Investigating the Potential Roles of Environmental Exposures on the Pathology of Amyotrophic Lateral Sclerosis by Overlap Analysis

. 2025 Dec 12 ; 43 (6) : 51. [epub] 20251212

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41385026

Grantová podpora
AMX-19-IET-007 Initiative d'Excellence d'Aix-Marseille Université
PRIMUS UK 21/MED/012 Univerzita Karlova v Praze
OP JAK MSCA Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 41385026
DOI 10.1007/s12640-025-00774-y
PII: 10.1007/s12640-025-00774-y
Knihovny.cz E-zdroje

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease causing motor neuron loss. 90-95% of ALS cases are sporadic, and the interplay of genetic predispositions and environmental exposures is essential in ALS pathology. Several neurotoxic exposures, such as smoking, pesticides, and organic solvents, have been implicated as affecting the risk of ALS. However, it is unclear how these exposures impact specific cellular mechanisms and influence ALS risk. We investigated the potential mechanisms of toxicity of diesel exhaust, toluene, pesticides, and smoking on ALS pathology through a bioinformatics approach. We retrieved the gene sets targeted by these environmental exposures, and the gene sets involved in ALS-associated biological processes. We performed overlap analysis to assess the statistical significance of the overlap between the gene sets associated with environmental exposures and those linked to ALS. Response to oxidative stress, synaptic signaling, lipid metabolic process, cellular oxidant detoxification, and regulation of gliogenesis significantly overlapped with the gene sets targeted by each of the four environmental exposures. Contrarily, chaperone-mediated autophagy, DNA repair, and regulation of action potential, significantly overlapped only with the gene sets targeted by diesel exhaust, pesticides, and toluene, respectively. Finally, transport across the blood-brain barrier, vesicle-mediated transport, actin filament-based transport, autophagy, transport to the Golgi and subsequent modification of proteins, metabolism of lipids, regulation of neurotransmitter receptor levels, and axon guidance significantly overlapped only with the gene set targeted by tobacco smoke pollution. This study aims to investigate the molecular relationships between neurotoxic exposures and ALS by overlap analysis, providing a framework that can be applied to investigate other exposure-disease interactions.

Zobrazit více v PubMed

Adamu A, Li S, Gao F, Xue G (2024) The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2024.1347987 PubMed DOI PMC

Afridi R, Tsuda M, Ryu H, Suk K (2022) The function of glial cells in the neuroinflammatory and neuroimmunological responses. Cells 11:659. https://doi.org/10.3390/cells11040659 PubMed DOI PMC

Agrawal A, Balcı H, Hanspers K et al (2024) WikiPathways 2024: next generation pathway database. Nucleic Acids Res 52:D679–D689. https://doi.org/10.1093/nar/gkad960 PubMed DOI

Agrawal I, Lim YS, Ng S-Y, Ling S-C (2022) Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Transl Neurodegener 11:48. https://doi.org/10.1186/s40035-022-00322-0 PubMed DOI PMC

Arai K, Lo EH (2017) Chap. 18 - Gliogenesis. In: Caplan LR, Biller J, Leary MC, (eds) Primer on Cerebrovascular Diseases (Second Edition). Academic Press, San Diego, pp 91–95

Asp M, Bergenstråhle J, Lundeberg J (2020) Spatially resolved transcriptomes—next generation tools for tissue exploration. Bioessays 42:1900221. https://doi.org/10.1002/bies.201900221 DOI

Baldwin KR, Godena VK, Hewitt VL, Whitworth AJ (2016) Axonal transport defects are a common phenotype in drosophila models of ALS. Hum Mol Genet 25:2378–2392. https://doi.org/10.1093/hmg/ddw105 PubMed DOI PMC

Bale AS, Jackson MD, Krantz QT et al (2007) Evaluating the NMDA-glutamate receptor as a site of action for toluene, in vivo. Toxicol Sci 98:159–166. https://doi.org/10.1093/toxsci/kfm080 PubMed DOI

