Striatal M4 muscarinic receptors determine the biological rhythm of activity, with a supportive role of M1 muscarinic receptors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41403432
PubMed Central
PMC12702858
DOI
10.3389/fphar.2025.1691118
PII: 1691118
Knihovny.cz E-zdroje
- Klíčová slova
- M1 muscarinic receptors, M4 muscarinic receptors, biological rhythm, cholinesterases, intergeniculate leaflet, subparaventricular zone, suprachiasmatic nucleus,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: M4 muscarinic receptor (mAChR) knockout changed the female activity biological rhythm parameters. In this study, we focus on the biological rhythms of mAChRs (total + M1 mAChRs), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) in M4 mAChR knockout (M4KO) and wild-type (WT) mice in specific brain areas. METHODS: Female mice were sacrificed every 4 hours, brains were removed, mAChRs were determined by autoradiography, and punching was used for the measurement of acetylcholinesterase and butyrylcholinesterase activity. The density of mAChRs was correlated with locomotor activity. RESULTS: An ultradian rhythm in total mAChRs was found in the suprachiasmatic nucleus (SCN) (both M4KO and WT). M4KO had a positive correlation between the number of mAChRs and locomotor activity. This rhythm was changed to circadian in WT with a peak in the active phase and to circadian rhythm in M4KO with phase shifts to the inactive/active phase in the intergeniculate leaflet (IgL) (positive correlation in KO), subparaventricular zone (SPVZ) (negative correlation in WT), and posterior hypothalamic area (PHA) (positive correlation in WT). The thalamus (TH) reveals circadian rhythms in WT and M4KO, with a peak in the active phase (no correlation). The striatum (Str), i.e., caudate ncl-putamen (CPu) (decrease in M4KO, positive correlation in both WT and KO) and the motor cortex (MCx) (no correlation), showed circadian rhythms (peak in active phase). Caudate ncl-putamen M1 mAChRs rhythm in WT was circadian, while M4KO animals revealed an ultradian rhythm. Cholinesterases revealed ultradian and circadian rhythms in different areas. DISCUSSION: We conclude that muscarinic receptor-directed biological rhythm of activity is determined in the striatum (caudate ncl-putamen) as a key structure mainly by M4 mAChRs with a supportive role of M1 mAChRs.
Zobrazit více v PubMed
Abrahamson E. E., Moore R. Y. (2006). Lesions of suprachiasmatic nucleus efferents selectively affect rest-activity rhythm. Mol. Cell. Endocrinol. 252, 46–56. 10.1016/j.mce.2006.03.036 PubMed DOI
Alves-Amaral G., Pires-Oliveira M., Andrade-Lopes A. L., Chiavegatti T., Godinho R. O. (2010). Gender-related differences in circadian rhythm of rat plasma acetyl- and butyrylcholinesterase: effects of sex hormone withdrawal. Chemico-Biological Interact. 186, 9–15. 10.1016/j.cbi.2010.04.002 PubMed DOI
Basu P., Wensel A. L., Mckibbon R., Lefebvre N., Antle M. C. (2016). Activation of M1/4 receptors phase advances the hamster circadian clock during the day. Neurosci. Lett. 621, 22–27. 10.1016/j.neulet.2016.04.012 PubMed DOI
Bina K. G., Rusak B., Wilkinson M. (1998). Daily variation of muscarinic receptors in visual cortex but not suprachiasmatic nucleus of Syrian hamsters. Brain Res. 797, 143–153. 10.1016/s0006-8993(98)00374-6 PubMed DOI
Buchanan G. F., Gillette M. U. (2005). New light on an old paradox: site-dependent effects of carbachol on circadian rhythms. Exp. Neurol. 193, 489–496. 10.1016/j.expneurol.2005.01.008 PubMed DOI
Cain S. W., Verwey M., Szybowska M., Ralph M. R., Yeomans J. S. (2007). Carbachol injections into the intergeniculate leaflet induce nonphotic phase shifts. Brain Res. 1177, 59–65. 10.1016/j.brainres.2007.07.048 PubMed DOI
