Epstein-Barr virus and human MiRNAs crosstalk: orchestrating latency, lytic cycle, and immune system modulation
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
41369835
DOI
10.1007/s12223-025-01388-9
PII: 10.1007/s12223-025-01388-9
Knihovny.cz E-zdroje
- Klíčová slova
- Adaptive immunity, Epstein-Barr virus, Innate immunity, Latency, Lytic reactivation, MicroRNAs,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that establishes lifelong latency in its host and is associated with a range of malignancies and immune-related disorders. This review examines the complex interactions between EBV and microRNAs (miRNAs), small, non-coding RNAs that regulate gene expression at the post-transcriptional level. It focuses on EBV-encoded miRNAs derived from the BHRF1 and BART clusters, detailing their distinct functions during different latency phases and viral reactivation. These miRNAs facilitate immune evasion, modulate cell cycle progression, apoptosis, and differentiation, and promote cellular environments that favor viral persistence and oncogenesis. EBV also disrupts host miRNA networks, altering gene expression and immune regulation, which contributes to tumor development in diseases such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, and post-transplant lymphoproliferative disorders, and has additionally emerged as a leading etiological factor in multiple sclerosis. Furthermore, the review highlights how viral and host miRNAs jointly modulate immune checkpoints, antiviral defense mechanisms, and the tumor microenvironment. It concludes by summarizing recent progress in miRNA-based diagnostics and therapeutics, underscoring their potential for advancing personalized medicine in EBV-associated pathologies.
Department of Biochemistry Faculty of Pharmacy Badr University in Cairo Badr City Cairo 11829 Egypt
Department of Botany Faculty of Science Mansoura University Mansoura 35516 Egypt
Department of Pharmacology College of Medicine University of Bisha Bisha 61922 Saudi Arabia
School of Biotechnology Badr University in Cairo Badr City Cairo 11829 Egypt
Zoology and Entomology Department Faculty of Science Helwan University Helwan Egypt
Zobrazit více v PubMed
Afrasiabi A, Fewings NL, Schibeci SD, Keane JT, Booth DR, Parnell GP, Swaminathan S (2021) The interaction of human and epstein–barr virus Mirnas with multiple sclerosis risk loci. Int J Mol Sci 22:2927. https://doi.org/10.3390/ijms22062927 PubMed DOI PMC
Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Martin L, Moosmann A, Hammerschmidt W (2016) Epstein-Barr virus Micrornas reduce immune surveillance by virus-specific CD8 + T cells. Proc Natl Acad Sci USA 113:E6467-e6475. https://doi.org/10.1073/pnas.1605884113 PubMed DOI PMC
Albanese M, Tagawa T, Buschle A, Hammerschmidt W (2017) Micrornas of Epstein-Barr virus control innate and adaptive antiviral immunity. J Virol 91:10–1128. https://doi.org/10.1128/jvi.01667-16 DOI
Alsheikh SH, Alsheikh N, AlSaleh M (2024) X-linked lymphoproliferative disease type 2 with activation of hemophagocytic lymphohistiocytosis secondary to Epstein-Barr virus infection. Int J Clin Pediatr 13:26–33. https://doi.org/10.14740/ijcp525 DOI
Ambrosio MR, Navari M, Di Lisio L, Leon EA, Onnis A, Gazaneo S, Mundo L, Ulivieri C, Gomez G, Lazzi S (2014) The Epstein Barr-encoded BART-6-3p microrna affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect Agent Cancer 9(1):12. https://doi.org/10.1186/1750-9378-9-12 PubMed DOI PMC
Amoroso R, Fitzsimmons L, Thomas WA, Kelly GL, Rowe M, Bell AI (2011) Quantitative studies of Epstein-Barr virus-encoded Micrornas provide novel insights into their regulation. J Virol 85:996–1010. https://doi.org/10.1128/jvi.01528-10 PubMed DOI
Anastasiadou E, Stroopinsky D, Alimperti S, Jiao AL, Pyzer AR, Cippitelli C, Pepe G, Severa M, Rosenblatt J, Etna MP (2019) Epstein – Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia 33:132–147. https://doi.org/10.1038/s41375-018-0178-x PubMed DOI
Andelic M, Marchi M, Marcuzzo S, Lombardi R, Faber CG, Lauria G, Salvi E (2023) Archival skin biopsy specimens as a tool for miRNA-based diagnosis: technical and post-analytical considerations. Molecular Therapy Methods & Clinical Development 31:101116. https://doi.org/10.1016/j.omtm.2023.101116 DOI
Aubry V, Mure F, Mariamé B, Deschamps T, Wyrwicz LS, Manet E, Gruffat H (2014) Epstein-Barr virus late gene transcription depends on the assembly of a virus-specific preinitiation complex. J Virol 88:12825–12838. https://doi.org/10.1128/jvi.02139-14 PubMed DOI PMC
Ballerini C, Amoriello R, Maghrebi O, Bellucci G, Addazio I, Betti M, Aprea MG, Masciulli C, Caporali A, Penati V, Ballerini C, De Meo E, Portaccio E, Salvetti M, Amato MP (2025) Exploring the role of EBV in multiple sclerosis pathogenesis through EBV interactome. Front Immunol 16:1557483. https://doi.org/10.3389/fimmu.2025.1557483 PubMed DOI PMC
Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K, Kremmer E, Jäker C, Höck J, Meister G, Grässer F (2008) Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res 36:666–675. https://doi.org/10.1093/nar/gkm1080 PubMed DOI
Bastawecy I (2021) Mode of infection and some diseases caused by Epstein Barr virus: the most ubiquitous, common malignant and characteristic virus. J Hum Virol Retrovirol 9:6–9. https://doi.org/10.15406/jhvrv.2021.09.00237 DOI
Bellot G, Cartron PF, Er E, Oliver L, Juin P, Armstrong LC, Bornstein P, Mihara K, Manon S, Vallette FM (2007) TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ 14:785–794. https://doi.org/10.1038/sj.cdd.4402055 PubMed DOI
Bergallo M, Merlino C, Montin D, Galliano I, Gambarino S, Mareschi K, Fagioli F, Montanari P, Martino S, Tovo P-A (2016) Development of a low-cost stem-loop real-time quantification PCR technique for EBV miRNA expression analysis. Mol Biotechnol 58:540–550. https://doi.org/10.1007/s12033-016-9951-0 PubMed DOI
Bergbauer M, Kalla M, Schmeinck A, Göbel C, Rothbauer U, Eck S, Benet-Pagès A, Strom TM, Hammerschmidt W (2010) CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog 6:e1001114. https://doi.org/10.1371/journal.ppat.1001114 PubMed DOI PMC
Bilir B, Kucuk O, Moreno CS (2013) Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. J Transl Med 11:280. https://doi.org/10.1186/1479-5876-11-280 PubMed DOI PMC
Billi M, De Marinis E, Gentile M, Nervi C, Grignani F (2024) Nuclear miRNAs: gene regulation activities. Int J Mol Sci 25:6066. https://doi.org/10.3390/ijms25116066 PubMed DOI PMC
Bishop GA, Busch LK (2002) Molecular mechanisms of B-lymphocyte transformation by Epstein–Barr virus. Microbes Infect 4:853–857. https://doi.org/10.1016/S1286-4579(02)01605-2 PubMed DOI