Bale AS, Tu Y, Carpenter-Hyland EP et al (2005) Alterations in glutamatergic and Gabaergic ion channel activity in hippocampal neurons following exposure to the abused inhalant toluene. Neuroscience 130:197–206. https://doi.org/10.1016/j.neuroscience.2004.08.040 PubMed DOI

Barbeito AG, Martinez-Palma L, Vargas MR et al (2010) Lead exposure stimulates VEGF expression in the spinal cord and extends survival in a mouse model of ALS. Neurobiol Dis 37:574–580. https://doi.org/10.1016/j.nbd.2009.11.007 PubMed DOI

Barberio J, Lally C, Kupelian V et al (2023) Estimated familial amyotrophic lateral sclerosis proportion: a literature review and meta-analysis. Neurol Genet 9:e200109. https://doi.org/10.1212/NXG.0000000000200109 PubMed DOI PMC

Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1762:1051–1067. https://doi.org/10.1016/j.bbadis.2006.03.008 PubMed DOI

Beckley JT, Woodward JJ (2011) The abused inhalant toluene differentially modulates excitatory and inhibitory synaptic transmission in deep-layer neurons of the medial prefrontal cortex. Neuropsychopharmacology 36:1531–1542. https://doi.org/10.1038/npp.2011.38 PubMed DOI PMC

Benatar M, Robertson J, Andersen PM (2025) Amyotrophic lateral sclerosis caused by SOD1 variants: from genetic discovery to disease prevention. Lancet Neurol 24:77–86. https://doi.org/10.1016/S1474-4422(24)00479-4 PubMed DOI

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Royal Stat Soc J Ser B: Methodological 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x DOI

Berdyński M, Miszta P, Safranow K et al (2022) SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci Rep 12:103. https://doi.org/10.1038/s41598-021-03891-8 PubMed DOI PMC

Boeynaems S, Bogaert E, Van Damme P, Van Den Bosch L (2016) Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol 132:159–173. https://doi.org/10.1007/s00401-016-1586-5 PubMed DOI PMC

Brain KL, Trout SJ, Jackson VM et al (2001) Nicotine induces calcium spikes in single nerve terminal varicosities: a role for intracellular calcium stores. Neuroscience 106:395–403. https://doi.org/10.1016/S0306-4522(01)00280-9 PubMed DOI

Braunscheidel K, Okas M, Woodward JJ (2024) Toluene alters the intrinsic excitability and excitatory synaptic transmission of basolateral amygdala neurons. Front Neurosci. https://doi.org/10.3389/fnins.2024.1366216 PubMed DOI PMC

Butti Z, Patten SA (2019) RNA dysregulation in amyotrophic lateral sclerosis. Front Genet 9:712. https://doi.org/10.3389/fgene.2018.00712 PubMed DOI PMC

Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225–250. https://doi.org/10.1093/toxsci/kfr239 PubMed DOI PMC

Cavaliere F, Gülöksüz S (2022) Shedding light on the etiology of neurodegenerative diseases and dementia: the exposome paradigm. Npj Mental Health Res 1:1–3. https://doi.org/10.1038/s44184-022-00018-3 DOI

Chiò A, Calvo A, Traynor BJ (2021) Nature meets nurture in amyotrophic lateral sclerosis. Lancet Neurol 20:332–333. https://doi.org/10.1016/S1474-4422(21)00097-1 PubMed DOI

Chiò A, Mazzini L, D’Alfonso S et al (2018) The multistep hypothesis of ALS revisited: the role of genetic mutations. Neurology 91:e635–e642. https://doi.org/10.1212/WNL.0000000000005996 PubMed DOI PMC

Chua JP, De Calbiac H, Kabashi E, Barmada SJ (2022) Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 18:254–282. https://doi.org/10.1080/15548627.2021.1926656 PubMed DOI

Clarke BE, Patani R (2020) The microglial component of amyotrophic lateral sclerosis. Brain 143:3526–3539. https://doi.org/10.1093/brain/awaa309 PubMed DOI PMC

