The Novel Functions of M4 Muscarinic Receptors
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
41511095
PubMed Central
PMC12849231
DOI
10.33549/physiolres.935750
PII: 935750
Knihovny.cz E-zdroje
- MeSH
- charakteristické znaky pohlaví MeSH
- corpus striatum * metabolismus fyziologie MeSH
- lokomoce * fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- receptor muskarinový M4 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- receptor muskarinový M4 * MeSH
The role of M4 muscarinic receptors in locomotor activity regulation remains controversial, with conflicting findings hampering our understanding of movement disorders. This uncertainty is further complicated by the unexplored relationship between M4 receptors and biological rhythms, as well as potential sex-specific effects that may explain previous inconsistent results. Through systematic investigation of locomotor functions in biological rhythm paradigms, we discovered that M4 muscarinic receptors significantly modulate locomotor activity rhythms via brain pacemaker mechanisms. Notably, this regulatory effect displayed marked sexual dimorphism, being present exclusively in females, suggesting crucial interactions with sex hormones. Our research identified the striatum as the key structure directing these locomotor biological rhythms. These findings provide critical insights into the sex-specific nature of M4 receptor function and establish a new framework for understanding hyperactivity disorders, particularly those exhibiting sex-based differences in prevalence or manifestation. Key words M4 muscarinic receptors " M1 muscarinic receptors " Biological rhythm " Locomotor activity " Striatum.
Zobrazit více v PubMed
Myslivecek J. Multitargeting nature of muscarinic orthosteric agonists and antagonists. Front Physiol. 2022;13:974160. doi: 10.3389/fphys.2022.974160. PubMed DOI PMC
Amenta F, Tayebati SK. Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Curr Med Chem. 2008;15:488–498. doi: 10.2174/092986708783503203. PubMed DOI
Nguyen ML, Cox GD, Parsons SM. Kinetic parameters for the vesicular acetylcholine transporter: two protons are exchanged for one acetylcholine. Biochemistry. 1998;37:13400–13410. doi: 10.1021/bi9802263. PubMed DOI
Perrier AL, Massoulie J, Krejci E. PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron. 2002;33:275–285. doi: 10.1016/S0896-6273(01)00584-0. PubMed DOI
Dobbertin A, Hrabovska A, Dembele K, Camp S, Taylor P, Krejci E, Bernard V. Targeting of Acetylcholinesterase in Neurons In Vivo: A Dual Processing Function for the Proline-Rich Membrane Anchor Subunit and the Attachment Domain on the Catalytic Subunit. J Neurosci. 2009;29:4519–4530. doi: 10.1523/JNEUROSCI.3863-08.2009. PubMed DOI PMC
Farar V, Mohr F, Legrand M, Lamotte d’Incamps B, Cendelin J, Leroy J, Abitbol M, et al. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J Neurochem. 2012;122:1065–1080. doi: 10.1111/j.1471-4159.2012.07856.x. PubMed DOI
Eglen R. Overview of muscarinic receptor subtypes. In: Fryer AD, Christopoulos A, Nathanson NM, editors. Muscarinic Receptors. Springer; Berlin, Heidelberg: 2012. pp. 3–28. PubMed DOI
Campoy FJ, Vidal CJ, Muñoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Cerón S. Cholinergic system and cell proliferation. Chem Biol Interact. 2016;259:257–265. doi: 10.1016/j.cbi.2016.04.014. PubMed DOI
Croy CH, Schober DA, Xiao H, Quets A, Christopoulos A, Felder CC. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors. Mol Pharmacol. 2014;86:106–115. doi: 10.1124/mol.114.091751. PubMed DOI
Caulfield MP. Muscarinic receptors--characterization, coupling and function. Pharmacol Ther. 1993;58:319–379. doi: 10.1016/0163-7258(93)90027-B. PubMed DOI
Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol. 2018;19:638–653. doi: 10.1038/s41580-018-0049-3. PubMed DOI
van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front Pharmacol. 2021;11:606656. doi: 10.3389/fphar.2020.606656. PubMed DOI PMC
Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hubner H, et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature. 2013;504:101–106. doi: 10.1038/nature12735. PubMed DOI PMC
Randáková A, Jakubík J. Functionally selective and biased agonists of muscarinic receptors. Pharmacol Res. 2021;169:105641. doi: 10.1016/j.phrs.2021.105641. PubMed DOI
Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, et al. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther. 2008;327:941–953. doi: 10.1124/jpet.108.140350. PubMed DOI PMC
Croy CH, Chan WY, Castetter AM, Watt ML, Quets AT, Felder CC. Characterization of PCS1055, a novel muscarinic M4 receptor antagonist. Eur J Pharmacol. 2016;782:70–76. doi: 10.1016/j.ejphar.2016.04.022. PubMed DOI
Gentry PR, Bridges TM, Lamsal A, Vinson PN, Smith E, Chase P, Hodder PS, et al. Discovery of ML326: The first sub-micromolar, selective M5 PAM. Bioorg Med Chem Lett. 2013;23:2996–3000. doi: 10.1016/j.bmcl.2013.03.032. PubMed DOI PMC
Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E, Chase P, Hodder PS, et al. Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem. 2014;9:1677–1682. doi: 10.1002/cmdc.201402051. PubMed DOI PMC
Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, et al. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci U S A. 2009;106:15950–15955. doi: 10.1073/pnas.0900903106. PubMed DOI PMC
Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, et al. A Novel Selective Muscarinic Acetylcholine Receptor Subtype 1 Antagonist Reduces Seizures without Impairing Hippocampus-Dependent Learning. Mol Pharmacol. 2009;76:356–368. doi: 10.1124/mol.109.056531. PubMed DOI PMC
Steinfeld T, Mammen M, Smith JA, Wilson RD, Jasper JR. A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol Pharmacol. 2007;72:291–302. doi: 10.1124/mol.106.033746. PubMed DOI
Tränkle C, Dittmann A, Schulz U, Weyand O, Buller S, Jöhren K, Heller E, Birdsall NJ, Holzgrabe U, Ellis J, Höltje HD, Mohr K. Atypical muscarinic allosteric modulation: cooperativity between modulators and their atypical binding topology in muscarinic M2 and M2/M5 chimeric receptors. Mol Pharmacol. 2005;68:1597–1610. doi: 10.1124/mol.105.017707. PubMed DOI
Anagnostaras SG, Maren S, Fanselow MS. Scopolamine selectively disrupts the acquisition of contextual fear conditioning in rats. Neurobiol Learn Mem. 1995;64:191–194. doi: 10.1006/nlme.1995.0001. PubMed DOI
Chen KC, Baxter MG, Rodefer JS. Central blockade of muscarinic cholinergic receptors disrupts affective and attentional set-shifting. Eur J Neurosci. 2004;20:1081–1088. doi: 10.1111/j.1460-9568.2004.03548.x. PubMed DOI
Sipos ML, Burchnell V, Galbicka G. Dose-response curves and time-course effects of selected anticholinergics on locomotor activity in rats. Psychopharmacology. 1999;147:250–256. doi: 10.1007/s002130051164. PubMed DOI
Sanford LD, Yang L, Tang X, Dong E, Ross RJ, Morrison AR. Cholinergic regulation of the central nucleus of the amygdala in rats: effects of local microinjections of cholinomimetics and cholinergic antagonists on arousal and sleep. Neuroscience. 2006;141:2167–2176. doi: 10.1016/j.neuroscience.2006.05.064. PubMed DOI
Pratt WE, Blackstone K. Nucleus accumbens acetylcholine and food intake: decreased muscarinic tone reduces feeding but not food-seeking. Behav Brain Res. 2009;198:252–257. doi: 10.1016/j.bbr.2008.11.008. PubMed DOI