Bustin SA, Ruijter JM, van den Hoff MJB, Kubista M, Pfaffl MW, Shipley GL, Tran N, Rödiger S, Untergasser A, Mueller R, Nolan T, Milavec M, Burns MJ, Huggett JF, Vandesompele J, Wittwer CT (2025) MIQE 2.0: revision of the minimum information for publication of quantitative real-time PCR experiments guidelines. Clin Chem 71:634–651. https://doi.org/10.1093/clinchem/hvaf043 PubMed DOI
Cai X, Schäfer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR (2006) Epstein–Barr virus MicroRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2:e23. https://doi.org/10.1371/journal.ppat.0020023 PubMed DOI PMC
Cai L, Li J, Zhang X, Lu Y, Wang J, Lyu X, Chen Y, Liu J, Cai H, Wang Y, Li X (2015a) Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma. Oncotarget 6:7838–7850. https://doi.org/10.18632/oncotarget.3046 PubMed DOI PMC
Cai L, Lyu X, Luo W, Cui X, Ye Y, Yuan C, Peng Q, Wu D, Liu T, Wang E (2015b) EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene 34:2156–2166. https://doi.org/10.1038/onc.2014.341 PubMed DOI
Cameron JE, Yin Q, Fewell C, Lacey M, McBride J, Wang X, Lin Z, Schaefer BC, Flemington EK (2008) Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol 82:1946–1958. https://doi.org/10.1128/jvi.02136-07 PubMed DOI
Chan JY-W, Gao W, Ho W-K, Wei WI, Wong T-S (2012) Overexpression of Epstein-Barr virus-encoded microRNA-BART7 in undifferentiated nasopharyngeal carcinoma. Anticancer Res 32:3201–3210 PubMed
Chen S-J, Chen G-H, Chen Y-H, Liu C-Y, Chang K-P, Chang Y-S, Chen H-C (2010) Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. PLoS One 5:e12745. https://doi.org/10.1371/journal.pone.0012745 PubMed DOI PMC
Chen Y, Fachko D, Ivanov NS, Skinner CM, Skalsky RL (2019) Epstein-Barr virus MicroRNAs regulate B cell receptor signal transduction and lytic reactivation. PLoS Pathog 15:e1007535 PubMed DOI PMC
Chen Y, Di M, Tang Y, Zhao J, Wang Q, Guo Z, Li Y, Ouyang D, Yang J, Chen H (2024) Epstein-Barr virus causes vascular abnormalities in epithelial malignancies through upregulating ANXA3-HIF-1α-VEGF pathway. Oncogene 43:2143–2159. https://doi.org/10.1038/s41388-024-03061-w PubMed DOI
Chitnis T, Weiner HL (2022) Targeting Epstein-Barr virus to treat MS. Med 3:159–161. https://doi.org/10.1016/j.medj.2022.02.005 PubMed DOI
Chiu Y-F, Sugden AU, Sugden B (2013) Epstein-Barr viral productive amplification reprograms nuclear architecture, DNA replication, and histone deposition. Cell Host Microbe 14:607–618 PubMed DOI PMC
Cho KJ, Song J, Oh Y, Lee JE (2015a) MicroRNA-Let-7a regulates the function of microglia in inflammation. Mol Cell Neurosci 68:167–176. https://doi.org/10.1016/j.mcn.2015.07.004 PubMed DOI
Cho S-G, Kim N, Sohn H-J, Lee SK, Oh ST, Lee H-J, Cho H-I, Yim HW, Jung SE, Park G (2015b) Long-term outcome of extranodal NK/T cell lymphoma patients treated with postremission therapy using EBV LMP1 and LMP2a-specific CTLs. Mol Ther 23:1401–1409. https://doi.org/10.1038/mt.2015.91 PubMed DOI PMC
Choi H, Lee SK (2017) TAX1BP1 downregulation by EBV-miR-BART15-3p enhances chemosensitivity of gastric cancer cells to 5-FU. Arch Virol 162:369–377. https://doi.org/10.1007/s00705-016-3109-z PubMed DOI
Choi H, Lee H, Kim SR, Gho YS, Lee SK (2013) Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol 87:8135–8144 PubMed DOI PMC
Choy EY-W, Siu K-L, Kok K-H, Lung RW-M, Tsang CM, To K-F, Kwong DL-W, Tsao SW, Jin D-Y (2008) An Epstein-Barr virus–encoded microRNA targets PUMA to promote host cell survival. J Exp Med 205:2551–2560. https://doi.org/10.1084/jem.20072581 PubMed DOI PMC
Cortese M, Leng Y, Bjornevik K, Mitchell M, Healy BC, Mina MJ, Mancuso JD, Niebuhr DW, Munger KL, Elledge SJ (2024) Serologic response to the Epstein-Barr virus peptidome and the risk for multiple sclerosis. JAMA Neurol 81:515–524 PubMed DOI PMC
Cosmopoulos K, Pegtel M, Hawkins J, Moffett H, Novina C, Middeldorp J, Thorley-Lawson DA (2009) Comprehensive profiling of Epstein-Barr virus microRNAs in nasopharyngeal carcinoma. J Virol 83:2357–2367. https://doi.org/10.1128/jvi.02104-08 PubMed DOI
Costa IB, Santana-da-Silva MN, Nogami PY, Santos e Santos CdJ, Pereira LMS, França EdS, Freire ABC, Ramos FLdP, Monteiro TAF, Macedo O (2024) Immunogenetic profile associated with patients living with HIV-1 and Epstein–Barr virus (EBV) in the Brazilian Amazon region. Viruses 16:1012 PubMed DOI PMC
Cui S, Yu S, Huang H-Y, Lin Y-C-D, Huang Y, Zhang B, Xiao J, Zuo H, Wang J, Li Z, Li G, Ma J, Chen B, Zhang H, Fu J, Wang L, Huang H-D (2025) MiRTarBase 2025: updates to the collection of experimentally validated microRNA–target interactions. Nucleic Acids Res 53:D147–D156. https://doi.org/10.1093/nar/gkae1072 PubMed DOI
Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63. https://doi.org/10.1038/nrm3722 PubMed DOI
Czyż W, Chuncia-Ilczeko M, Wójcikiewicz M, Arczewski F, Dziedzic K, Kulbacka J, Wojszczyk M, Zys D, Pasek P, Ryniecka J (2025) Epstein-Barr virus (EBV) and systemic lupus erythematosus (SLE) association in serological studies. Qual Sport 37:57143–57143. https://doi.org/10.12775/QS.2025.37.57143 DOI
Dawson CW, Laverick L, Morris MA, Tramoutanis G, Young LS (2008) Epstein-Barr virus-encoded LMP1 regulates epithelial cell motility and invasion via the ERK-MAPK pathway. J Virol 82:3654–3664. https://doi.org/10.1128/jvi.01888-07 PubMed DOI PMC
de Araújo-Souza PS, Hanschke SC, Viola JP (2015) Epigenetic control of interferon-gamma expression in CD8 T cells. J Immunol Res 2015:849573. https://doi.org/10.1155/2015/849573 PubMed DOI PMC
Deng Z, Atanasiu C, Zhao K, Marmorstein R, Sbodio JI, Chi N-W, Lieberman PM (2005) Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. J Virol 79:4640–4650 PubMed DOI PMC
Dölken L, Malterer G, Erhard F, Kothe S, Friedel CC, Suffert G, Marcinowski L, Motsch N, Barth S, Beitzinger M (2010) Systematic analysis of viral and cellular MicroRNA targets in cells latently infected with human γ-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 7:324–334. https://doi.org/10.1016/j.chom.2010.03.008 PubMed DOI
Dowd JB, Palermo T, Brite J, McDade TW, Aiello A (2013) Seroprevalence of Epstein-Barr virus infection in US children ages 6–19, 2003–2010. PLoS ONE 8:e64921. https://doi.org/10.1371/journal.pone.0064921 PubMed DOI PMC
Eckert S, Jakimovski D, Zivadinov R, Hicar M, Weinstock-Guttman B (2024) How to and should we target EBV in MS? Expert Rev Clin Immunol 20:703–714. https://doi.org/10.1080/1744666x.2024.2328739 PubMed DOI
Ellis-Connell AL, Iempridee T, Xu I, Mertz JE (2010) Cellular MicroRNAs 200b and 429 regulate the Epstein-Barr virus switch between latency and lytic replication. J Virol 84:10329–10343 PubMed DOI PMC
Estaji F, Zibaee S, Torabi M, Moghim S (2024) Epstein–Barr virus and gastric carcinoma pathogenesis with emphasis on underlying epigenetic mechanisms. Discover Oncol 15:719. https://doi.org/10.1007/s12672-024-01619-4 DOI