Collins M, Bowser R (2017) Chap. 4 - Molecular Mechanisms of Amyotrophic Lateral Sclerosis. In: Boulis N, O’Connor D, Donsante A (eds) Molecular and Cellular Therapies for Motor Neuron Diseases. Academic Press, pp 61–99

Crockford C, Newton J, Lonergan K et al (2018) ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology 91:e1370–e1380. https://doi.org/10.1212/WNL.0000000000006317 PubMed DOI PMC

Cunha-Oliveira T, Montezinho L, Mendes C et al (2020) Oxidative stress in amyotrophic lateral sclerosis: pathophysiology and opportunities for pharmacological intervention. Oxid Med Cell Longev 2020:5021694. https://doi.org/10.1155/2020/5021694 PubMed DOI PMC

Davis AP, Wiegers TC, Sciaky D et al (2025) Comparative toxicogenomics database’s 20th anniversary: update 2025. Nucleic Acids Res 53:D1328–D1334. https://doi.org/10.1093/nar/gkae883 PubMed DOI

D’Egidio F, Castelli V, d’Angelo M et al (2024) Brain incoming call from glia during neuroinflammation: roles of extracellular vesicles. Neurobiol Dis 201:106663. https://doi.org/10.1016/j.nbd.2024.106663 PubMed DOI

de Jong SW, Huisman MHB, Sutedja NA et al (2012) Smoking, alcohol consumption, and the risk of amyotrophic lateral sclerosis: a population-based study. Am J Epidemiol 176:233–239. https://doi.org/10.1093/aje/kws015 PubMed DOI

Desport J-C, Torny F, Lacoste M et al (2005) Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener Dis 2:202–207. https://doi.org/10.1159/000089626 PubMed DOI

De Vos KJ, Hafezparast M (2017) Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol Dis 105:283–299. https://doi.org/10.1016/j.nbd.2017.02.004 PubMed DOI PMC

Dickerson AS, Hansen J, Gredal O, Weisskopf MG (2018) Amyotrophic lateral sclerosis and exposure to diesel exhaust in a Danish cohort. Am J Epidemiol 187:1613–1622. https://doi.org/10.1093/aje/kwy069 PubMed DOI PMC

Dickerson AS, Hansen J, Thompson S et al (2020) A mixtures approach to solvent exposures and amyotrophic lateral sclerosis: a population-based study in Denmark. Eur J Epidemiol 35:241–249. https://doi.org/10.1007/s10654-020-00624-5 PubMed DOI PMC

Di Re J, Koff L, Avchalumov Y et al (2025) Environmental exposure to common pesticide induces synaptic deficit and social memory impairment driven by neurodevelopmental vulnerability of hippocampal parvalbumin interneurons. J Hazard Mater 485:136893. https://doi.org/10.1016/j.jhazmat.2024.136893 PubMed DOI

Eleutherio ECA, Silva Magalhães RS, de Araújo Brasil A (2021) SOD1, more than just an antioxidant. Arch Biochem Biophys 697:108701. https://doi.org/10.1016/j.abb.2020.108701 PubMed DOI

Fanara P, Banerjee J, Hueck RV (2007) Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis*. J Biol Chem 282:23465–23472. https://doi.org/10.1074/jbc.M703434200 PubMed DOI

Filippini T, Fiore M, Tesauro M (2020) Clinical and lifestyle factors and risk of amyotrophic lateral sclerosis: a population-based case-control study. Int J Environ Res Public Health 17:857. https://doi.org/10.3390/ijerph17030857 PubMed DOI PMC

Foran E, Trotti D (2009) Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal 11:1587–1602. https://doi.org/10.1089/ars.2009.2444 PubMed DOI PMC

Fossati M, Assendorp N, Gemin O et al (2019) Trans-synaptic signaling through the glutamate receptor Delta-1 mediates inhibitory synapse formation in cortical pyramidal neurons. Neuron 104:1081-1094e7. https://doi.org/10.1016/j.neuron.2019.09.027 PubMed DOI PMC