Crespo JA, Stöckl P, Zorn K, Saria A, Zernig G. Nucleus accumbens core acetylcholine is preferentially activated during acquisition of drug- vs food-reinforced behavior. Neuropsychopharmacology. 2008;33:3213–3220. doi: 10.1038/npp.2008.48. PubMed DOI
Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, et al. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A. 1999;96:10483–10488. doi: 10.1073/pnas.96.18.10483. PubMed DOI PMC
Bubser M, Bridges TM, Dencker D, Gould RW, Grannan M, Noetzel MJ, Lamsal A, et al. Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents. ACS Chem Neurosci. 2014;5:920–942. doi: 10.1021/cn500128b. PubMed DOI PMC
Koshimizu H, Leiter L, Miyakawa T. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol Brain. 2012;5:10. doi: 10.1186/1756-6606-5-10. PubMed DOI PMC
Thomsen M, Lindsley C, Conn PJ, Wessell J, Fulton B, Wess J, Caine SB. Contribution of both M1 and M4 receptors to muscarinic agonist-mediated attenuation of the cocaine discriminative stimulus in mice. Psychopharmacology. 2012;220:673–685. doi: 10.1007/s00213-011-2516-9. PubMed DOI PMC
Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related central nervous system pathologies. FASEB J. 2004;18:1410–1412. doi: 10.1096/fj.04-1575fje. PubMed DOI
Carr DB, Surmeier DJ. M1 muscarinic receptor modulation of Kir2 channels enhances temporal summation of excitatory synaptic potentials in prefrontal cortex pyramidal neurons. J Neurophysiol. 2007;97:3432–3438. doi: 10.1152/jn.00828.2006. PubMed DOI
Brown D. Muscarinic Acetylcholine Receptors (mAChRs) in the Nervous System: Some Functions and Mechanisms. J Mol Neurosci. 2010;41:340–346. doi: 10.1007/s12031-010-9377-2. PubMed DOI
Bonsi P, Martella G, Cuomo D, Platania P, Sciamanna G, Bernardi G, Wess J, Pisani A. Loss of Muscarinic Autoreceptor Function Impairs Long-Term Depression But Not Long-Term Potentiation in the Striatum. J Neurosci. 2008;28:6258–6263. doi: 10.1523/JNEUROSCI.1678-08.2008. PubMed DOI PMC
Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44:5–21. doi: 10.1016/j.neuron.2004.09.012. PubMed DOI
Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI. Distribution of m1–m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci. 1994;14:3351–3363. doi: 10.1523/JNEUROSCI.14-05-03351.1994. PubMed DOI PMC
Ince E, Ciliax BJ, Levey AI. Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse. 1997;27:357–366. doi: 10.1002/(SICI)1098-2396(199712)27:4<357::AID-SYN9>3.0.CO;2-B. PubMed DOI
Myslivecek J. Two Players in the Field: Hierarchical Model of Interaction between the Dopamine and Acetylcholine Signaling Systems in the Striatum. Biomedicines. 2021;9:25. doi: 10.3390/biomedicines9010025. PubMed DOI PMC
Sugaya K, Clamp C, Bryan D, McKinney M. mRNA for the m4 muscarinic receptor subtype is expressed in adult rat brain cholinergic neurons. Brain Res Mol Brain Res. 1997;50:305–313. doi: 10.1016/S0169-328X(97)00199-X. PubMed DOI
Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci. 1991;11:3218–3226. doi: 10.1523/JNEUROSCI.11-10-03218.1991. PubMed DOI PMC
Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, et al. Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol. 1993;43:149–157. doi: 10.1016/S0026-895X(25)13594-3. PubMed DOI
Bymaster FP, McKinzie DL, Felder CC, Wess J. Use of M1–M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res. 2003;28:437–442. doi: 10.1023/A:1022844517200. PubMed DOI
Crusio WE, Goldowitz D, Holmes A, Wolfer D. Standards for the publication of mouse mutant studies. Genes Brain Behav. 2009;8:1–4. doi: 10.1111/j.1601-183X.2008.00438.x. PubMed DOI