Feederle R, Linnstaedt SD, Bannert H, Lips H, Bencun M, Cullen BR, Delecluse H-J (2011) A viral MicroRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 7:e1001294. https://doi.org/10.1371/journal.ppat.1001294 PubMed DOI PMC
Fernandez AF, Rosales C, Lopez-Nieva P, Graña O, Ballestar E, Ropero S, Espada J, Melo SA, Lujambio A, Fraga MF (2009) The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Res 19:438–451. https://doi.org/10.1101/gr.083550.108 PubMed DOI PMC
Fixman ED, Hayward GS, Hayward SD (1992) Trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66:5030–5039. https://doi.org/10.1128/jvi.66.8.5030-5039.1992 PubMed DOI PMC
Forte E, Luftig MA (2011) The role of MicroRNAs in Epstein-Barr virus latency and lytic reactivation. Microbes Infect 13:1156–1167. https://doi.org/10.1016/j.micinf.2011.07.007 PubMed DOI PMC
Forte E, Salinas RE, Chang C, Zhou T, Linnstaedt SD, Gottwein E, Jacobs C, Jima D, Li Q-J, Dave SS (2012) The Epstein-Barr virus (EBV)-induced tumor suppressor MicroRNA miR-34a is growth promoting in EBV-infected B cells. J Virol 86:6889–6898. https://doi.org/10.1128/jvi.07056-11 PubMed DOI PMC
Fukayama M, Hayashi Y, Iwasaki Y, Chong J, Ooba T, Takizawa T, Koike M, Mizutani S, Miyaki M, Hirai K (1994) Epstein-Barr virus-associated gastric carcinoma and Epstein-Barr virus infection of the stomach. Lab Invest 71:73–81 PubMed
Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8:1–6. https://doi.org/10.1186/ar1917 DOI
Giovannoni G (2025) Epstein-Barr virus as a therapeutic and preventive target in multiple sclerosis. Curr Treat Options Neurol 27:10. https://doi.org/10.1007/s11940-024-00822-6 DOI
Godang NL, DeMeis JD, Houserova D, Chaudhary NY, Salter CJ, Xi Y, McDonald OG, Borchert GM (2023) Global switch from DICER-dependent MicroRNA to DICER-independent SnoRNA-derived RNA biogenesis in malignancy. Micropublication Biol 2023: 10.17912/micropub. biology. 000725
Goel H, Goel A (2024) MicroRNA and rare human diseases. Genes 15:1243. https://doi.org/10.3390/genes15101243 PubMed DOI PMC
Gordadze AV, Poston D, Ling PD (2002) The EBNA2 polyproline region is dispensable for Epstein-Barr virus-mediated immortalization maintenance. J Virol 76:7349–7355. https://doi.org/10.1128/jvi.76.14.7349-7355.2002 PubMed DOI PMC
Gouzouasis V, Tastsoglou S, Giannakakis A, Hatzigeorgiou AG (2023) Virus-derived small RNAs and MicroRNAs in health and disease. Annu Rev Biomed Data Sci 6:275–298. https://doi.org/10.1146/annurev-biodatasci-122220-111429 PubMed DOI
Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O’Donnell E, Neuberg D, Shipp MA (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18:1611–1618. https://doi.org/10.1158/1078-0432.CCR-11-1942 PubMed DOI PMC
Hammerschmidt W, Sugden B (2013) Replication of Epstein–Barr viral DNA. Cold Spring Harb Perspect Biol 5:a013029 PubMed DOI PMC
Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rainey AA, Pich D, McInnes IB, Hammerschmidt W, O’Neill LA, Masters SL (2012) Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production. J Immunol 189:3795–3799. https://doi.org/10.4049/jimmunol.1200312 PubMed DOI
Harding CV (1991) Pathways of antigen processing. Curr Opin Immunol 3:3–9. https://doi.org/10.1016/0952-7915(91)90068-C PubMed DOI
Harold C, Cox D, Riley KJ (2016) Epstein-Barr viral MicroRNAs target caspase 3. Virol J 13:1–8. https://doi.org/10.1186/s12985-016-0602-7 DOI
He G, Ding J, Zhang Ye, Cai M, Yang J, Cho WC, Zheng Y (2021) MicroRNA-21: a key modulator in oncogenic viral infections. RNA Biol 18:809–817. https://doi.org/10.1080/15476286.2021.1880756 PubMed DOI PMC
Heilmann AM, Calderwood MA, Portal D, Lu Y, Johannsen E (2012) Genome-wide analysis of Epstein-Barr virus Rta DNA binding. J Virol 86:5151–5164. https://doi.org/10.1128/jvi.06760-11 PubMed DOI PMC
Henry CJ, Ornelles DA, Mitchell LM, Brzoza-Lewis KL, Hiltbold EM (2008) IL-12 produced by dendritic cells augments CD8 + T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol 181:8576–8584 PubMed DOI
Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005. https://doi.org/10.1038/nmeth.2633 PubMed DOI PMC
Ho JW, Li L, Wong KY, Srivastava G, Tao Q (2023) Comprehensive profiling of EBV gene expression and promoter methylation reveals latency II viral infection and sporadic abortive lytic activation in peripheral T-cell lymphomas. Viruses 15:423. https://doi.org/10.3390/v15020423 PubMed DOI PMC
Hooykaas MJG, van Gent M, Soppe JA, Kruse E, Boer IGJ, van Leenen D, Groot Koerkamp MJA, Holstege FCP, Ressing ME, Wiertz E, Lebbink RJ (2017) EBV microRNA BART16 suppresses type I IFN signaling. J Immunol 198:4062–4073. https://doi.org/10.4049/jimmunol.1501605 PubMed DOI
Hsu C-Y, Yi Y-H, Chang K-P, Chang Y-S, Chen S-J, Chen H-C (2014) The Epstein-Barr virus-encoded microRNA MiR-BART9 promotes tumor metastasis by targeting E-cadherin in nasopharyngeal carcinoma. PLoS Pathog 10:e1003974 PubMed DOI PMC
Huang WT, Lin CW (2014) EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am J Pathol 184:1185–1197. https://doi.org/10.1016/j.ajpath.2013.12.024 PubMed DOI
Huang J, Tengvall K, Lima IB, Hedström AK, Butt J, Brenner N, Gyllenberg A, Stridh P, Khademi M, Ernberg I, Al Nimer F, Manouchehrinia A, Hillert J, Alfredsson L, Andersen O, Sundström P, Waterboer T, Olsson T, Kockum I (2024) Genetics of immune response to Epstein-Barr virus: prospects for multiple sclerosis pathogenesis. Brain 147:3573–3582. https://doi.org/10.1093/brain/awae110 PubMed DOI PMC
Iizasa H, Wulff B-E, Alla NR, Maragkakis M, Megraw M, Hatzigeorgiou A, Iwakiri D, Takada K, Wiedmer A, Showe L (2010) Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem 285:33358–33370. https://doi.org/10.1074/jbc.M110.138362 PubMed DOI PMC
Iizasa H, Kim H, Kartika AV, Kanehiro Y, Yoshiyama H (2020) Role of viral and host MicroRNAs in immune regulation of Epstein-Barr virus-associated diseases. Front Immunol 11:367 PubMed DOI PMC
Imig J, Motsch N, Zhu JY, Barth S, Okoniewski M, Reineke T, Tinguely M, Faggioni A, Trivedi P, Meister G (2011) MicroRNA profiling in Epstein–Barr virus-associated B-cell lymphoma. Nucleic Acids Res 39:1880–1893. https://doi.org/10.1093/nar/gkq1043 PubMed DOI
Isaac RS, Sanulli S, Tibble R, Hornsby M, Ravalin M, Craik CS, Gross JD, Narlikar GJ (2017) Biochemical basis for distinct roles of the heterochromatin proteins Swi6 and Chp2. J Mol Biol 429:3666–3677. https://doi.org/10.1016/j.jmb.2017.09.012 PubMed DOI PMC
Jung Y-J, Choi H, Kim H, Lee SK (2014) MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1. J Virol 88:9027–9037. https://doi.org/10.1128/jvi.00721-14 PubMed DOI PMC
Kanda T, Miyata M, Kano M, Kondo S, Yoshizaki T, Iizasa H (2015) Clustered MicroRNAs of the Epstein-Barr virus cooperatively downregulate an epithelial cell-specific metastasis suppressor. J Virol 89:2684–2697. https://doi.org/10.1128/jvi.03189-14 PubMed DOI
