Redox-dependent protein S-glutathionylation governs azacitidine sensitivity and resistance in AML
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41389768
PubMed Central
PMC12757552
DOI
10.1016/j.redox.2025.103958
PII: S2213-2317(25)00471-9
Knihovny.cz E-zdroje
- Klíčová slova
- Acute myeloid leukemia, Azacitidine, Cysteine oxidation, DNA damage, Drug resistance, Glyoxalase system, Hypomethylation therapy, Redox proteomics, S-glutathionylation,
- MeSH
- akutní myeloidní leukemie * metabolismus farmakoterapie patologie genetika MeSH
- azacytidin * farmakologie MeSH
- chemorezistence * účinky léků MeSH
- glutathion * metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- oxidace-redukce účinky léků MeSH
- poškození DNA MeSH
- proteomika metody MeSH
- protinádorové antimetabolity * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azacytidin * MeSH
- glutathion * MeSH
- protinádorové antimetabolity * MeSH
Disruption of redox metabolism is a hallmark of drug-resistant cancer cells, representing a major obstacle to the effective treatment of acute myeloid leukemia (AML). While recent studies have highlighted the importance of redox balance in AML therapy, the specific contribution of protein redox signaling to resistance remains poorly understood. Defining these mechanisms could uncover therapeutic vulnerabilities of resistant AML cells and guide the development of novel combination strategies. Here, we performed comprehensive mass spectrometry-based redox and quantitative proteomic profiling of AML cell lines and patient samples sensitive or resistant to the hypomethylating agent azacitidine (AZA). We demonstrate that AZA disrupts redox homeostasis, which inactivates the glyoxalase system and DNA damage response, and thereby induces cell death. In contrast, AZA resistance is associated with a redox reset characterized by elevated glutathione levels and diminished protein S-glutathionylation. Importantly, AZA failed to induce oxidation of proteins in these pathways in resistant cells and patient-derived AML samples. Pharmacological inhibition of glutathione synthesis restored protein S-glutathionylation and resensitized resistant AML cells to AZA.
BIOCEV 1st Faculty of Medicine Charles University Vestec 25250 Czech Republic
Clinic Haematology General Faculty Hospital Prague 12808 Czech Republic
Zobrazit více v PubMed
Saygin C., Carraway H.E. Current and emerging strategies for management of myelodysplastic syndromes. Blood Rev. 2021;48 doi: 10.1016/j.blre.2020.100791. PubMed DOI
Santini V. How I treat MDS after hypomethylating agent failure. Blood. 2019;133:521–529. doi: 10.1182/blood-2018-03-785915. PubMed DOI
DiNardo C.D., Jonas B.A., Pullarkat V., Thirman M.J., Garcia J.S., Wei A.H., Konopleva M., Döhner H., Letai A., Fenaux P., et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 2020;383:617–629. doi: 10.1056/NEJMoa2012971. PubMed DOI
Pullarkat V., Pratz K.W., Döhner H., Recher C., Thirman M.J., DiNardo C.D., Fenaux P., Schuh A.C., Wei A.H., Pigneux A., et al. Venetoclax and azacitidine in untreated patients with therapy-related acute myeloid leukemia, antecedent myelodysplastic syndromes or chronic myelomonocytic leukemia. Blood Cancer J. 2025;15:49. doi: 10.1038/s41408-025-01263-3. PubMed DOI PMC