Gastaldelli A, Folli F, Maffei S (2010) Impact of tobacco smoking on lipid metabolism, body weight and cardiometabolic risk. Curr Pharm Des 16:2526–2530. https://doi.org/10.2174/138161210792062858 PubMed DOI

Geloso MC, Corvino V, Marchese E et al (2017) The dual role of microglia in ALS: mechanisms and therapeutic approaches. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2017.00242 PubMed DOI PMC

Giampetruzzi A, Danielson EW, Gumina V et al (2019) Modulation of actin polymerization affects nucleocytoplasmic transport in multiple forms of amyotrophic lateral sclerosis. Nat Commun 10:3827. https://doi.org/10.1038/s41467-019-11837-y PubMed DOI PMC

Gostner JM, Zeisler J, Alam MT et al (2016) Cellular reactions to long-term volatile organic compound (VOC) exposures. Sci Rep 6:37842. https://doi.org/10.1038/srep37842 PubMed DOI PMC

Goutman SA, Boss J, Godwin C et al (2022) Associations of self-reported occupational exposures and settings to ALS: a case-control study. Int Arch Occup Environ Health 95:1567–1586. https://doi.org/10.1007/s00420-022-01874-4 PubMed DOI PMC

Goutman SA, Boss J, Jang D-G et al (2024a) Environmental risk scores of persistent organic pollutants associate with higher ALS risk and shorter survival in a new Michigan case/control cohort. J Neurol Neurosurg Psychiatry 95:241–248. https://doi.org/10.1136/jnnp-2023-332121 PubMed DOI

Goutman SA et al (2023a) Occupational history associates with ALS survival and onset segment. Amyotrophic Lateral Sclerosis Front Degen 24:219–229. https://doi.org/10.1080/21678421.2022.2127324 DOI

Goutman SA et al (2024b) Boss,Jonathan, Jang, Dae Gyu, Residential exposure associations with ALS risk, survival, and phenotype: a Michigan-based case-control study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 25:543–553. https://doi.org/10.1080/21678421.2024.2336110

Goutman SA, Savelieff MG, Jang D-G et al (2023b) The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 19:617–634. https://doi.org/10.1038/s41582-023-00867-2 PubMed DOI PMC

Grundey J, Barlay J, Batsikadze G et al (2018) Nicotine modulates human brain plasticity via calcium-dependent mechanisms. J Physiol 596:5429–5441. https://doi.org/10.1113/JP276502 PubMed DOI PMC

Gu Z, Fonseca V, Hai C-M (2013) Nicotinic acetylcholine receptor mediates nicotine-induced actin cytoskeletal remodeling and extracellular matrix degradation by vascular smooth muscle cells. Vascul Pharmacol 58:87–97. https://doi.org/10.1016/j.vph.2012.08.003 PubMed DOI

Haeusler AR, Donnelly CJ, Rothstein JD (2016) The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci 17:383–395. https://doi.org/10.1038/nrn.2016.38 PubMed DOI PMC

Hardiman O, Al-Chalabi A, Chio A et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071. https://doi.org/10.1038/nrdp.2017.71 PubMed DOI

Hemerková P, Vališ M (2021) Role of oxidative stress in the pathogenesis of amyotrophic lateral sclerosis: antioxidant metalloenzymes and therapeutic strategies. Biomolecules 11:437. https://doi.org/10.3390/biom11030437 PubMed DOI PMC

Ingre C, Roos Per M et al (2015) Piehl, Fredrik, Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 7:181–193. https://doi.org/10.2147/CLEP.S37505 PubMed DOI PMC

Juan T, Fürthauer M (2018) Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol 74:66–77. https://doi.org/10.1016/j.semcdb.2017.08.022 PubMed DOI

Ju S, Lim L, Ki Y-J et al (2022) Oxidative stress generated by polycyclic aromatic hydrocarbons from ambient particulate matter enhance vascular smooth muscle cell migration through MMP upregulation and actin reorganization. Part Fibre Toxicol 19:29. https://doi.org/10.1186/s12989-022-00472-z PubMed DOI PMC

