Elevated oxysterol and N-palmitoyl-O-phosphocholineserine levels in congenital disorders of glycosylation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01DK099551
NIDDK NIH HHS - United States
ZIA HD008989
Intramural NIH HHS - United States
UL1 TR000448
NCATS NIH HHS - United States
P30 DK020579
NIDDK NIH HHS - United States
R01 DK099551
NIDDK NIH HHS - United States
UL1 TR002345
NCATS NIH HHS - United States
PubMed
36719165
PubMed Central
PMC10023375
DOI
10.1002/jimd.12595
Knihovny.cz E-zdroje
- Klíčová slova
- ATP6AP1, N-palmitoyl-O-phosphocholineserine (PPCS), Niemann-pick type C (NPC), bile acids, congenital disorders of glycosylation (CDG), oxysterols,
- MeSH
- dítě MeSH
- glykosylace MeSH
- hydrolasy MeSH
- kojenec MeSH
- lidé MeSH
- Niemannova-Pickova nemoc typu C * MeSH
- oxysteroly * MeSH
- vakuolární protonové ATPasy * MeSH
- vrozené poruchy glykosylace * MeSH
- žlučové kyseliny a soli MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ATP6AP1 protein, human MeSH Prohlížeč
- hydrolasy MeSH
- oxysteroly * MeSH
- vakuolární protonové ATPasy * MeSH
- žlučové kyseliny a soli MeSH
Congenital disorders of glycosylation (CDG) and Niemann-Pick type C (NPC) disease are inborn errors of metabolism that can both present with infantile-onset severe liver disease and other multisystemic manifestations. Plasma bile acid and N-palmitoyl-O-phosphocholineserine (PPCS) are screening biomarkers with proposed improved sensitivity and specificity for NPC. We report an infant with ATP6AP1-CDG who presented with cholestatic liver failure and elevated plasma oxysterols and bile acid, mimicking NPC clinically and biochemically. On further investigation, PPCS, but not the bile acid derivative N-(3β,5α,6β-trihydroxy-cholan-24-oyl) glycine (TCG), were elevated in plasma samples from individuals with ATP6AP1-, ALG1-, ALG8-, and PMM2-CDG. These findings highlight the importance of keeping CDG within the diagnostic differential when evaluating children with early onset severe liver disease and elevated bile acid or PPCS to prevent delayed diagnosis and treatment.
Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
Clinical Genomics Program GeneDx Gaithersburg Maryland USA
Department of Medicine Washington University School of Medicine Saint Louis Missouri USA
Department of Paediatrics Sykehuset Ostfold HF Fredrikstad Norway
Department of Pediatrics University of California Irvine School of Medicine Irvine California USA
Division of Genetics and Metabolism University of South Florida Tampa Florida USA
Division of Metabolic Disorders Children's Hospital of Orange County Orange County California USA
Office of the Clinical Director NICHD NIH Bethesda Maryland USA
Section on Molecular Dysmorphology NICHD NIH Bethesda Maryland USA
Undiagnosed Diseases Program Common Fund National Institutes of Health Bethesda Maryland USA
Zobrazit více v PubMed
Chang IJ, He M, Lam CT. Congenital disorders of glycosylation. Ann Transl Med. Dec 2018;6(24):477. doi:10.21037/atm.2018.10.45 PubMed DOI PMC
Jaeken J Congenital disorders of glycosylation. Ann N Y Acad Sci Dec 2010;1214:190–8. doi:10.1111/j.1749-6632.2010.05840.x PubMed DOI
Marques-da-Silva D, Dos Reis Ferreira V, Monticelli M, et al. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis. Mar 2017;40(2):195–207. doi:10.1007/s10545-016-0012-4 PubMed DOI
Starosta RT, Boyer S, Tahata S, et al. Liver manifestations in a cohort of 39 patients with congenital disorders of glycosylation: pin-pointing the characteristics of liver injury and proposing recommendations for follow-up. Orphanet J Rare Dis. Jan 7 2021;16(1):20. doi:10.1186/s13023-020-01630-2 PubMed DOI PMC
Chikh K, Vey S, Simonot C, Vanier MT, Millat G. Niemann-Pick type C disease: importance of N-glycosylation sites for function and cellular location of the NPC2 protein. Moi Genet Metab. Nov 2004;83(3):220–30. doi:10.1016/j.ymgme.2004.06.013 PubMed DOI
Sidhu R, Kell P, Dietzen DJ, et al. Application of a glycinated bile acid biomarker for diagnosis and assessment of response to treatment in Niemann-pick disease type C1. Moi Genet Metab. Dec 2020;131 (4):405–417. doi:10.1016/j.ymgme.2020.11.005 PubMed DOI PMC
Sidhu R, Kell P, Dietzen DJ, et al. Application of N-palmitoyl-O-phosphocholineserine for diagnosis and assessment of response to treatment in Niemann-Pick type C disease. Moi Genet Metab. Apr 2020;129(4):292–302. doi:10.1016/j.ymgme.2020.01.007 PubMed DOI PMC