Konopleva M., Pollyea D.A., Potluri J., Chyla B., Hogdal L., Busman T., McKeegan E., Salem A.H., Zhu M., Ricker J.L., et al. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6:1106–1117. doi: 10.1158/2159-8290.Cd-16-0313. PubMed DOI PMC
Nwosu G.O., Ross D.M., Powell J.A., Pitson S.M. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis. 2024;15:413. doi: 10.1038/s41419-024-06810-7. PubMed DOI PMC
Agrawal K., Das V., Vyas P., Hajdúch M. Nucleosidic DNA demethylating epigenetic drugs - a comprehensive review from discovery to clinic. Pharmacol. Ther. 2018;188:45–79. doi: 10.1016/j.pharmthera.2018.02.006. PubMed DOI
Agarwal R.P., Olivero O.A. Genotoxicity and mitochondrial damage in human lymphocytic cells chronically exposed to 3'-azido-2',3'-dideoxythymidine. Mutat. Res. 1997;390:223–231. doi: 10.1016/s1383-5718(97)00014-4. PubMed DOI
Aimiuwu J., Wang H., Chen P., Xie Z., Wang J., Liu S., Klisovic R., Mims A., Blum W., Marcucci G., Chan K.K. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood. 2012;119:5229–5238. doi: 10.1182/blood-2011-11-382226. PubMed DOI PMC
Palii S.S., Van Emburgh B.O., Sankpal U.T., Brown K.D., Robertson K.D. DNA methylation inhibitor 5-Aza-2'-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol. Cell Biol. 2008;28:752–771. doi: 10.1128/mcb.01799-07. PubMed DOI PMC
Schaefer M., Hagemann S., Hanna K., Lyko F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 2009;69:8127–8132. doi: 10.1158/0008-5472.Can-09-0458. PubMed DOI
Valencia A., Masala E., Rossi A., Martino A., Sanna A., Buchi F., Canzian F., Cilloni D., Gaidano V., Voso M.T., et al. Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia. 2014;28:621–628. doi: 10.1038/leu.2013.330. PubMed DOI PMC
Gruber E., Franich R.L., Shortt J., Johnstone R.W., Kats L.M. Distinct and overlapping mechanisms of resistance to azacytidine and guadecitabine in acute myeloid leukemia. Leukemia. 2020;34:3388–3392. doi: 10.1038/s41375-020-0973-z. PubMed DOI
Qin T., Jelinek J., Si J., Shu J., Issa J.P. Mechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines. Blood. 2009;113:659–667. doi: 10.1182/blood-2008-02-140038. PubMed DOI PMC
Cheng J.X., Chen L., Li Y., Cloe A., Yue M., Wei J., Watanabe K.A., Shammo J.M., Anastasi J., Shen Q.J., et al. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat. Commun. 2018;9:1163. doi: 10.1038/s41467-018-03513-4. PubMed DOI PMC
Montes P., Guerra-Librero A., García P., Cornejo-Calvo M.E., López M.D.S., Haro T., Martínez-Ruiz L., Escames G., Acuña-Castroviejo D. Effect of 5-Azacitidine treatment on redox status and inflammatory condition in MDS patients. Antioxidants. 2022;11 doi: 10.3390/antiox11010139. PubMed DOI PMC
Nadasi E., Clark J.S., Szanyi I., Varjas T., Ember I., Baliga R., Arany I. Epigenetic modifiers exacerbate oxidative stress in renal proximal tubule cells. Anticancer Res. 2009;29:2295–2299. PubMed
Pollyea D.A., Stevens B.M., Jones C.L., Winters A., Pei S., Minhajuddin M., D'Alessandro A., Culp-Hill R., Riemondy K.A., Gillen A.E., et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat. Med. 2018;24:1859–1866. doi: 10.1038/s41591-018-0233-1. PubMed DOI PMC