Kang D, Skalsky RL, Cullen BR (2015) EBV BART MicroRNAs target multiple pro-apoptotic cellular genes to promote epithelial cell survival. PLoS Pathog 11:e1004979 PubMed DOI PMC
Kariuki D, Asam K, Aouizerat BE, Lewis KA, Florez JC, Flowers E (2023) Review of databases for experimentally validated human microRNA–mRNA interactions. Database 2023:baad014. https://doi.org/10.1093/database/baad014 PubMed DOI PMC
Kenney SC, Mertz JE (2014) Regulation of the latent-lytic switch in Epstein–Barr virus. Semin Cancer Biol 26:60–68. https://doi.org/10.1016/j.semcancer.2014.01.002 PubMed DOI
Kim DN, Chae H-S, Oh ST, Kang J-H, Park CH, Park WS, Takada K, Lee JM, Lee W-K, Lee SK (2007) Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Virol 81:1033–1036. https://doi.org/10.1128/jvi.02271-06 PubMed DOI
Kim H, Choi H, Lee SK (2015) Epstein–Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD. Cancer Lett 356:733–742. https://doi.org/10.1016/j.canlet.2014.10.023 PubMed DOI
Kim H, Choi H, Lee SK (2016) Epstein-Barr virus microRNA miR-BART20-5p suppresses lytic induction by inhibiting BAD-mediated caspase-3-dependent apoptosis. J Virol 90:1359–1368 PubMed DOI PMC
Kim EJ, Chae H, Park Y-S, Ryu M-H, Kim H-D, Shin J, Park YS, Moon MS, Kang Y-K (2024) Clinical outcomes of Epstein–Barr virus (EBV)-associated metastatic and locally advanced unresectable gastric cancers (GCs) in patients receiving first-line fluoropyrimidine and platinum (FP) doublet chemotherapy. Gastric Cancer 27:146–154. https://doi.org/10.1007/s10120-023-01445-7 PubMed DOI
Kong IY, Giulino-Roth L (2024) Targeting latent viral infection in EBV-associated lymphomas. Front Immunol 15:1342455. https://doi.org/10.3389/fimmu.2024.1342455 PubMed DOI PMC
Kumar M, Sahoo GC, Das VNR, Singh K, Pandey K (2024) A review of miRNA regulation in Japanese encephalitis (JEV) virus infection. Curr Pharm Biotechnol 25:521–533. https://doi.org/10.2174/0113892010241606231003102047 PubMed DOI
Le MN, Nguyen TA (2023) Innovative microRNA quantification by qPCR. Mol Ther Nucleic Acids 31:628–630. https://doi.org/10.1016/j.omtn.2023.02.012 PubMed DOI PMC
Lei T, Yuen KS, Xu R, Tsao SW, Chen H, Li M, Kok KH, Jin DY (2013) Targeting of DICE1 tumor suppressor by Epstein–Barr virus-encoded miR‐BART3* microRNA in nasopharyngeal carcinoma. Int J Cancer 133:79–87. https://doi.org/10.1002/ijc.28007 PubMed DOI
Li G, Wu Z, Peng Y, Liu X, Lu J, Wang L, Pan Q, He M-L, Li X-P (2010) MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett 299:29–36. https://doi.org/10.1016/j.canlet.2010.07.021 PubMed DOI
Li Z, Chen X, Li L, Liu S, Yang L, Ma X, Tang M, Bode AM, Dong Z, Sun L (2012) EBV encoded miR-BHRF1-1 potentiates viral lytic replication by downregulating host p53 in nasopharyngeal carcinoma. Int J Biochem Cell Biol 44:275–279. https://doi.org/10.1016/j.biocel.2011.11.007 PubMed DOI
Li H, Liu S, Hu J, Luo X, Li N, MBode A, Cao Y (2016) Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 12:1309. https://doi.org/10.7150/ijbs.16564 PubMed DOI PMC
Lin X, Tsai M-H, Shumilov A, Poirey R, Bannert H, Middeldorp JM, Feederle R, Delecluse H-J (2015) The Epstein-Barr virus BART miRNA cluster of the M81 strain modulates multiple functions in primary B cells. PLoS Pathog 11:e1005344 PubMed DOI PMC
Lin Z, Swan K, Zhang X, Cao S, Brett Z, Drury S, Strong MJ, Fewell C, Puetter A, Wang X (2016) Secreted oral epithelial cell membrane vesicles induce Epstein-Barr virus reactivation in latently infected B cells. J Virol 90:3469–3479. https://doi.org/10.1128/jvi.02830-15 PubMed DOI PMC
Lin K, Zhao Y, Xu B, Yu S, Fu Z, Zhang Y, Wang H, Song J, Fan M, Zhou Y, Ai J, Qiu C, Zhang H, Zhang W (2023) Clinical diagnostic performance of droplet digital PCR for suspected bloodstream infections. Microbiol Spectr 11:e01378-01322. https://doi.org/10.1128/spectrum.01378-22 DOI
Liu C, Li S, Qiao M, Zeng C, Liu X, Tang Y (2024a) GB and gH/gL fusion machinery: a promising target for vaccines to prevent Epstein-Barr virus infection. Arch Virol 169:167. https://doi.org/10.1007/s00705-024-06095-3 PubMed DOI
Liu K-L, Hsu W-L, Bu W, Yu KJ, Wang C-P, Chien Y-C, Chen T-C, Chen C-J, Hildesheim A, Middeldorp JM (2024b) Association between antibodies that bind Epstein-Barr virus (EBV) gp350 and gH/gL and shedding of EBV in saliva from nasopharyngeal carcinoma multiplex family members in Taiwan. Open Forum Infect Dis 11:ofae464. https://doi.org/10.1093/ofid/ofae464 PubMed DOI PMC
Lo AKF, To KF, Lo KW, Lung RWM, Hui JWY, Liao G, Hayward SD (2007) Modulation of LMP1 protein expression by EBV-encoded MicroRNAs. Proc Natl Acad Sci 104:16164–16169 PubMed DOI PMC
Lu F, Weidmer A, Liu C-G, Volinia S, Croce CM, Lieberman PM (2008) Epstein-Barr virus-induced miR-155 attenuates NF-κB signaling and stabilizes latent virus persistence. J Virol 82:10436–10443. https://doi.org/10.1128/jvi.00752-08 PubMed DOI PMC
Lu Y, Qin Z, Wang J, Zheng X, Lu J, Zhang X, Wei L, Peng Q, Zheng Y, Ou C, Ye Q, Xiong W, Li G, Fu Y, Yan Q, Ma J (2017) Epstein-Barr virus miR-BART6-3p inhibits the RIG-I pathway. J Innate Immun 9:574–586. https://doi.org/10.1159/000479749 PubMed DOI
Ludwig N, Werner TV, Backes C, Trampert P, Gessler M, Keller A, Lenhof H-P, Graf N, Meese E (2016) Combining miRNA and mRNA expression profiles in Wilms tumor subtypes. Int J Mol Sci 17:475. https://doi.org/10.3390/ijms17040475 PubMed DOI PMC
Lung RW-M, Tong JH-M, Sung Y-M, Leung P-S, Ng DC-H, Chau S-L, Chan AW-H, Ng EK-O, Lo K-W, To K-F (2009) Modulation of LMP2A expression by a newly identified Epstein-Barr virus-encoded microRNA miR-BART22. Neoplasia 11:1174 PubMed DOI PMC
Lung RW-M, Tong JH-M, To K-F (2013) Emerging roles of small Epstein-Barr virus derived non-coding RNAs in epithelial malignancy. Int J Mol Sci 14:17378–17409. https://doi.org/10.3390/ijms140917378 PubMed DOI PMC
Luo X, Zhang J, Wang H, Du Y, Yang L, Zheng F, Ma D (2012) PolyA RT-PCR-based quantification of microRNA by using universal TaqMan probe. Biotechnol Lett 34:627–633. https://doi.org/10.1007/s10529-011-0813-3 PubMed DOI
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang H-W, Yarchoan R (2024) HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 37:e00022–00023 PubMed DOI PMC
Ma S-D, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y, Jankowska-Gan E, Burlingham WJ, Sun X, Gulley ML (2011) A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol 85:165–177 PubMed DOI
Ma J, Nie K, Redmond D, Liu Y, Elemento O, Knowles DM, Tam W (2016) EBV-miR-BHRF1-2 targets PRDM1/Blimp1: potential role in EBV lymphomagenesis. Leukemia 30:594–604. https://doi.org/10.1038/leu.2015.285 PubMed DOI