Edelstein K., Amir S. (1996). Constant light induces persistent Fos expression in rat intergeniculate leaflet. Brain Res. 731, 221–225. 10.1016/0006-8993(96)00691-9 PubMed DOI
Farar V., Mohr F., Legrand M., Lamotte D'incamps B., Cendelin J., Leroy J., et al. (2012). Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J. Neurochem. 122, 1065–1080. 10.1111/j.1471-4159.2012.07856.x PubMed DOI
Gannon R. L., Millan M. J. (2012). LY2033298, a positive allosteric modulator at muscarinic M₄ receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms. Psychopharmacology 224, 231–240. 10.1007/s00213-012-2743-8 PubMed DOI
Gillette M. U., Buchanan G. F., Artinian L., Hamilton S. E., Nathanson N. M., Liu C. (2001). Role of the M1 receptor in regulating circadian rhythms. Life Sci. 68, 2467–2472. 10.1016/s0024-3205(01)01040-2 PubMed DOI
Gomeza J., Zhang L., Kostenis E., Felder C., Bymaster F., Brodkin J., et al. (1999). Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. 96, 10483–10488. 10.1073/pnas.96.18.10483 PubMed DOI PMC
Hut R. A., Van Der Zee E. A. (2011). The cholinergic system, circadian rhythmicity, and time memory. Behav. Brain Res. 221, 466–480. 10.1016/j.bbr.2010.11.039 PubMed DOI
Kafka M. S., Wirz-Justice A., Naber D., Moore R. Y., Benedito M. A. (1983). Circadian rhythms in rat brain neurotransmitter receptors. Fed. Proc. 42, 2796–2801. PubMed
Kafka M. S., Benedito M. A., Blendy J. A., Tokola N. S. (1986). Circadian rhythms in neurotransmitter receptors in discrete rat brain regions. Chronobiol Int. 3, 91–100. 10.3109/07420528609066353 PubMed DOI
Krout K. E., Kawano J., Mettenleiter T. C., Loewy A. D. (2002). CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience 110, 73–92. 10.1016/s0306-4522(01)00551-6 PubMed DOI
Lewandowski M. H. (1988). Seasonal variations in the circadian activity of AChE in the brain stem reticular formation of mice under normal and constant light regimens. Chronobiology International 5 (2), 121–125. 10.3109/07420528809079552 PubMed DOI
Liu C., Gillette M. (1996). Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J. Neurosci. 16, 744–751. 10.1523/JNEUROSCI.16-02-00744.1996 PubMed DOI PMC
Marquez E., Pavia J., Laukonnen S., Martos F., Gomez A., Rius F., et al. (1990). Circadian rhythm in muscarinic receptor subtypes in rat forebrain. Chronobiol Int. 7, 277–282. 10.1080/07420529009064633 PubMed DOI
Mash D. C., Flynn D. D., Kalinoski L., Potter L. T. (1985). Circadian variations in radioligand binding to muscarine receptors in rat brain dependent upon endogenous agonist occupation. Brain Res. 331, 35–38. 10.1016/0006-8993(85)90712-7 PubMed DOI
Moehle M. S., Bender A. M., Dickerson J. W., Foster D. J., Qi A., Cho H. P., et al. (2021). Discovery of the first selective M4 muscarinic acetylcholine receptor antagonists with PubMed DOI PMC
Moga M. M., Weis R. P., Moore R. Y. (1995). Efferent projections of the paraventricular thalamic nucleus in the rat. J. Comp. Neurology 359, 221–238. 10.1002/cne.903590204 PubMed DOI
Moore R. Y. (1996). “Chapter 8 entrainment pathways and the functional organization of the circadian system,” in Progress in brain research. Editors Buijs R. M., Kalsbeek A., Romijn H. J., Pennartz C. M. A., Mirmiran M. (Elsevier; ), 103–119. PubMed
Morin L. P. (2013). Neuroanatomy of the extended circadian rhythm system. Exp. Neurol. 243, 4–20. 10.1016/j.expneurol.2012.06.026 PubMed DOI PMC
Morin L. P., Allen C. N. (2006). The circadian visual system, 2005. Brain Res. Rev. 51, 1–60. 10.1016/j.brainresrev.2005.08.003 PubMed DOI