Fandy T.E., Jiemjit A., Thakar M., Rhoden P., Suarez L., Gore S.D. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes. Clin. Cancer Res. : Off. J. Am. Assoc. Cancer Res. 2014;20:1249–1258. doi: 10.1158/1078-0432.Ccr-13-1453. PubMed DOI PMC
Bossis G., Sarry J.E., Kifagi C., Ristic M., Saland E., Vergez F., Salem T., Boutzen H., Baik H., Brockly F., et al. The ROS/SUMO axis contributes to the response of acute myeloid leukemia cells to chemotherapeutic drugs. Cell Rep. 2014;7:1815–1823. doi: 10.1016/j.celrep.2014.05.016. PubMed DOI
Cui Q., Wang J.Q., Assaraf Y.G., Ren L., Gupta P., Wei L., Ashby C.R., Jr., Yang D.H., Chen Z.S. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updates : Rev Commentaries Antimicrobial Anticancer Chemother. 2018;41:1–25. doi: 10.1016/j.drup.2018.11.001. PubMed DOI
Jones C.L., Stevens B.M., D'Alessandro A., Culp-Hill R., Reisz J.A., Pei S., Gustafson A., Khan N., DeGregori J., Pollyea D.A., Jordan C.T. Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood. 2019;134:389–394. doi: 10.1182/blood.2019898114. PubMed DOI PMC
Wang K., Jiang J., Lei Y., Zhou S., Wei Y., Huang C. Targeting metabolic-redox circuits for cancer therapy. Trends Biochem. Sci. 2019;44:401–414. doi: 10.1016/j.tibs.2019.01.001. PubMed DOI
Sies H., Mailloux R.J., Jakob U. Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Biol. 2024;25:701–719. doi: 10.1038/s41580-024-00730-2. PubMed DOI PMC
Paulsen C.E., Carroll K.S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 2013;113:4633–4679. doi: 10.1021/cr300163e. PubMed DOI PMC
Reina S., Pittalà M.G.G., Guarino F., Messina A., De Pinto V., Foti S., Saletti R. Cysteine oxidations in mitochondrial membrane proteins: the case of VDAC isoforms in mammals. Front. Cell Dev. Biol. 2020;8:397. doi: 10.3389/fcell.2020.00397. PubMed DOI PMC
Zhang J., Ye Z.W., Singh S., Townsend D.M., Tew K.D. An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic. Biol. Med. 2018;120:204–216. doi: 10.1016/j.freeradbiomed.2018.03.038. PubMed DOI PMC
Mailloux R.J., Willmore W.G. S-glutathionylation reactions in mitochondrial function and disease. Front. Cell Dev. Biol. 2014;2:68. doi: 10.3389/fcell.2014.00068. PubMed DOI PMC
Shakir S., Vinh J., Chiappetta G. Quantitative analysis of the cysteine redoxome by iodoacetyl tandem mass tags. Anal. Bioanal. Chem. 2017;409:3821–3830. doi: 10.1007/s00216-017-0326-6. PubMed DOI PMC
Pimkova K., Jassinskaja M., Munita R., Ciesla M., Guzzi N., Cao Thi Ngoc P., Vajrychova M., Johansson E., Bellodi C., Hansson J. Quantitative analysis of redox proteome reveals oxidation-sensitive protein thiols acting in fundamental processes of developmental hematopoiesis. Redox Biol. 2022;53 doi: 10.1016/j.redox.2022.102343. PubMed DOI PMC
Minařík L., Pimková K., Kokavec J., Schaffartziková A., Vellieux F., Kulvait V., Daumová L., Dusilková N., Jonášová A., Vargová K.S., et al. Analysis of 5-Azacytidine resistance models reveals a set of targetable pathways. Cells. 2022;11 doi: 10.3390/cells11020223. PubMed DOI PMC
Ho T.C., LaMere M., Stevens B.M., Ashton J.M., Myers J.R., O'Dwyer K.M., Liesveld J.L., Mendler J.H., Guzman M., Morrissette J.D., et al. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression. Blood. 2016;128:1671–1678. doi: 10.1182/blood-2016-02-695312. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Sherman B.T., Huang da W., Tan Q., Guo Y., Bour S., Liu D., Stephens R., Baseler M.W., Lane H.C., Lempicki R.A. DAVID knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinf. 2007;8:426. doi: 10.1186/1471-2105-8-426. PubMed DOI PMC