Mahadeo KM, Baiocchi R, Beitinjaneh A, Chaganti S, Choquet S, Dierickx D, Dinavahi R, Duan X, Gamelin L, Ghobadi A (2024) Tabelecleucel for allogeneic haematopoietic stem-cell or solid organ transplant recipients with Epstein–Barr virus-positive post-transplant lymphoproliferative disease after failure of rituximab or rituximab and chemotherapy (ALLELE): a phase 3, multicentre, open-label trial. Lancet Oncol 25:376–387. https://doi.org/10.1016/S1470-2045(23)00649-6 PubMed DOI
Marquitz AR, Mathur A, Nam CS, Raab-Traub N (2011) The Epstein–Barr virus BART MicroRNAs target the pro-apoptotic protein Bim. Virology 412:392–400. https://doi.org/10.1016/j.virol.2011.01.028 PubMed DOI
McKenzie J, El-Guindy A (2015) Epstein-Barr virus lytic cycle reactivation. Epstein barr virus 2: one herpes virus: many diseases. Springer 2:237–261. https://doi.org/10.1007/978-3-319-22834-1_8 DOI
Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J (2009) A novel and universal method for MicroRNA RT-qPCR data normalization. Genome Biol 10:R64. https://doi.org/10.1186/gb-2009-10-6-r64 PubMed DOI PMC
Miao B-P, Zhang R-S, Li M, Fu Y-T, Zhao M, Liu Z-G, Yang P-C (2015) Nasopharyngeal cancer-derived microRNA-21 promotes immune suppressive B cells. Cell Mol Immunol 12:750–756. https://doi.org/10.1038/cmi.2014.129 PubMed DOI
Mills KHG, Dunne A (2009) Immune modulation: IL-1, master mediator or initiator of inflammation. Nat Med 15:1363–1364. https://doi.org/10.1038/nm1209-1363 PubMed DOI
Min K, Lee SK (2019) EBV miR-BART10-3p promotes cell proliferation and migration by targeting DKK1. Int J Biol Sci 15:657–667. https://doi.org/10.7150/ijbs.30099 PubMed DOI PMC
Min K, Kim JY, Lee SK (2020) Epstein-Barr virus miR-BART1-3p suppresses apoptosis and promotes migration of gastric carcinoma cells by targeting DAB2. Int J Biol Sci 16:694. https://doi.org/10.7150/ijbs.36595 PubMed DOI PMC
Mishra G, Sarnaik G, Samanta J, Keche A, Negi SS (2025) The probable progression of Epstein-Barr virus (EBV) to chronic active EBV/reactivation weakens the immune response and stimulates Cryptococcus neoformans infection, which invariably proves fatal: a case report and review of the literature. Front Virol 4:1485608. https://doi.org/10.3389/fviro.2024.1485608 DOI
Mitra S, Hanumanthappa MK, Sarkar S, Bhalla A, Minz R, Ratho RK (2024) Epstein barr virus-related acute liver failure and hemophagocytosis in an immunocompetent individual: an autopsy report. Int J Surg Pathol 32:838–844. https://doi.org/10.1177/10668969231195068 PubMed DOI
Morris MA, Dawson CW, Young LS (2009) Role of the Epstein–Barr virus-encoded latent membrane protein-1, LMP1, in the pathogenesis of nasopharyngeal carcinoma. Fut Oncol 5:811–825. https://doi.org/10.2217/fon.09.53 DOI
Motsch N, Alles J, Imig J, Zhu J, Barth S, Reineke T, Tinguely M, Cogliatti S, Dueck A, Meister G (2012) MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One 7(8):e42193. https://doi.org/10.1371/journal.pone.0042193 PubMed DOI PMC
Murata T (2023) Epstein-Barr virus: the molecular virology and the associated diseases. Fujita Med J 9:65–72. https://doi.org/10.20407/fmj.2022-018 PubMed DOI
Murata T, Tsurumi T (2014) Switching of EBV cycles between latent and lytic states. Rev Med Virol 24:142–153. https://doi.org/10.1002/rmv.1780 PubMed DOI
Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O (2009) Diverse herpesvirus MicroRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5:376–385. https://doi.org/10.1016/j.chom.2009.03.003 PubMed DOI
Najdi R, Holcombe RF, Waterman ML (2011) Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 10:5. https://doi.org/10.4103/1477-3163.78111 PubMed DOI PMC
Nsaif OH, Froushani SMA, Abood WN (2024) Detection the level of CD19, COX2, INF gamma, and prostaglandin (E2) in chronic active Epstein Barr virus at acute inflammation patients. Pak J Life Soc Sci 22:5465–5473. https://doi.org/10.57239/PJLSS-2024-22.1.00403 DOI
Oliveira LOD, Costa IB, Quaresma JAS (2024) Association between Epstein-Barr virus LMP‐1 and Hodgkin lymphoma LMP‐1 mechanisms in Hodgkin lymphoma development. Rev Med Virol 34:e2561. https://doi.org/10.1002/rmv.2561 PubMed DOI
Oliveira Neto NFd, Caixeta RAV, Zerbinati RM, Zarpellon AC, Caetano MW, Pallos D, Junges R, Costa ALF, Aitken-Saavedra J, Giannecchini S (2024) The emergence of saliva as a diagnostic and prognostic tool for viral infections. Viruses 16:1759. https://doi.org/10.3390/v16111759 DOI
Olmez O, Baba C, Abasiyanik Z, Ozakbas S (2022) Epstein-Barr virus antibody in newly diagnosed multiple sclerosis patients and its association with relapse severity and lesion location. Multiple Sclerosis and Related Disorders 68:104149. https://doi.org/10.1016/j.msard.2022.104149 PubMed DOI
Ortega-Hernandez OD, Martínez-Cáceres EM, Presas-Rodríguez S, Ramo-Tello C (2023) Epstein-Barr virus and multiple sclerosis: a convoluted interaction and the opportunity to unravel predictive biomarkers. Int J Mol Sci. https://doi.org/10.3390/ijms24087407 PubMed DOI PMC
Pagano JS, Blaser M, Buendia M-A, Damania B, Khalili K, Raab-Traub N, Roizman B (2004) Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol 14:453–471. https://doi.org/10.1016/j.semcancer.2004.06.009 PubMed DOI
Pan M, Yang J, Jiang Z (2024) Inflammasomes and their roles in autoimmune diseases. Rheumatology & Autoimmunity 4:197–217. https://doi.org/10.1002/rai2.12155 DOI
Park MC, Kim H, Choi H, Chang MS, Lee SK (2021) Epstein-Barr virus miR-BART1-3p regulates the miR-17-92 cluster by targeting E2F3. Int J Mol Sci 22:10936. https://doi.org/10.3390/ijms222010936 PubMed DOI PMC
Patel PD, Alghareeb R, Hussain A, Maheshwari MV, Khalid N (2022) The association of Epstein-Barr virus with cancer. Cureus 14:1–7. https://doi.org/10.7759/cureus.26314 DOI
Petosa C, Morand P, Baudin F, Moulin M, Artero J-B, Müller CW (2006) Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. Mol Cell 21:565–572. https://doi.org/10.1016/j.molcel.2006.01.006 PubMed DOI
Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C (2004) Identification of virus-encoded microRNAs. Science 304:734–736. https://doi.org/10.1126/science.1096781 PubMed DOI
Pinheiro-de-Oliveira TF, Fonseca AA, Camargos MF, Laguardia-Nascimento M, de Oliveira AM, Cottorello ACP, Goes-Neto A, Barbosa-Stancioli EF (2018) Development of a droplet digital RT-PCR for the quantification of foot-and-mouth virus RNA. J Virol Methods 259:129–134. https://doi.org/10.1016/j.jviromet.2018.06.015 PubMed DOI
Pociupany M, Snoeck R, Dierickx D, Andrei G (2024) Treatment of Epstein-Barr virus infection in immunocompromised patients. Biochem Pharmacol 225:116270. https://doi.org/10.1016/j.bcp.2024.116270 PubMed DOI
Poling BC, Price AM, Luftig MA, Cullen BR (2017) The Epstein-Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis. Virology 512:113–123. https://doi.org/10.1016/j.virol.2017.09.015 PubMed DOI