Kamel F, Umbach DM, Hu H et al (2005) Lead exposure as a risk factor for amyotrophic lateral sclerosis. Neurodegener Dis 2:195–201. https://doi.org/10.1159/000089625 PubMed DOI

Kamel F, Umbach DM, Stallone L et al (2008) Association of lead exposure with survival in amyotrophic lateral sclerosis. Environ Health Perspect 116:943–947. https://doi.org/10.1289/ehp.11193 PubMed DOI PMC

Kang SH, Li Y, Fukaya M et al (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579. https://doi.org/10.1038/nn.3357 PubMed DOI PMC

Kapeleka JA, Sauli E, Ndakidemi PA (2021) Pesticide exposure and genotoxic effects as measured by DNA damage and human monitoring biomarkers. Int J Environ Health Res 31:805–822. https://doi.org/10.1080/09603123.2019.1690132 PubMed DOI

Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381. https://doi.org/10.1038/s41580-018-0001-6 PubMed DOI PMC

Kee AJ, Bryce NS, Yang L et al (2017) ER/Golgi trafficking is facilitated by unbranched actin filaments containing Tpm4.2. Cytoskeleton 74:379–389. https://doi.org/10.1002/cm.21405 PubMed DOI

Kolberg L, Raudvere U, Kuzmin I et al (2023) G:Profiler—interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res 51:W207–W212. https://doi.org/10.1093/nar/gkad347 PubMed DOI PMC

Konopka A, Atkin JD (2022) DNA damage, defective DNA repair, and neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 14:786420. https://doi.org/10.3389/fnagi.2022.786420 PubMed DOI PMC

Kullmann JAP, Hayes S, Wang M-X, Pamphlett R (2015) Designing an internationally accessible web-based questionnaire to discover risk factors for amyotrophic lateral sclerosis: a case-control study. JMIR Res Protoc 4:e4840. https://doi.org/10.2196/resprot.4840 DOI

Kwon HS, Koh S-H (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 9:42. https://doi.org/10.1186/s40035-020-00221-2 PubMed DOI PMC

Lefebvre-Omar C, Liu E, Dalle C et al (2023) Neurofilament accumulations in amyotrophic lateral sclerosis patients’ motor neurons impair axonal initial segment integrity. Cell Mol Life Sci 80:150. https://doi.org/10.1007/s00018-023-04797-6 PubMed DOI PMC

Lian L, Liu M, Cui L et al (2019) Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in China. J Clin Neurosci 66:12–18. https://doi.org/10.1016/j.jocn.2019.05.036 PubMed DOI

Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438. https://doi.org/10.1016/j.neuron.2013.07.033 PubMed DOI PMC

Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201:361–372. https://doi.org/10.1083/jcb.201302044 PubMed DOI PMC

Marshall KL, Farah MH (2021) Axonal regeneration and sprouting as a potential therapeutic target for nervous system disorders. Neural Regen Res 16:1901–1910. https://doi.org/10.4103/1673-5374.308077 PubMed DOI PMC

McKay KA, Smith KA, Smertinaite L et al (2021) Military service and related risk factors for amyotrophic lateral sclerosis. Acta Neurol Scand 143:39–50. https://doi.org/10.1111/ane.13345 PubMed DOI

Mead RJ, Shan N, Reiser HJ et al (2023) Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov 22:185–212. https://doi.org/10.1038/s41573-022-00612-2 PubMed DOI

Mejzini R, Flynn LL, Pitout IL et al (2019) ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci. https://doi.org/10.3389/fnins.2019.01310 PubMed DOI PMC

Merrilees J, Klapper J, Murphy J et al (2010) Cognitive and behavioral challenges in caring for patients with frontotemporal dementia and amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:298–302. https://doi.org/10.3109/17482961003605788 PubMed DOI PMC