Supek F., Bosnjak M., Skunca N., Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6 doi: 10.1371/journal.pone.0021800. PubMed DOI PMC
Xu S., Hu E., Cai Y., Xie Z., Luo X., Zhan L., Tang W., Wang Q., Liu B., Wang R., et al. Using clusterProfiler to characterize multiomics data. Nat. Protoc. 2024;19:3292–3320. doi: 10.1038/s41596-024-01020-z. PubMed DOI
Wu G., Dawson E., Duong A., Haw R., Stein L. ReactomeFIViz: a Cytoscape app for pathway and network-based data analysis. F1000Research. 2014;3:146. doi: 10.12688/f1000research.4431.2. PubMed DOI PMC
Sun M.A., Wang Y., Cheng H., Zhang Q., Ge W., Guo D. RedoxDB--a curated database for experimentally verified protein oxidative modification. Bioinformatics. 2012;28:2551–2552. doi: 10.1093/bioinformatics/bts468. PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Messina S., De Simone G., Ascenzi P. Cysteine-based regulation of redox-sensitive Ras small GTPases. Redox Biol. 2019;26 doi: 10.1016/j.redox.2019.101282. PubMed DOI PMC
Alnajjar K.S., Sweasy J.B. A new perspective on oxidation of DNA repair proteins and cancer. DNA Repair (Amst) 2019;76:60–69. doi: 10.1016/j.dnarep.2019.02.006. PubMed DOI PMC
Zhou X., Cooper K.L., Huestis J., Xu H., Burchiel S.W., Hudson L.G., Liu K.J. S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite. Oncotarget. 2016;7:80482–80492. doi: 10.18632/oncotarget.12613. PubMed DOI PMC
Pettinati I., Brem J., Lee S.Y., McHugh P.J., Schofield C.J. The chemical biology of Human Metallo-β-Lactamase fold proteins. Trends Biochem. Sci. 2016;41:338–355. doi: 10.1016/j.tibs.2015.12.007. PubMed DOI PMC
Birkenmeier G., Stegemann C., Hoffmann R., Günther R., Huse K., Birkemeyer C. Posttranslational modification of human glyoxalase 1 indicates redox-dependent regulation. PLoS One. 2010;5 doi: 10.1371/journal.pone.0010399. PubMed DOI PMC
Hara T., Toyoshima M., Hisano Y., Balan S., Iwayama Y., Aono H., Futamura Y., Osada H., Owada Y., Yoshikawa T. Glyoxalase I disruption and external carbonyl stress impair mitochondrial function in human induced pluripotent stem cells and derived neurons. Transl. Psychiatry. 2021;11:275. doi: 10.1038/s41398-021-01392-w. PubMed DOI PMC
Mashimo M., Onishi M., Uno A., Tanimichi A., Nobeyama A., Mori M., Yamada S., Negi S., Bu X., Kato J., et al. The 89-kDa PARP1 cleavage fragment serves as a cytoplasmic PAR carrier to induce AIF-mediated apoptosis. J. Biol. Chem. 2021;296 doi: 10.1074/jbc.RA120.014479. PubMed DOI PMC
Udensi U.K., Tchounwou P.B. Dual effect of oxidative stress on leukemia cancer induction and treatment. J. Exp. Clin. Cancer Res. 2014;33:106. doi: 10.1186/s13046-014-0106-5. PubMed DOI PMC
Chen Y., Liang Y., Luo X., Hu Q. Oxidative resistance of leukemic stem cells and oxidative damage to hematopoietic stem cells under pro-oxidative therapy. Cell Death Dis. 2020;11:291. doi: 10.1038/s41419-020-2488-y. PubMed DOI PMC
Jing Q., Zhou C., Zhang J., Zhang P., Wu Y., Zhou J., Tong X., Li Y., Du J., Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell. Mol. Biol. Lett. 2024;29:53. doi: 10.1186/s11658-024-00570-0. PubMed DOI PMC