Pu Q, Dai Y, Hu N, Tao Z, Shi P, Jiang N, Shi L, Fang Z, Wang R, Hu X (2024) Early predictors of Epstein-Barr virus infection in patients with severe fever with thrombocytopenia syndrome. Virol J 21:179. https://doi.org/10.1186/s12985-024-02452-5 PubMed DOI PMC
Qiao Y, Zhao X, Liu J, Yang W (2019) Epstein-barr virus circrnaome as host miRNA sponge regulates virus infection, cell cycle, and oncogenesis. Bioengineered 10:593–603. https://doi.org/10.1080/21655979.2019.1679698 PubMed DOI PMC
Qiu J, Thorley-Lawson DA (2014) EBV microRNA BART 18-5p targets MAP3K2 to facilitate persistence in vivo by inhibiting viral replication in B cells. Proc Natl Acad Sci 111:11157–11162. https://doi.org/10.1073/pnas.1406136111 PubMed DOI PMC
Qiu J, Cosmopoulos K, Pegtel M, Hopmans E, Murray P, Middeldorp J, Shapiro M, Thorley-Lawson DA (2011) A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia. PLoS Pathog 7:e1002193. https://doi.org/10.1371/journal.ppat.1002193 PubMed DOI PMC
Qiu J, Smith P, Leahy L, Thorley-Lawson DA (2015) The epstein-barr virus encoded BART miRNAs potentiate tumor growth in vivo. PLoS Pathog 11:e1004561. https://doi.org/10.1371/journal.ppat.1004561 PubMed DOI PMC
Ramakrishnan R, Donahue H, Garcia D, Tan J, Shimizu N, Rice AP, Ling PD (2011) Epstein-barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas. PLoS ONE 6:e27271. https://doi.org/10.1371/journal.pone.0027271 PubMed DOI PMC
Rancan C, Schirrmann L, Hüls C, Zeidler R, Moosmann A (2015) Latent membrane protein LMP2A impairs recognition of EBV-infected cells by CD8 + T cells. PLoS Pathog 11:e1004906. https://doi.org/10.1371/journal.ppat.1004906 PubMed DOI PMC
Redfern AD, Colley SM, Beveridge DJ, Ikeda N, Epis MR, Li X, Foulds CE, Stuart LM, Barker A, Russell VJ (2013) RNA-induced silencing complex (RISC) proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci 110:6536–6541. https://doi.org/10.1073/pnas.1301620110 PubMed DOI PMC
Ressing ME, van Gent M, Gram AM, Hooykaas MJ, Piersma SJ, Wiertz EJ (2015) Immune evasion by Epstein-Barr virus. Epstein barr virus 2: one herpes virus: many diseases. Springer 2:355–381. https://doi.org/10.1007/978-3-319-22834-1_12 DOI
Richard A, Tulasne D (2012) Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis. Cell Death Dis 3:e277–e277. https://doi.org/10.1038/cddis.2012.18 PubMed DOI PMC
Riley KJ, Rabinowitz GS, Yario TA, Luna JM, Darnell RB, Steitz JA (2012) EBV and human MicroRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31:2207–2221. https://doi.org/10.1038/emboj.2012.63 PubMed DOI PMC
Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV (2024) Epstein–Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 20:729–740. https://doi.org/10.1038/s41584-024-01167-9 PubMed DOI
Rommer P, Puchhammer-Stöckl E, Lassmann H, Berger T, Vietzen H (2024) Ineffective control of Epstein-Barr virus infection is seen in MS: what is next? Clin Transl Med 14:e1596. https://doi.org/10.1002/ctm2.1596 PubMed DOI PMC
Rosato P, Anastasiadou E, Garg N, Lenze D, Boccellato F, Vincenti S, Severa M, Coccia E, Bigi R, Cirone M (2012) Differential regulation of miR-21 and miR-146a by Epstein–Barr virus-encoded EBNA2. Leukemia 26:2343–2352. https://doi.org/10.1038/leu.2012.108 PubMed DOI PMC
Ross N, Gandhi MK, Nourse JP (2013) The Epstein-Barr virus MicroRNA BART11-5p targets the early B-cell transcription factor EBF1. Am J Blood Res 3:210–224 PubMed PMC
Rowe M, Fitzsimmons L, Bell AI (2014) Epstein-Barr virus and Burkitt lymphoma. Chin J Cancer 33:609–619. https://doi.org/10.5732/cjc.014.10190 PubMed DOI PMC
Ruijter JM, Barnewall RJ, Marsh IB, Szentirmay AN, Quinn JC, van Houdt R, Gunst QD, van den Hoff MJB (2021) Efficiency correction is required for accurate quantitative PCR analysis and reporting. Clin Chem 67:829–842. https://doi.org/10.1093/clinchem/hvab052 PubMed DOI
Sabbaghian M, Gheitasi H, Fadaee M, Javadi Henafard H, Tavakoli A, Shekarchi AA, Poortahmasebi V (2024) Human cytomegalovirus micrornas: strategies for immune evasion and viral latency. Arch Virol 169:157. https://doi.org/10.1007/s00705-024-06080-w PubMed DOI
Sample C, Kieff E (1991) Molecular basis for Epstein-Barr virus induced pathogenesis and disease. Springer Semin Immunopathol 13:133–146. https://doi.org/10.1007/BF00201464 PubMed DOI
Schneider-Hohendorf T, Wünsch C, Falk S, Raposo C, Rubelt F, Mirebrahim H, Asgharian H, Schlecht U, Mattox D, Zhou W, Dawin E, Pawlitzki M, Lauks S, Jarius S, Wildemann B, Havla J, Kümpfel T, Schrot MC, Ringelstein M, Kraemer M, Schwake C, Schmitter T, Ayzenberg I, Fischer K, Meuth SG, Aktas O, Hümmert MW, Kretschmer JR, Trebst C, Kleffner I, Massey J, Muraro PA, Chen-Harris H, Gross CC, Klotz L, Wiendl H, Schwab N (2025) Broader anti-EBV TCR repertoire in multiple sclerosis: disease specificity and treatment modulation. Brain 148:933–940. https://doi.org/10.1093/brain/awae244 PubMed DOI
Sharifipour S, Rad KD (2020) Seroprevalence of Epstein–Barr virus among children and adults in Tehran, Iran. New Microbes New Infect 34:100641. https://doi.org/10.1016/j.nmni.2019.100641 PubMed DOI PMC
Sharma B, Sharma U, Raina D, Sharma R, Singla M, Attri S (2024) Epstein–Barr virus: emerging and re-emerging viral infectious diseases. Emerging human viral diseases, II: encephalitic, gastroenteric, and immunodeficiency viral infections. Springer 2:669–691. https://doi.org/10.1007/978-981-97-4480-0_24 DOI
Shen J, Pan J, Du C, Si W, Yao M, Xu L, Zheng H, Xu M, Chen D, Wang S (2017) Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer. Cell Death Dis 8:e2740–e2740. https://doi.org/10.1038/cddis.2017.158 PubMed DOI PMC
Shi C, Sakuma M, Mooroka T, Liscoe A, Gao H, Croce KJ, Sharma A, Kaplan D, Greaves DR, Wang Y (2008) Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood 112:4699–4711 PubMed DOI PMC
Shinozaki-Ushiku A, Kunita A, Isogai M, Hibiya T, Ushiku T, Takada K, Fukayama M (2015) Profiling of virus-encoded MicroRNAs in Epstein-Barr virus-associated gastric carcinoma and their roles in gastric carcinogenesis. J Virol 89:5581–5591. https://doi.org/10.1128/jvi.03639-14 PubMed DOI PMC
Silva JdM, Alves CEdC, Pontes GS (2024) Epstein-Barr virus: the mastermind of immune chaos. Front Immunol 15:1297994. https://doi.org/10.3389/fimmu.2024.1297994 PubMed DOI PMC
Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89–102. https://doi.org/10.1038/nri2691 PubMed DOI
Skalsky RL (2022) MicroRNA-mediated control of Epstein–Barr virus infection and potential diagnostic and therapeutic implications. Curr Opin Virol 56:101272. https://doi.org/10.1016/j.coviro.2022.101272 PubMed DOI
Skalsky RL, Corcoran DL, Gottwein E, Frank CL, Kang D, Hafner M, Nusbaum JD, Feederle R, Delecluse HJ, Luftig MA, Tuschl T, Ohler U, Cullen BR (2012) The viral and cellular MicroRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8:e1002484. https://doi.org/10.1371/journal.ppat.1002484 PubMed DOI PMC