Milacic M, Beavers D, Conley P et al (2024) The Reactome Pathway Knowledgebase 2024. Nucleic Acids Res 52:D672–D678. https://doi.org/10.1093/nar/gkad1025 PubMed DOI

Mitchell CS, Lee RH, Coulter WH (2012) Cargo distributions differentiate pathological axonal transport impairments. J Theor Biol 300:277–291. https://doi.org/10.1016/j.jtbi.2012.01.019 PubMed DOI PMC

Mitchell JD, Borasio GD (2007) Amyotrophic lateral sclerosis. Lancet 369:2031–2041. https://doi.org/10.1016/S0140-6736(07)60944-1 PubMed DOI

Moin I, Mittal D, Verma AK (2022) Understanding ROS-Induced DNA damage for therapeutics. In: Chakraborti S, Ray BK, Roychoudhury S (eds) Handbook of oxidative stress in cancer: mechanistic aspects. Springer Nature, Singapore, pp 897–918 DOI

Niedermeyer S, Murn M, Choi PJ (2019) Respiratory failure in amyotrophic lateral sclerosis. Chest 155:401–408. https://doi.org/10.1016/j.chest.2018.06.035 PubMed DOI

Nishimura AL, Mitne-Neto M, Silva HCA et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831. https://doi.org/10.1086/425287 PubMed DOI PMC

Olasehinde TA, Olaniran AO (2022) Neurotoxicity of polycyclic aromatic hydrocarbons: a systematic mapping and review of neuropathological mechanisms. Toxics 10:417. https://doi.org/10.3390/toxics10080417 PubMed DOI PMC

Oswald MCW, Garnham N, Sweeney ST, Landgraf M (2018) Regulation of neuronal development and function by ROS. FEBS Lett 592:679–691. https://doi.org/10.1002/1873-3468.12972 PubMed DOI PMC

Ozisik O, Ehrhart F, Evelo CT et al (2021) Overlap of vitamin A and vitamin D target genes with CAKUT-related processes. F1000Res 10:395. https://doi.org/10.12688/f1000research.51018.2 PubMed DOI

Ozisik O, Térézol M, Baudot A (2022) Orsum: a python package for filtering and comparing enrichment analyses using a simple principle. BMC Bioinformatics 23:293. https://doi.org/10.1186/s12859-022-04828-2 PubMed DOI PMC

Palmer RM, Wilson RF, Hasan AS, Scott DA (2005) Mechanisms of action of environmental factors – tobacco smoking. J Clin Periodontol 32:180–195. https://doi.org/10.1111/j.1600-051X.2005.00786.x PubMed DOI

Pamphlett R, Rikard-Bell A (2013) Different occupations associated with amyotrophic lateral sclerosis: is diesel exhaust the link? PLoS One 8:e80993. https://doi.org/10.1371/journal.pone.0080993 PubMed DOI PMC

Pan S, Liu X, Liu T et al (2022) Causal inference of genetic variants and genes in amyotrophic lateral sclerosis. Front Genet 13:917142. https://doi.org/10.3389/fgene.2022.917142 PubMed DOI PMC

Park HJ, Lee PH, Ahn YW et al (2007) Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur J Neurosci 26:79–89. https://doi.org/10.1111/j.1460-9568.2007.05636.x PubMed DOI

Parvizi J, Coburn KL, Shillcutt SD et al (2009) Neuroanatomy of pathological laughing and crying: a report of the American Neuropsychiatric Association Committee on Research. J Neuropsychiatry Clin Neurosci 21:75–87. https://doi.org/10.1176/jnp.2009.21.1.75 PubMed DOI

Peters OM, Ghasemi M, Brown RH (2015) Emerging mechanisms of molecular pathology in ALS. J Clin Invest 125:1767–1779. https://doi.org/10.1172/JCI71601 PubMed DOI PMC

Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6:994–1003. https://doi.org/10.1016/S1474-4422(07)70265-X PubMed DOI

