Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
32216104
PubMed Central
PMC7383996
DOI
10.1002/jimd.12237
Knihovny.cz E-zdroje
- Klíčová slova
- ATP6AP1, congenital disorders of glycosylation, copper metabolism, glycosylation, metabolic disorder, oxidative stress,
- MeSH
- fatální výsledek MeSH
- fenotyp MeSH
- kojenec MeSH
- lidé MeSH
- měď metabolismus MeSH
- metabolomika MeSH
- mutace MeSH
- nemoci jater diagnóza genetika metabolismus MeSH
- oxidační stres genetika MeSH
- posttranslační úpravy proteinů MeSH
- sourozenci MeSH
- syndromy imunologické nedostatečnosti diagnóza genetika metabolismus MeSH
- vakuolární protonové ATPasy nedostatek genetika MeSH
- vrozené poruchy glykosylace diagnóza genetika metabolismus MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATP6AP1 protein, human MeSH Prohlížeč
- měď MeSH
- vakuolární protonové ATPasy MeSH
Congenital disorders of glycosylation (CDG) represent a wide range of >140 inherited metabolic diseases, continually expanding not only with regards to the number of newly identified causative genes, but also the heterogeneity of the clinical and molecular presentations within each subtype. The deficiency of ATP6AP1, an accessory subunit of the vacuolar H+ -ATPase, is a recently characterised N- and O-glycosylation defect manifesting with immunodeficiency, hepatopathy and cognitive impairment. At the cellular level, the latest studies demonstrate a complex disturbance of metabolomics involving peroxisomal function and lipid homeostasis in the patients. Our study delineates a case of two severely affected siblings with a new hemizygous variant c.221T>C (p.L74P) in ATP6AP1 gene, who both died due to liver failure before reaching 1 year of age. We bring novel pathobiochemical observations including the finding of increased reactive oxygen species in the cultured fibroblasts from the older boy, a striking copper accumulation in his liver, as well as describe the impact of the mutation on the protein in different organs, showing a tissue-specific pattern of ATP6AP1 level and its posttranslational modification.
Zobrazit více v PubMed
Jansen EJ, Timal S, Ryan M, et al. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun. 2016;7:11600. PubMed PMC
Nishi T, Forgac M. The vacuolar (H+)‐ATPases—nature's most versatile proton pumps. Nat Rev Mol Cell Biol. 2002;3:94‐103. PubMed
Kornak U, Reynders E, Dimopoulou A, et al. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+‐ATPase subunit ATP6V0A2. Nat Genet. 2008;40:32‐34. PubMed
Van Damme T, Gardeitchik T, Mohamed M, et al. Mutations in ATP6V1E1 or ATP6V1A cause autosomal‐recessive cutis Laxa. Am J Hum Genet. 2017;100:216‐227. PubMed PMC
Rujano MA, Cannata Serio M, Panasyuk G, et al. Mutations in the X‐linked ATP6AP2 cause a glycosylation disorder with autophagic defects. J Exp Med. 2017;214:3707‐3729. PubMed PMC
Witters P, Breckpot J, Foulquier F, Preston G, Jaeken J, Morava E. Expanding the phenotype of metabolic cutis laxa with an additional disorder of N‐linked protein glycosylation. Eur J Hum Genet. 2018;26:618‐621. PubMed PMC
Dimitrov B, Himmelreich N, Hipgrave Ederveen AL, et al. Cutis laxa, exocrine pancreatic insufficiency and altered cellular metabolomics as additional symptoms in a new patient with ATP6AP1‐CDG. Mol Genet Metab. 2018;123:364‐374. PubMed
Pareja F, Brandes AH, Basili T, et al. Loss‐of‐function mutations in ATP6AP1 and ATP6AP2 in granular cell tumors. Nat Commun. 2018;9:3533. PubMed PMC
Lecca MR, Wagner U, Patrignani A, Berger EG, Hennet T. Genome‐wide analysis of the unfolded protein response in fibroblasts from congenital disorders of glycosylation type‐I patients. FASEB J. 2005;19:240‐242. PubMed
Polishchuk R, Lutsenko S. Golgi in copper homeostasis: a view from the membrane trafficking field. Histochem Cell Biol. 2013;140:285‐295. PubMed PMC
Axelsson MA, Karlsson NG, Steel DM, Ouwendijk J, Nilsson T, Hansson GC. Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O‐glycosylation of mucins. Glycobiology. 2001;11:633‐644. PubMed
Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S. Elevated Golgi pH impairs terminal N‐glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol. 2009;220:144‐154. PubMed
Maeda Y, Ide T, Koike M, Uchiyama Y, Kinoshita T. GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat Cell Biol. 2008;10:1135‐1145. PubMed
Sato T, Sako Y, Sho M, et al. STT3B‐dependent posttranslational N‐glycosylation as a surveillance system for secretory protein. Mol Cell. 2012;47:99‐110. PubMed