Skinner CM, Ivanov NS, Barr SA, Chen Y, Skalsky RL (2017) An Epstein-Barr virus microRNA blocks interleukin-1 (IL-1) signaling by targeting IL-1 receptor 1. J Virol 91:00517. https://doi.org/10.1128/jvi.00530-00517 DOI
Solares S, León J, García-Gutiérrez L (2024) The functional interaction between Epstein–Barr virus and MYC in the pathogenesis of Burkitt lymphoma. Cancers 16:4212. https://doi.org/10.3390/cancers16244212 PubMed DOI PMC
Song Y, Li X, Zeng Z, Li Q, Gong Z, Liao Q, Li X, Chen P, Xiang B, Zhang W (2016) Epstein-Barr virus encoded miR-BART11 promotes inflammation-induced carcinogenesis by targeting FOXP1. Oncotarget 7:36783. https://doi.org/10.18632/oncotarget.9170 PubMed DOI PMC
Stergiou IE, Tsironis C, Papadakos SP, Tsitsilonis OE, Dimopoulos MA, Theocharis S (2024) Unraveling the role of the NLRP3 inflammasome in lymphoma: implications in pathogenesis and therapeutic strategies. Int J Mol Sci 25:2369. https://doi.org/10.3390/ijms25042369 PubMed DOI PMC
Sun Y, Cai J, Ma F, Lü P, Huang H, Zhou J (2012) miR-155 mediates suppressive effect of progesterone on TLR3, TLR4-triggered immune response. Immunol Lett 146:25–30. https://doi.org/10.1016/j.imlet.2012.04.007 PubMed DOI
Szabo SJ, Sullivan BM, Peng SL, Glimcher LH (2003) Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 21:713–758. https://doi.org/10.1146/annurev.immunol.21.120601.140942 PubMed DOI
Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, Zielinski C, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Hammerschmidt W (2016) Epstein-Barr viral miRNAs inhibit antiviral CD4 + T cell responses targeting IL-12 and peptide processing. J Exp Med 213:2065–2080. https://doi.org/10.1084/jem.20160248 PubMed DOI PMC
Tajima T, Martinez OM, Bernstein D, Boyd SD, Gratzinger D, Lum G, Sasaki K, Tan B, Twist CJ, Weinberg K (2024) Epstein–Barr virus-associated post‐transplant lymphoproliferative disorders in pediatric transplantation: a prospective multicenter study in the United States. Pediatr Transplant 28:e14763. https://doi.org/10.1111/petr.14763 PubMed DOI PMC
Taylor SC, Laperriere G, Germain H (2017) Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Sci Rep 7:2409. https://doi.org/10.1038/s41598-017-02217-x PubMed DOI PMC
Tierney RJ, Shannon-Lowe CD, Fitzsimmons L, Bell AI, Rowe M (2015) Unexpected patterns of Epstein–Barr virus transcription revealed by a high throughput PCR array for absolute quantification of viral mRNA. Virology 474:117–130. https://doi.org/10.1016/j.virol.2014.10.030 PubMed DOI
Toner K, McCann CD, Bollard CM (2024) Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 21:709–724. https://doi.org/10.1038/s41571-024-00930-x PubMed DOI
Torne AS, Robertson ES (2024) Epigenetic mechanisms in latent Epstein-Barr virus infection and associated cancers. Cancers 16:991. https://doi.org/10.3390/cancers16050991 PubMed DOI PMC
Tsai M-H, Raykova A, Klinke O, Bernhardt K, Gärtner K, Leung CS, Geletneky K, Sertel S, Münz C, Feederle R (2013) Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep 5:458–470. https://doi.org/10.1016/j.celrep.2013.09.012 PubMed DOI
van de Waterweg Berends A, Broux B, Machiels B, Gillet L, Hellings N (2024) The EBV-MS connection: the enigma remains. Front Immunol 15:1466339. https://doi.org/10.3389/fimmu.2024.1466339 PubMed DOI PMC
Vaysberg M, Lambert SL, Krams SM, Martinez OM (2009) Activation of the JAK/STAT pathway in epstein barr virus+-associated posttransplant lymphoproliferative disease: role of interferon-γ. Am J Transplant 9:2292–2302. https://doi.org/10.1111/j.1600-6143.2009.02781.x PubMed DOI PMC
Vento-Tormo R, Rodríguez-Ubreva J, Lisio LD, Islam AB, Urquiza JM, Hernando H, Lopez-Bigas N, Shannon-Lowe C, Martínez N, Montes-Moreno S (2014) NF-κB directly mediates epigenetic deregulation of common MicroRNAs in Epstein-Barr virus-mediated transformation of B-cells and in lymphomas. Nucleic Acids Res 42:11025–11039. https://doi.org/10.1093/nar/gku826 PubMed DOI PMC
Vereide DT, Seto E, Chiu Y-F, Hayes M, Tagawa T, Grundhoff A, Hammerschmidt W, Sugden B (2014) Epstein–Barr virus maintains lymphomas via its MiRNAs. Oncogene 33:1258–1264. https://doi.org/10.1038/onc.2013.71 PubMed DOI
Verhoeven Rob JA, Tong S, Zhang G, Zong J, Chen Y, Jin D-Y, Chen M-R, Pan J, Chen H (2016) NF-κB signaling regulates expression of Epstein-Barr virus BART MicroRNAs and long noncoding RNAs in nasopharyngeal carcinoma. J Virol 90:6475–6488. https://doi.org/10.1128/jvi.00613-16 PubMed DOI PMC
Vietzen H, Kühner LM, Berger SM, Ponleitner M, Graninger M, Pistorius C, Jungbauer C, Reindl M, Saucke H, Kauth F, Wendel EM, Rostásy K, Breu M, Kornek B, Bsteh G, Berger T, Rommer P, Puchhammer-Stöckl E (2025) Early identification of individuals at risk for multiple sclerosis by quantification of EBNA-1(381–452)-specific antibody titers. Nat Commun 16:6416. https://doi.org/10.1038/s41467-025-61751-9 PubMed DOI PMC
Wahbeh F, Sabatino JJ (2025) Epstein-Barr virus in multiple sclerosis: past, present, and future. Neurol Neuroimmunol Neuroinflamm 12:e200460. https://doi.org/10.1212/nxi.0000000000200460 PubMed DOI PMC
Wan X-X, Yi H, Qu J-Q, He Q-Y, Xiao Z-Q (2015) Integrated analysis of the differential cellular and EBV MiRNA expression profiles in microdissected nasopharyngeal carcinoma and non-cancerous nasopharyngeal tissues. Oncol Rep 34:2585–2601. https://doi.org/10.3892/or.2015.4237 PubMed DOI
Wang Y, Chen P (2024) Research advances in infectious mononucleosis caused by Epstein-Barr virus. Open J Ped 14:108–121 DOI
Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L (2018) Epstein-Barr virus-encoded MicroRNAs as regulators in host immune responses. Int J Biol Sci 14:565. https://doi.org/10.7150/ijbs.24562 PubMed DOI PMC
Wang M, Gu B, Chen X, Wang Y, Li P, Wang K (2019) The function and therapeutic potential of Epstein-Barr virus-encoded microRNAs in cancer. Molecular Therapy - Nucleic Acids 17:657–668. https://doi.org/10.1016/j.omtn.2019.07.002 PubMed DOI PMC
Wang D, Zeng Z, Zhang S, Xiong F, He B, Wu Y, Li W, Tang L, Wei F, Xiang B (2020) Epstein-Barr virus‐encoded miR‐BART6‐3p inhibits cancer cell proliferation through the LOC553103‐STMN1 axis. FASEB J 34:8012–8027. https://doi.org/10.1096/fj.202000039RR PubMed DOI
Wang H, Liu W, Luo B (2021) The roles of MiRNAs and LncRNAs in Epstein-Barr virus associated epithelial cell tumors. Virus Res 291:198217. https://doi.org/10.1016/j.virusres.2020.198217 PubMed DOI
Wang Y, Yu J, Pei Y (2024) Identifying the key regulators orchestrating Epstein-Barr virus reactivation. Front Microbiol 15:1505191. https://doi.org/10.3389/fmicb.2024.1505191 PubMed DOI PMC
Winter JR, Taylor GS, Thomas OG, Jackson C, Lewis JE, Stagg HR (2019) Predictors of Epstein-Barr virus serostatus in young people in England. BMC Infect Dis 19:1–9. https://doi.org/10.1186/s12879-019-4578-y DOI