Myslivecek J. (2022). Multitargeting nature of muscarinic orthosteric agonists and antagonists. Front. Physiol. 13, 974160. 10.3389/fphys.2022.974160 PubMed DOI PMC
Oki T., Takagi Y., Inagaki S., Taketo M. M., Manabe T., Matsui M., et al. (2005). Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res. Mol. Brain Res. 133, 6–11. 10.1016/j.molbrainres.2004.09.012 PubMed DOI
Perry E. K., Perry R. H., Tomlinson B. E. (1977). Circadian variations in cholinergic enzymes and muscarinic receptor binding in human cerebral cortex. Neurosci. Lett. 4, 185–189. 10.1016/0304-3940(77)90136-7 PubMed DOI
Por S., Bondy S. (1981). Regional circadian variation of acetylcholine muscarinic receptors in the rat brain. J. Neuroscience Research 6, 315–318. 10.1002/jnr.490060306 PubMed DOI
Qi A., Kling H. E., Billard N., Rodriguez A. L., Peng L., Dickerson J. W., et al. (2023). Development of a selective and high affinity Radioligand, [(3)H]VU6013720, for the M(4) muscarinic receptor. Mol. Pharmacol. 104, 195–202. 10.1124/molpharm.122.000643 PubMed DOI PMC
Riljak V., Janisova K., Myslivecek J. (2020). Lack of M(4) muscarinic receptors in the striatum, thalamus and intergeniculate leaflet alters the biological rhythm of locomotor activity in mice. Brain Struct. Funct. 225, 1615–1629. 10.1007/s00429-020-02082-x PubMed DOI PMC
Valuskova P., Farar V., Janisova K., Ondicova K., Mravec B., Kvetnansky R., et al. (2017). Brain region-specific effects of immobilization stress on cholinesterases in mice. Stress 20, 36–43. 10.1080/10253890.2016.1263836 PubMed DOI
Valuskova P., Farar V., Forczek S., Krizova I., Myslivecek J. (2018a). Autoradiography of (3)H-pirenzepine and (3)H-AFDX-384 in mouse brain regions: possible insights into M(1), M(2), and M(4) muscarinic receptors distribution. Front. Pharmacol. 9, 124. 10.3389/fphar.2018.00124 PubMed DOI PMC
Valuskova P., Forczek S. T., Farar V., Myslivecek J. (2018b). The deletion of M(4) muscarinic receptors increases motor activity in females in the dark phase. Brain Behav. 8, e01057. 10.1002/brb3.1057 PubMed DOI PMC
Valuskova P., Riljak V., Forczek S. T., Farar V., Myslivecek J. (2019). Variability in the drug response of M4 muscarinic receptor knockout mice during day and night time. Front. Pharmacol. 10, 237. 10.3389/fphar.2019.00237 PubMed DOI PMC
Vujovic N., Gooley J. J., Jhou T. C., Saper C. B. (2015). Projections from the subparaventricular zone define four channels of output from the circadian timing system. J. Comp. Neurology 523, 2714–2737. 10.1002/cne.23812 PubMed DOI PMC
Watts A. G., Swanson L. W. (1987). Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J. Comp. Neurol. 258, 230–252. 10.1002/cne.902580205 PubMed DOI
Watts A. G., Swanson L. W., Sanchez-Watts G. (1987). Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 258, 204–229. 10.1002/cne.902580204 PubMed DOI
Wirz-Justice A. (1987). Circadian rhythms in mammalian neurotransmitter receptors. Prog. Neurobiol. 29, 219–259. 10.1016/0301-0082(87)90022-0 PubMed DOI
Wirz-Justice A., Tobler I., Kafka M. S., Naber D., Marangos P. J., Borbély A. A., et al. (1981). Sleep deprivation: effects on circadian rhythms of rat brain neurotransmitter receptors. Psychiatry Res. 5, 67–76. 10.1016/0165-1781(81)90062-7 PubMed DOI
Yang J.-J., Wang Y.-T., Cheng P.-C., Kuo Y.-J., Huang R.-C. (2010). Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus. J. Neurophysiol. 103, 1397–1409. 10.1152/jn.00877.2009 PubMed DOI
Zhe Ying H., Shintu M., Keng Yoon Y. (2020). Butyrylcholinesterase: a multifaceted pharmacological target and tool. Curr. Protein and Peptide Sci. 21, 99–109. 10.2174/1389203720666191107094949 PubMed DOI
The Novel Functions of M4 Muscarinic Receptors