Giese AK, Mascher H, Grittner U, et al. A novel, highly sensitive and specific biomarker for Niemann-Pick type C1 disease. Orphanet J Rare Dis.Jun 17 2015;10:78. doi:10.1186/s13023-015-0274-1 PubMed DOI PMC
Brown AJ, Jessup W. Oxysterols: Sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med. Jun 2009;30(3):111–22. doi:10.1016/j.mam.2009.02.005 PubMed DOI
Jiang X, Sidhu R, Porter FD, et al. A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma. J Lipid Res. Jul 2011;52(7):1435–45. doi:10.1194/jlr.D015735 PubMed DOI PMC
Porter FD, Scherrer DE, Lanier MH, et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. Nov 3 2010;2(56):56ra81. doi:10.1126/scitranslmed.3001417 PubMed DOI PMC
Takaki Y, Mizuochi T, Takei H, et al. Urinary and serum oxysterols in children: developmental pattern and potential biomarker for pediatric liver disease. Sci Rep. Apr 21 2020;10(1):6752. doi:10.1038/s41598-020-63758-2 PubMed DOI PMC
Polo G, Burlina A, Furlan F, et al. High level of oxysterols in neonatal cholestasis: a pitfall in analysis of biochemical markers for Niemann-Pick type C disease. Clin Chem Lab Med. Jul 1 2016;54(7):1221–9. doi:10.1515/cclm-2015-0669 PubMed DOI
Jiang X, Ory DS. Advancing Diagnosis and Treatment of Niemann-Pick C disease through Biomarker Discovery. Explor Neuroprotective Ther. Dec 30 2021;1(3):146–158. doi:10.37349/ent.2021.00012 PubMed DOI PMC
Retterer K, Juusola J, Cho MT, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. Jul 2016;18(7):696–704. doi:10.1038/gim.2015.148 PubMed DOI
Marelli C, Lamari F, Rainteau D, et al. Plasma oxysterols: biomarkers for diagnosis and treatment in spastic paraplegia type 5. Brain. Jan 1 2018;141(1):72–84. doi:10.1093/brain/awx297 PubMed DOI
Dimitrov B, Himmelreich N, Hipgrave Ederveen AL, et al. Cutis laxa, exocrine pancreatic insufficiency and altered cellular metabolomics as additional symptoms in a new patient with ATP6AP1-CDG. Mol Genet Metab. Mar 2018;123(3):364–374. doi:10.1016/j.ymgme.2018.01.008 PubMed DOI
Jansen EJ, Timal S, Ryan M, et al. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun. May 27 2016;7:11600. doi:10.1038/ncomms11600 PubMed DOI PMC
Lipinski P, Rokicki D, Bogdanska A, Lesiak J, Lefeber DJ, Tylki-Szymanska A. ATP6AP1-CDG: Follow-up and female phenotype. JIMD Rep. May 2020;53(1):80–82. doi:10.1002/jmd2.12104 PubMed DOI PMC
Ondruskova N, Honzik T, Vondrackova A, et al. Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation. J Inherit Metab Dis. Jul 2020;43(4):694–700. doi:10.1002/jimd.12237 PubMed DOI PMC
Forgac M Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. Nov 2007;8(11):917–29. doi:10.1038/nrm2272 PubMed DOI
Nishi T, Forgac M. The vacuolar (H+)-ATPases--nature's most versatile proton pumps. Nat Rev Mol Cell Biol. Feb 2002;3(2):94–103. doi:10.1038/nrm729 PubMed DOI
Zhong X, Malhotra R, Guidotti G. Regulation of yeast ectoapyrase ynd1p activity by activator subunit Vma13p of vacuolar H+-ATPase. J Biol Chem. Nov 10 2000;275(45):35592–9. doi:10.1074/jbc.M006932200 PubMed DOI
Cannata Serio M, Graham LA, Ashikov A, et al. Mutations in the V-ATPase Assembly Factor VMA21 Cause a Congenital Disorder of Glycosylation With Autophagic Liver Disease. Hepatology. Dec 2020;72(6):1968–1986. doi:10.1002/hep.31218 PubMed DOI PMC
Rujano MA, Cannata Serio M, Panasyuk G, et al. Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects. J Exp Med. Dec 4 2017;214(12):3707–3729. doi:10.1084/jem.20170453 PubMed DOI PMC
Harrison KD, Miao RQ, Fernandez-Hernando C, Suarez Y, Davalos A, Sessa WC. Nogo-B receptor stabilizes Niemann-Pick type C2 protein and regulates intracellular cholesterol trafficking. Cell Metab. Sep 2009;10(3):208–18. doi:10.1016/j.cmet.2009.07.003 PubMed DOI PMC
Kharel Y, Takahashi S, Yamashita S, Koyama T. In vivo interaction between the human dehydrodolichyl diphosphate synthase and the Niemann-Pick C2 protein revealed by a yeast two-hybrid system. Biochem Biophys Res Commun. May 21 2004;318(1):198–203. doi:10.1016/j.bbrc.2004.04.007 PubMed DOI
Raselli T, Hearn T, Wyss A, et al. Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis. J Lipid Res. Jul 2019;60(7):1270–1283. doi:10.1194/jlr.M093229 PubMed DOI PMC