Bymaster FP, Carter PA, Zhang L, Falcone JF, Stengel PW, Cohen ML, Shannon HE, Gomeza J, Wess J, Felder CC. Investigations into the physiological role of muscarinic M2 and M4 muscarinic and M4 receptor subtypes using receptor knockout mice. Life Sci. 2001;68:2473–2479. doi: 10.1016/S0024-3205(01)01041-4. PubMed DOI
Woolley ML, Carter HJ, Gartlon JE, Watson JM, Dawson LA. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur J Pharmacol. 2009;603:147–149. doi: 10.1016/j.ejphar.2008.12.020. PubMed DOI
Turner J, Hughes LF, Toth LA. Sleep, activity, temperature and arousal responses of mice deficient for muscarinic receptor M2 or M4. Life Sci. 2010;86:158–169. doi: 10.1016/j.lfs.2009.11.019. PubMed DOI
Roedel A, Storch C, Holsboer F, Ohl F. Effects of light or dark phase testing on behavioural and cognitive performance in DBA mice. Lab Anim. 2006;40:371–381. doi: 10.1258/002367706778476343. PubMed DOI
Czeisler CA, Klerman EB. Circadian and sleep-dependent regulation of hormone release in humans. Recent Prog Horm Res. 1999;54:97–130. discussion 130–132. PubMed
Ebling FJ, Lincoln GA, Wollnik F, Anderson N. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram. J Biol Rhythms. 1988;3:365–384. doi: 10.1177/074873048800300406. PubMed DOI
Patton AP, Hastings MH. The Mammalian Circadian Time-Keeping System. J Huntingtons Dis. 2023;12:91–104. doi: 10.3233/JHD-230571. PubMed DOI PMC
Joye DAM, Evans JA. Sex differences in daily timekeeping and circadian clock circuits. Semin Cell Dev Biol. 2022;126:45–55. doi: 10.1016/j.semcdb.2021.04.026. PubMed DOI PMC
Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW, Ronda JM, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284:2177–2181. doi: 10.1126/science.284.5423.2177. PubMed DOI
Gillette MU, Tischkau SA. Suprachiasmatic nucleus: the brain’s circadian clock. Recent Prog Horm Res. 1999;54:33–58. discussion 58–39. PubMed
Vosko AM, Colwell CS, Avidan AY. Jet lag syndrome: circadian organization, pathophysiology, and management strategies. Nat Sci Sleep. 2010;2:187–198. doi: 10.2147/NSS.S6683. PubMed DOI PMC
Wyartt C. Taking a Big Step towards Understanding Locomotion. Trends Neurosci. 2018;41:869–870. doi: 10.1016/j.tins.2018.09.010. PubMed DOI
Ballesta A, Innominato PF, Dallmann R, Rand DA, Lévi FA. Systems Chronotherapeutics. Pharmacol Rev. 2017;69:161–199. doi: 10.1124/pr.116.013441. PubMed DOI PMC
Morin LP. Neuroanatomy of the extended circadian rhythm system. Expl Neurol. 2013;243:4–20. doi: 10.1016/j.expneurol.2012.06.026. PubMed DOI PMC
Hughes ATL, Piggins HD. Feedback actions of locomotor activity to the circadian clock. Prog Brain Res. 2012;199:305–336. doi: 10.1016/B978-0-444-59427-3.00018-6. PubMed DOI
Abrahamson EE, Moore RY. Lesions of suprachiasmatic nucleus efferents selectively affect rest-activity rhythm. Mol Cell Endocrinol. 2006;252:46–56. doi: 10.1016/j.mce.2006.03.036. PubMed DOI
Kramer A, Yang F-C, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ. Regulation of Daily Locomotor Activity and Sleep by Hypothalamic EGF Receptor Signaling. Science. 2001;294:2511–2515. doi: 10.1126/science.1067716. PubMed DOI
Hut RA, Van der Zee EA. The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res. 2011;221:466–480. doi: 10.1016/j.bbr.2010.11.039. PubMed DOI
van den Pol AN, Tsujimoto KL. Neurotransmitters of the hypothalamic suprachiasmatic nucleus: Immunocytochemical analysis of 25 neuronal antigens. Neuroscience. 1985;15:1049–1086. doi: 10.1016/0306-4522(85)90254-4. PubMed DOI
Bina KG, Rusak B, Semba K. Localization of cholinergic neurons in the forebrain and brainstem that project to the suprachiasmatic nucleus of the hypothalamus in rat. J Comp Neurol. 1993;335:295–307. doi: 10.1002/cne.903350212. PubMed DOI
