074-2. PubMed DOI PMC