Pons M, Cousins SW, Csaky KG et al (2010) Cigarette smoke-related hydroquinone induces filamentous actin reorganization and heat shock protein 27 phosphorylation through p38 and extracellular signal-regulated kinase 1/2 in retinal pigment epithelium. Am J Pathol 177:1198–1213. https://doi.org/10.2353/ajpath.2010.091108 PubMed DOI PMC

Provenzano F, Torazza C, Bonifacino T et al (2023) The key role of astrocytes in amyotrophic lateral sclerosis and their commitment to glutamate excitotoxicity. Int J Mol Sci 24:15430. https://doi.org/10.3390/ijms242015430 PubMed DOI PMC

Quik M, O’Leary K, Tanner CM (2008) Nicotine and parkinson’s disease; implications for therapy. Mov Disord 23:1641–1652. https://doi.org/10.1002/mds.21900 PubMed DOI PMC

Raffaele S, Boccazzi M, Fumagalli M (2021) Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: mechanisms and therapeutic perspectives. Cells 10:565. https://doi.org/10.3390/cells10030565 PubMed DOI PMC

Ratner M, Jabre J, Ewing W et al (2017) Amyotrophic lateral sclerosis—a case report and mechanistic review of the association with toluene and other volatile organic compounds. Am J Ind Med 61:251–260. https://doi.org/10.1002/ajim.22791 PubMed DOI

Re DB, Yan B, Calderón-Garcidueñas L et al (2022) A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 269:2359–2377. https://doi.org/10.1007/s00415-021-10928-5 PubMed DOI PMC

Redler RL, Dokholyan NV (2012) The complex molecular biology of amyotrophic lateral sclerosis (ALS). Prog Mol Biol Transl Sci 107:215–262. https://doi.org/10.1016/B978-0-12-385883-2.00002-3 PubMed DOI PMC

Rezvani K, Teng Y, Shim D, De Biasi M (2007) Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity. J Neurosci 27:10508–10519. https://doi.org/10.1523/JNEUROSCI.3353-07.2007 PubMed DOI PMC

Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14:248–264. https://doi.org/10.1038/nrn3430 PubMed DOI

Rose KN, Zorlu M, Fassini A et al (2024) Neuroprotection of low dose carbon monoxide in parkinson’s disease models commensurate with the reduced risk of parkinson’s among smokers. Npj Parkinsons Dis 10:152. https://doi.org/10.1038/s41531-024-00763-6 PubMed DOI PMC

Sasaki S, Komori T, Iwata M (2000) Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropathol 100:138–144. https://doi.org/10.1007/s004019900159 PubMed DOI

Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462. https://doi.org/10.1016/j.cub.2014.03.034 PubMed DOI PMC

Seals RM, Kioumourtzoglou M-A, Gredal O et al (2017) Occupational formaldehyde and ALS. Eur J Epidemiol 32:893–899. https://doi.org/10.1007/s10654-017-0249-8 PubMed DOI PMC

Shin SS, Yang EH, Lee HC et al (2022) Association of metabolites of benzene and toluene with lipid profiles in Korean adults: Korean National Environmental Health Survey (2015–2017). BMC Public Health 22:1917. https://doi.org/10.1186/s12889-022-14319-x PubMed DOI PMC

Smith EF, Shaw PJ, De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710:132933. https://doi.org/10.1016/j.neulet.2017.06.052 PubMed DOI

Steinruecke M, Lonergan RM, Selvaraj BT et al (2023) Blood-CNS barrier dysfunction in amyotrophic lateral sclerosis: proposed mechanisms and clinical implications. J Cereb Blood Flow Metab 43:642–654. https://doi.org/10.1177/0271678X231153281 PubMed DOI PMC

Su L-J, Zhang J-H, Gomez H et al (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:5080843. https://doi.org/10.1155/2019/5080843 PubMed DOI PMC

Tega Y, Yamazaki Y, Akanuma S-I et al (2018) Impact of nicotine transport across the blood-brain barrier: carrier-mediated transport of nicotine and interaction with central nervous system drugs. Biol Pharm Bull 41:1330–1336. https://doi.org/10.1248/bpb.b18-00134 PubMed DOI