Yang J-J, Wang Y-T, Cheng P-C, Kuo Y-J, Huang R-C. Cholinergic Modulation of Neuronal Excitability in the Rat Suprachiasmatic Nucleus. J Neurophysiol. 2010;103:1397–1409. doi: 10.1152/jn.00877.2009. PubMed DOI
Edelstein K, Amir S. Constant light induces persistent Fos expression in rat intergeniculate leaflet. Brain Res. 1996;731:221–225. doi: 10.1016/0006-8993(96)00691-9. PubMed DOI
Morin LP, Allen CN. The circadian visual system, 2005. Brain Res Rev. 2006;51:1–60. doi: 10.1016/j.brainresrev.2005.08.003. PubMed DOI
Moore RY. Chapter 8 Entrainment pathways and the functional organization of the circadian system. In: Buijs RM, Kalsbeek A, Romijn HJ, Pennartz CMA, Mirmiran M, editors. Progress in Brain Research. Elsevier; 1996. pp. 103–119. PubMed DOI
Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987;258:204–229. doi: 10.1002/cne.902580204. PubMed DOI
Watts AG, Swanson LW. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol. 1987;258:230–252. doi: 10.1002/cne.902580205. PubMed DOI
Krout KE, Kawano J, Mettenleiter TC, Loewy AD. CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience. 2002;110:73–92. doi: 10.1016/S0306-4522(01)00551-6. PubMed DOI
Vujovic N, Gooley JJ, Jhou TC, Saper CB. Projections from the subparaventricular zone define four channels of output from the circadian timing system. J Comp Neurol. 2015;523:2714–2737. doi: 10.1002/cne.23812. PubMed DOI PMC
Moga MM, Weis RP, Moore RY. Efferent projections of the paraventricular thalamic nucleus in the rat. J Comp Neurol. 1995;359:221–238. doi: 10.1002/cne.903590204. PubMed DOI
Castillo-Ruiz A, Nunez AA. Cholinergic projections to the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Brain Res. 2007;1151:91–101. doi: 10.1016/j.brainres.2007.03.010. PubMed DOI
Deurveilher S, Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: Implications for the circadian control of behavioural state. Neuroscience. 2005;130:165–183. doi: 10.1016/j.neuroscience.2004.08.030. PubMed DOI
Riljak V, Janisova K, Myslivecek J. Lack of M(4) muscarinic receptors in the striatum, thalamus and intergeniculate leaflet alters the biological rhythm of locomotor activity in mice. Brain Struct Funct. 2020;225:1615–1629. doi: 10.1007/s00429-020-02082-x. PubMed DOI PMC
Valuskova P, Farar V, Forczek S, Krizova I, Myslivecek J. Autoradiography of (3)H-pirenzepine and (3)H-AFDX-384 in Mouse Brain Regions: Possible Insights into M(1), M(2), and M(4) Muscarinic Receptors Distribution. Front Pharmacol. 2018;9:124. doi: 10.3389/fphar.2018.00124. PubMed DOI PMC
Perry EK, Perry RH, Tomlinson BE. Circadian variations in cholinergic enzymes and muscarinic receptor binding in human cerebral cortex. Neurosci Lett. 1977;4:185–189. doi: 10.1016/0304-3940(77)90136-7. PubMed DOI
Kafka MS, Wirz-Justice A, Naber D, Moore RY, Benedito MA. Circadian rhythms in rat brain neurotransmitter receptors. Fed Proc. 1983;42:2796–2801. PubMed
Wirz-Justice A. Circadian rhythms in mammalian neurotransmitter receptors. Progress Neurobiol. 1987;29:219–259. doi: 10.1016/0301-0082(87)90022-0. PubMed DOI
Por S, Bondy S. Regional circadian variation of acetylcholine muscarinic receptors in the rat brain. J Neurosci Res. 1981;6:315–318. doi: 10.1002/jnr.490060306. PubMed DOI
Kafka MS, Benedito MA, Blendy JA, Tokola NS. Circadian rhythms in neurotransmitter receptors in discrete rat brain regions. Chronobiol Int. 1986;3:91–100. doi: 10.3109/07420528609066353. PubMed DOI
Marquez E, Pavia J, Laukonnen S, Martos F, Gomez A, Rius F, Sanchez de la Cuesta F. Circadian rhythm in muscarinic receptor subtypes in rat forebrain. Chronobiol Int. 1990;7:277–282. doi: 10.1080/07420529009064633. PubMed DOI