Zhou X., Cooper K.L., Sun X., Liu K.J., Hudson L.G. Selective sensitization of zinc finger protein oxidation by reactive oxygen species through arsenic binding. J. Biol. Chem. 2015;290:18361–18369. doi: 10.1074/jbc.M115.663906. PubMed DOI PMC
Yang C., Qu J., Cheng Y., Tian M., Wang Z., Wang X., Li X., Zhou S., Zhao B., Guo Y., et al. YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression. J. Transl. Med. 2024;22:1153. doi: 10.1186/s12967-024-05956-4. PubMed DOI PMC
Zhao H., Sifakis E.G., Sumida N., Millán-Ariño L., Scholz B.A., Svensson J.P., Chen X., Ronnegren A.L., Mallet de Lima C.D., Varnoosfaderani F.S., et al. PARP1- and CTCF-mediated interactions between active and repressed chromatin at the Lamina promote oscillating transcription. Mol. Cell. 2015;59:984–997. doi: 10.1016/j.molcel.2015.07.019. PubMed DOI
Vancurova M., Hanzlikova H., Knoblochova L., Kosla J., Majera D., Mistrik M., Burdova K., Hodny Z., Bartek J. PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. DNA Repair (Amst) 2019;78:114–127. doi: 10.1016/j.dnarep.2019.04.001. PubMed DOI
Antognelli C., Gambelunghe A., Talesa V.N., Muzi G. Reactive oxygen species induce apoptosis in bronchial epithelial BEAS-2B cells by inhibiting the antiglycation glyoxalase I defence: involvement of superoxide anion, hydrogen peroxide and NF-κB. Apoptosis. Int. J. Programm. Cell Death. 2014;19:102–116. doi: 10.1007/s10495-013-0902-y. PubMed DOI
Antognelli C., Palumbo I., Aristei C., Talesa V.N. Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-κB. Br. J. Cancer. 2014;111:395–406. doi: 10.1038/bjc.2014.280. PubMed DOI PMC
Liu Y., Li Q., Zhou L., Xie N., Nice E.C., Zhang H., Huang C., Lei Y. Cancer drug resistance: Redox resetting renders a way. Oncotarget. 2016;7:42740–42761. doi: 10.18632/oncotarget.8600. PubMed DOI PMC
Mailloux R.J., Treberg J.R. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria. Redox Biol. 2016;8:110–118. doi: 10.1016/j.redox.2015.12.010. PubMed DOI PMC
Matsui R., Ferran B., Oh A., Croteau D., Shao D., Han J., Pimentel D.R., Bachschmid M.M. Redox regulation via Glutaredoxin-1 and protein S-Glutathionylation. Antioxidants Redox Signal. 2020;32:677–700. doi: 10.1089/ars.2019.7963. PubMed DOI PMC
Barajas-Espinosa A., Basye A., Jesse E., Yan H., Quan D., Chen C.A. Redox activation of DUSP4 by N-acetylcysteine protects endothelial cells from Cd2+-induced apoptosis. Free Radic. Biol. Med. 2014;74:188–199. doi: 10.1016/j.freeradbiomed.2014.06.016. PubMed DOI PMC
Lagadinou E.D., Sach A., Callahan K., Rossi R.M., Neering S.J., Minhajuddin M., Ashton J.M., Pei S., Grose V., O'Dwyer K.M., et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12:329–341. doi: 10.1016/j.stem.2012.12.013. PubMed DOI PMC
Pei S., Minhajuddin M., Callahan K.P., Balys M., Ashton J.M., Neering S.J., Lagadinou E.D., Corbett C., Ye H., Liesveld J.L., et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J. Biol. Chem. 2013;288:33542–33558. doi: 10.1074/jbc.M113.511170. PubMed DOI PMC
Chen X., Glytsou C., Zhou H., Narang S., Reyna D.E., Lopez A., Sakellaropoulos T., Gong Y., Kloetgen A., Yap Y.S., et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Discov. 2019;9:890–909. doi: 10.1158/2159-8290.Cd-19-0117. PubMed DOI PMC