The Gene Ontology Consortium, Aleksander SA, Balhoff J et al (2023) The gene ontology knowledgebase in 2023. Genetics 224:iyad031. https://doi.org/10.1093/genetics/iyad031 DOI

Todd TW, Shao W, Yong-jie Z, Petrucelli L (2023) The endo-lysosomal pathway and ALS/FTD. Trends Neurosci 46:1025–1041. https://doi.org/10.1016/j.tins.2023.09.004 PubMed DOI PMC

Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST (2018) Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2018.00010 PubMed DOI PMC

Térézol M, Baudot A, Ozisik O (2024) ODAMNet: a python package to identify molecular relationships between chemicals and rare diseases using overlap, active module and random walk approaches. SoftwareX 26:101701. https://doi.org/10.1016/j.softx.2024.101701 DOI

Valavanidis A, Vlachogianni T, Fiotakis K (2009) Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health 6:445–462. https://doi.org/10.3390/ijerph6020445 PubMed DOI PMC

Valderrama F, Babià T, Ayala I et al (1998) Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76:9–17. https://doi.org/10.1016/S0171-9335(98)80012-5 PubMed DOI

Vargas MR, Johnson JA (2010) Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics 7:471–481. https://doi.org/10.1016/j.nurt.2010.05.012 PubMed DOI PMC

Vasta R, Chia R, Traynor BJ, Chiò A (2022) Unraveling the complex interplay between genes, environment, and climate in ALS. EBioMedicine 75:103795. https://doi.org/10.1016/j.ebiom.2021.103795 PubMed DOI

Wang F, Fangfang Z, Guo X et al (2018) Effects of volatile organic compounds and carbon monoxide mixtures on learning and memory, oxidative stress, and monoamine neurotransmitters in the brains of mice. Toxicol Ind Health 34:178–187. https://doi.org/10.1177/0748233717747504 PubMed DOI

Wang H, O’Reilly ÉJ, Weisskopf MG et al (2011) Smoking and risk of amyotrophic lateral sclerosis: a pooled analysis of 5 prospective cohorts. Arch Neurol 68:207–213. https://doi.org/10.1001/archneurol.2010.367 PubMed DOI PMC

Weiss JH (2011) Ca2 + Permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci 4. https://doi.org/10.3389/fnmol.2011.00042

Wijesekera LC, Nigel Leigh P (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3. https://doi.org/10.1186/1750-1172-4-3 PubMed DOI PMC

Wu F, Yin Z, Yang L et al (2019) Smoking induced extracellular vesicles release and their distinct properties in non-small cell lung cancer. J Cancer 10:3435–3443. https://doi.org/10.7150/jca.30425 PubMed DOI PMC

Yeung AWK, Tzvetkov NT, Georgieva MG et al (2021) Reactive oxygen species and their impact in neurodegenerative diseases: literature landscape analysis. Antioxid Redox Signal 34:402–420. https://doi.org/10.1089/ars.2019.7952 PubMed DOI

You R, Ho Y-S, Chang RC-C (2022) The pathogenic effects of particulate matter on neurodegeneration: a review. J Biomed Sci 29:15. https://doi.org/10.1186/s12929-022-00799-x PubMed DOI PMC

Zeeshan HMA, Lee GH, Kim H-R, Chae H-J (2016) Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 17:327. https://doi.org/10.3390/ijms17030327 PubMed DOI PMC

Zhang P, Li Y, Fu Y et al (2020) Inhibition of autophagy signaling via 3-methyladenine rescued nicotine-mediated cardiac pathological effects and heart dysfunctions. Int J Biol Sci 16:1349–1362. https://doi.org/10.7150/ijbs.41275 PubMed DOI PMC

Zhao C, Liao Y, Rahaman A, Kumar V (2022) Towards understanding the relationship between ER stress and unfolded protein response in amyotrophic lateral sclerosis. Front Aging Neurosci 14:892518. https://doi.org/10.3389/fnagi.2022.892518 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...