Bina KG, Rusak B, Wilkinson M. Daily variation of muscarinic receptors in visual cortex but not suprachiasmatic nucleus of Syrian hamsters. Brain Res. 1998;797:143–153. doi: 10.1016/S0006-8993(98)00374-6. PubMed DOI
Bailey M, Silver R. Sex differences in circadian timing systems: Implications for disease. Front Neuroendocrinol. 2014;35:111–139. doi: 10.1016/j.yfrne.2013.11.003. PubMed DOI PMC
Simerly RB. Wired on hormones: endocrine regulation of hypothalamic development. Curr Opin Neurobiol. 2005;15:81–85. doi: 10.1016/j.conb.2005.01.013. PubMed DOI
McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ. Sex differences in the brain: the not so inconvenient truth. J Neurosci. 2012;32:2241–2247. doi: 10.1523/JNEUROSCI.5372-11.2012. PubMed DOI PMC
Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders. Sex Differences and Implications for Translational Neuroscience Research: Workshop Summary. Washington (DC): National Academies Press (US); 2011. The National Academies Collection: Reports funded by National Institutes of Health. PubMed DOI
Morgan MA, Pfaff DW. Effects of estrogen on activity and fear-related behaviors in mice. Horm Behav. 2001;40:472–482. doi: 10.1006/hbeh.2001.1716. PubMed DOI
Blizard DA, Lippman HR, Chen JJ. Sex differences in open-field behavior in the rat: the inductive and activational role of gonadal hormones. Physiol Behav. 1975;14:601–608. doi: 10.1016/0031-9384(75)90188-2. PubMed DOI
Kuljis DA, Loh DH, Truong D, Vosko AM, Ong ML, McClusky R, Arnold AP, Colwell CS. Gonadal- and sex-chromosome-dependent sex differences in the circadian system. Endocrinology. 2013;154:1501–1512. doi: 10.1210/en.2012-1921. PubMed DOI PMC
Ogawa S, Chan J, Gustafsson J-A, Korach KS, Pfaff DW. Estrogen increases locomotor activity in mice through estrogen receptor alpha: specificity for the type of activity. Endocrinology. 2003;144:230–239. doi: 10.1210/en.2002-220519. PubMed DOI
Gibbs RB. Effects of gonadal hormone replacement on measures of basal forebrain cholinergic function. Neuroscience. 2000;101:931–938. doi: 10.1016/S0306-4522(00)00433-4. PubMed DOI
Luine VN, Renner KJ, Heady S, Jones KJ. Age and sex-dependent decreases in ChAT in basal forebrain nuclei. Neurobiol Aging. 1986;7:193–198. doi: 10.1016/0197-4580(86)90042-4. PubMed DOI
Westlind-Danielsson A, Gould E, McEwen BS. Thyroid hormone causes sexually distinct neurochemical and morphological alterations in rat septal-diagonal band neurons. J Neurochem. 1991;56:119–128. doi: 10.1111/j.1471-4159.1991.tb02570.x. PubMed DOI
Gorski RA, Gordon JH, Shryne JE, Southam AM. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res. 1978;148:333–346. doi: 10.1016/0006-8993(78)90723-0. PubMed DOI
Fragkouli A, Stamatakis A, Zographos E, Pachnis V, Stylianopoulou F. Sexually dimorphic effects of the Lhx7 null mutation on forebrain cholinergic function. Neuroscience. 2006;137:1153–1164. doi: 10.1016/j.neuroscience.2005.10.037. PubMed DOI
Shughrue P, Scrimo P, Lane M, Askew R, Merchenthaler I. The distribution of estrogen receptor-beta mRNA in forebrain regions of the estrogen receptor-alpha knockout mouse. Endocrinology. 1997;138:5649–5652. doi: 10.1210/endo.138.12.5712. PubMed DOI
Valuskova P, Riljak V, Forczek ST, Farar V, Myslivecek J. Variability in the Drug Response of M4 Muscarinic Receptor Knockout Mice During Day and Night Time. Front Pharmacol. 2019:10. doi: 10.3389/fphar.2019.00237. PubMed DOI PMC
Valuskova P, Forczek ST, Farar V, Myslivecek J. The deletion of M(4) muscarinic receptors increases motor activity in females in the dark phase. Brain Behav. 2018;8:e01057. doi: 10.1002/brb3.1057. PubMed DOI PMC