Woellmer A, Arteaga-Salas JM, Hammerschmidt W (2012) BZLF1 governs CpG-Methylated chromatin of Epstein-Barr virus reversing epigenetic repression. PLoS Pathog 8(9):e1002902. https://doi.org/10.1371/journal.ppat.1002902 PubMed DOI PMC
Womack J, Jimenez M (2015) Common questions about infectious mononucleosis. Am Fam Physician 91:372–376 PubMed
Wong AMG, Kong KL, Tsang JWH, Kwong DLW, Guan XY (2012) Profiling of Epstein-Barr virus‐encoded MicroRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer 118:698–710. https://doi.org/10.1002/cncr.26309 PubMed DOI
Wong TS, Chen S, Zhang MJ, Chan JY, Gao W (2018) Epstein-barr virus-encoded MicroRNA BART7 downregulates major histocompatibility complex class I chain-related peptide A and reduces the cytotoxicity of natural killer cells to nasopharyngeal carcinoma. Oncol Lett 16:2887–2892. https://doi.org/10.3892/ol.2018.9041 PubMed DOI PMC
Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ (2022) Estimating the global burden of Epstein–Barr virus-related cancers. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-021-03824-y
Xia T, O’Hara A, Araujo I, Barreto J, Carvalho E, Sapucaia JB, Ramos JC, Luz E, Pedroso C, Manrique M (2008) EBV MicroRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res 68:1436–1442. https://doi.org/10.1158/0008-5472.Can-07-5126 PubMed DOI PMC
Xie Y-J, Long Z-F, He X-S (2013) Involvement of EBV-encoded BART-miRNAs and dysregulated cellular MiRNAs in nasopharyngeal carcinoma genesis. Asian Pac J Cancer Prev 14:5637–5644. https://doi.org/10.7314/APJCP.2013.14.10.5637 PubMed DOI
Xing L, Kieff E (2007) Epstein-barr virus BHRF1 micro-and stable RNAs during latency III and after induction of replication. J Virol 81:9967–9975. https://doi.org/10.1128/jvi.02244-06 PubMed DOI PMC
Xiong G, Zhang B, Huang M-y, Zhou H, Chen L-z, Feng Q-s, Luo X, Lin H-j, Zeng Y-x (2014) Epstein-barr virus (EBV) infection in Chinese children: a retrospective study of age-specific prevalence. PLoS One 9:e99857. https://doi.org/10.1371/journal.pone.0099857 PubMed DOI PMC
Xu M, Feng R, Liu Z, Zhou X, Chen Y, Cao Y, Valeri L, Li Z, Liu Z, Cao S-M (2024) Host genetic variants, Epstein-Barr virus subtypes, and the risk of nasopharyngeal carcinoma: assessment of interaction and mediation. Cell Genom 4:100474 PubMed DOI PMC
Yan Q, Zeng Z, Gong Z, Zhang W, Li X, He B, Song Y, Li Q, Zeng Y, Liao Q (2015) EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC. Oncotarget 6:41766. https://doi.org/10.18632/oncotarget.6155 PubMed DOI PMC
Yang Y, Zhou H, Yang Y, Li W, Zhou M, Zeng Z, Xiong W, Wu M, Huang H, Zhou Y (2007) Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NFκB and MAPKs signaling pathways. Mol Immunol 44:984–992. https://doi.org/10.1016/j.molimm.2006.03.013 PubMed DOI
Yang J-s, Li B-j, Lu H-w, Chen Y, Lu C, Zhu R-x, Liu S-h, Yi Q-t, Li J, Song C-h (2015) Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tum Biol 36:3035–3042. https://doi.org/10.1007/s13277-014-2938-1 DOI
Yao X-C, Wu J-J, Yuan S-T, Yuan F-L (2025) Recent insights and perspectives into the role of the miRNA–29 family in innate immunity. Int J Mol Med 55:1–12. https://doi.org/10.3892/ijmm.2025.5494 DOI
Ye Y, Zhou Y, Zhang L, Chen Y, Lyu X, Cai L, Lu Y, Deng Y, Wang J, Yao K (2013) EBV-miR-BART1 is involved in regulating metabolism-associated genes in nasopharyngeal carcinoma. Biochem Biophys Res Commun 436:19–24. https://doi.org/10.1016/j.bbrc.2013.05.008 PubMed DOI
Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K (2020) The role of cancer-derived MicroRNAs in cancer immune escape. J Hematol Oncol 13:1–14. https://doi.org/10.1186/s13045-020-00848-8 DOI
Yoon CJ, Chang MS, Kim DH, Kim W, Koo BK, Yun S-C, Kim SH, Kim YS, Woo JH (2020) Epstein–Barr virus-encoded miR-BART5-5p upregulates PD-L1 through PIAS3/pSTAT3 modulation, worsening clinical outcomes of PD-L1-positive gastric carcinomas. Gastric Cancer 23:780–795. https://doi.org/10.1007/s10120-020-01059-3 PubMed DOI
Young LS, Yap LF, Murray PG (2016) Epstein–Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 16:789–802. https://doi.org/10.1038/nrc.2016.92 PubMed DOI
Yu H, Robertson ES (2023) Epstein–barr virus history and pathogenesis. Viruses 15:714. https://doi.org/10.3390/v15030714 PubMed DOI PMC
Zhang J, Huang T, Zhou Y, Cheng AS, Yu J, To KF, Kang W (2018a) The oncogenic role of Epstein–Barr virus-encoded micro RNA s in Epstein–Barr virus‐associated gastric carcinoma. J Cell Mol Med 22:38–45. https://doi.org/10.1111/jcmm.13354 PubMed DOI
Zhang Y, Zhang W, Liu W, Liu H, Zhang Y, Luo B (2018b) Epstein–Barr virus miRNA-BART16 modulates cell proliferation by targeting LMP1. Virus Res 256:38–44. https://doi.org/10.1016/j.virusres.2018.08.001 PubMed DOI
Zhang L, Chu Q, Chang R, Xu T (2020a) Inducible microRNA-217 inhibits NF-κB–and IRF3-driven immune responses in lower vertebrates through targeting TAK1. J Immunol 205:1620–1632. https://doi.org/10.4049/jimmunol.2000341 PubMed DOI
Zhang Q, Luo D, Xie Z, He H, Duan Z (2020b) The oncogenic role of miR-BART19-3p in Epstein-Barr virus-associated diseases. BioMed Res Int 2020:5217039. https://doi.org/10.1155/2020/5217039 PubMed DOI PMC
Zhao B (2023) Epstein–Barr virus b cell growth transformation: nucear events. Viruses 15:832. https://doi.org/10.3390/v15040832 PubMed DOI PMC
Zhao Z, Liu W, Liu J, Wang J, Luo B (2017) The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer. J Med Virol 89:1844–1851. https://doi.org/10.1002/jmv.24863 PubMed DOI
Zheng XH, Lu LX, Cui C, Chen MY, Li XZ, Jia WH (2016) Epstein-Barr virus mir-bart1-5p detection via nasopharyngeal brush sampling is effective for diagnosing nasopharyngeal carcinoma. Oncotarget 7:4972–4980. https://doi.org/10.18632/oncotarget.6649 PubMed DOI
Zhou L, Bu Y, Liang Y, Zhang F, Zhang H, Li S (2016) Epstein-Barr virus (EBV)-BamHI-A rightward transcript (BART)-6 and cellular microRNA-142 synergistically compromise immune defense of host cells in EBV-positive burkitt lymphoma. Med Sci Monit 22:4114. https://doi.org/10.12659/MSM.897306 PubMed DOI PMC
Židovec Lepej S, Matulić M, Gršković P, Pavlica M, Radmanić L, Korać P (2020) MiRNAs: EBV mechanism for escaping host’s immune response and supporting tumorigenesis. Pathogens 9:353. https://doi.org/10.3390/pathogens9050353 PubMed DOI PMC
Zuo L, Yue W, Du S, Xin S, Zhang J, Liu L, Li G, Lu J (2017) An update: Epstein-Barr virus and immune evasion via MicroRNA regulation. Virol Sin 32:175–187. https://doi.org/10.1007/s12250-017-3996-5 PubMed DOI PMC
Zuo L, Xie Y, Tang J, Xin S, Liu L, Zhang S, Yan Q, Zhu F, Lu J (2019) Targeting exosomal EBV-LMP1 transfer and miR-203 expression via the NF-κB pathway: the therapeutic role of aspirin in NPC. Mol Ther Nucleic Acids 17:175–184. https://doi.org/10.1016/j.omtn.2019.05.023 PubMed DOI PMC