Janisova K, Uhlirova M, Forczek S, Myslivecek J. Striatal M4 muscarinic receptors determine the biological rhythm of activity, with a supportive role of M1 muscarinic receptors. Front Pharmacol. 2025;16:1691118. doi: 10.3389/fphar.2025.1691118. PubMed DOI PMC
Nair AG, Castro LRV, El Khoury M, Gorgievski V, Giros B, Tzavara ET, Hellgren-Kotaleski J, Vincent P. The high efficacy of muscarinic M4 receptor in D1 medium spiny neurons reverses striatal hyperdopaminergia. Neuropharmacology. 2019;146:74–83. doi: 10.1016/j.neuropharm.2018.11.029. PubMed DOI
Sarter M, Albin RL, Kucinski A, Lustig C. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp Neurol. 2014;257:120–129. doi: 10.1016/j.expneurol.2014.04.032. PubMed DOI PMC
Martins-Silva C, De Jaeger X, Guzman MS, Lima RDF, Santos MS, Kushmerick C, Gomez MV, et al. Novel Strains of Mice Deficient for the Vesicular Acetylcholine Transporter: Insights on Transcriptional Regulation and Control of Locomotor Behavior. PLoS One. 2011;6:e17611. doi: 10.1371/journal.pone.0017611. PubMed DOI PMC
Guzman MS, De Jaeger X, Raulic S, Souza IA, Li AX, Schmid S, Menon RS, et al. Elimination of the Vesicular Acetylcholine Transporter in the Striatum Reveals Regulation of Behaviour by Cholinergic-Glutamatergic Co-Transmission. PLoS Biol. 2011;9:e1001194. doi: 10.1371/journal.pbio.1001194. PubMed DOI PMC
Miyakawa T, Yamada M, Duttaroy A, Wess J. Hyperactivity and Intact Hippocampus-Dependent Learning in Mice Lacking the M1 Muscarinic Acetylcholine Receptor. J Neurosci. 2001;21:5239–5250. doi: 10.1523/JNEUROSCI.21-14-05239.2001. PubMed DOI PMC
Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1–M5 muscarinic receptor knock-out mice. J Neurosci. 2002;22:6347–6352. doi: 10.1523/JNEUROSCI.22-15-06347.2002. PubMed DOI PMC
Jeon J, Dencker D, Wörtwein G, Woldbye DPD, Cui Y, Davis AA, Levey AI, et al. A Subpopulation of Neuronal M4 Muscarinic Acetylcholine Receptors Plays a Critical Role in Modulating Dopamine-Dependent Behaviors. J Neurosci. 2010;30:2396–2405. doi: 10.1523/JNEUROSCI.3843-09.2010. PubMed DOI PMC
Moehle MS, Conn PJ. Roles of the M4 acetylcholine receptor in the basal ganglia and the treatment of movement disorders. Mov Disord. 2019;34:1089–1099. doi: 10.1002/mds.27740. PubMed DOI PMC
Mann T, Zilles K, Klawitter F, Cremer M, Hawlitschka A, Palomero-Gallagher N, Schmitt O, Wree A. Acetylcholine Neurotransmitter Receptor Densities in the Striatum of Hemiparkinsonian Rats Following Botulinum Neurotoxin-A Injection. Front Neuroanat. 2018;12:65. doi: 10.3389/fnana.2018.00065. PubMed DOI PMC
Ouchi H, Ono K, Murakami Y, Matsumoto K. Social isolation induces deficit of latent learning performance in mice: a putative animal model of attention deficit/hyperactivity disorder. Behav Brain Res. 2013;238:146–153. doi: 10.1016/j.bbr.2012.10.029. PubMed DOI
Bartko SJ, Romberg C, White B, Wess J, Bussey TJ, Saksida LM. Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method. Neuropharmacology. 2011;61:1366–1378. doi: 10.1016/j.neuropharm.2011.08.023. PubMed DOI PMC
Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 2004;18:1410–1412. doi: 10.1096/fj.04-1575fje. PubMed DOI
Jusko ML, Smith JN, Hayes T, Campez-Pardo M, Timmons AC, Morrow AS, Lozano C, et al. An Application of Time Series Analysis to Single-Case Designs in an Intensive Behavioral Intervention for ADHD. J Atten Disord. 2025;29:832–847. doi: 10.1177/10870547251339546. PubMed DOI
Jo Y, Takagi S, Shimizu M, Takahashi H, Sugihara G. Seasonal changes in mood and behaviors in individuals with attention-deficit/hyperactivity disorder trait. J Psychiatr Res. 2025;182:462–468. doi: 10.1016/j.jpsychires.2025.01.044. PubMed DOI