Low-power microfluidic RT-LAMP system with real-time fluorescence detection for portable nucleic acid testing
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000017
National Centre for Biotechnology in Veterinary Medicine
PubMed
41428227
DOI
10.1007/s00604-025-07680-2
PII: 10.1007/s00604-025-07680-2
Knihovny.cz E-zdroje
- Klíčová slova
- Low-power diagnostics, Microfluidic biosensor, Nucleic acid amplification, Point-of-care testing, RT-LAMP,
- MeSH
- diagnostické techniky molekulární * přístrojové vybavení metody MeSH
- fluorescence MeSH
- limita detekce MeSH
- mikrofluidní analytické techniky * přístrojové vybavení metody MeSH
- RNA * analýza genetika MeSH
- techniky amplifikace nukleových kyselin * přístrojové vybavení metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA * MeSH
A microfluidic reverse transcription loop-mediated isothermal amplification (RT-LAMP) platform is presented featuring integrated real-time fluorescence detection and optimized thermal control. Magnetic bead-based RNA extraction was paired with a thermally insulated reaction chip operated under vacuum to suppress heat loss. Additional energy-saving strategies, including reduced wire cross-section and low-emissivity surface treatment, reduced total power consumption from (2.00 ± 0.08) W to (0.29 ± 0.01) W, corresponding to an 85.5 % reduction. Amplification was completed within 20 min, and positive fluorescence signals were detected in less than 11 min. Although LAMP reagents remain more expensive than those used in PCR, the substantial energy savings and system simplification demonstrated here support practical battery-powered operation. The RT-LAMP chemistry used in this system matched a previously validated configuration, which achieved a limit of detection of 256 RNA copies and a signal slope of (- 1.70 ± 0.20) dec.min⁻1. These parameters remained consistent under the current setup, as power consumption did not influence detection sensitivity provided the reaction temperature was maintained. The platform enables low-power, real-time nucleic acid detection suited for decentralized diagnostics, forensic screening, and environmental monitoring.
Zobrazit více v PubMed
World Health Organization (2020) Coronavirus disease 2019 (COVID-19): situation report – 52, World Health Organization, Geneva. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200312-sitrep-52-covid-19.pdf
Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536
Zhu H, Zhang H, Ni S, Korabečná M, Yobas L, Neuzil P (2020) The vision of point-of-care PCR tests for the COVID-19 pandemic and beyond. TrAC Trends Anal Chem 130:115984
Valera E, Jankelow A, Lim J, Kindratenko V, Ganguli A, White K, Kumar J, Bashir R (2021) COVID-19 point-of-care diagnostics: present and future. ACS Nano 15:7899–7906 PubMed
Wang B, Li W, Huang S, Wan Y, Mao C (2025) Chapter 14 - nucleic acid detection for microbial diagnostics. In: Haick H (ed) Nature-inspired sensors. Elsevier, pp 183–203
Zhu H, Fohlerová Z, Pekárek J, Basova E, Neužil P (2020) Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens Bioelectron 153:112041 PubMed PMC
Kulkarni MB, Ayachit NH, Aminabhavi TM (2023) A short review on miniaturized biosensors for the detection of nucleic acid biomarkers. Biosensors 13:412 PubMed PMC
Yüce M, Filiztekin E, Özkaya KG (2021) COVID-19 diagnosis—a review of current methods. Biosens Bioelectron 172:112752 PubMed
Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VY, Chen H, Mubareka S, Gubbay JB, Chan WC (2020) Diagnosing COVID-19: the disease and tools for detection. ACS Nano 14:3822–3835 PubMed
Kudr J, Michalek P, Ilieva L, Adam V, Zitka O (2021) COVID-19: a challenge for electrochemical biosensors. TrAC Trends Anal Chem 136:116192
Hani C, Trieu NH, Saab I, Dangeard S, Bennani S, Chassagnon G, Revel M-P (2020) COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. Diagn Interv Imaging 101:263–268 PubMed PMC
Tong H, Cao C, You M, Han S, Liu Z, Xiao Y, He W, Liu C, Peng P, Xue Z (2022) Artificial intelligence-assisted colorimetric lateral flow immunoassay for sensitive and quantitative detection of COVID-19 neutralizing antibody. Biosens Bioelectron 213:114449 PubMed PMC
Liu R, Han H, Liu F, Lv Z, Wu K, Liu Y, Feng Y, Zhu C (2020) Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta 505:172–175 PubMed PMC
Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Nat Biotechnol 11:1026–1030
Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29:151–159 PubMed
Karami A, Hasani M, Jalilian FA, Ezati R (2021) Conventional PCR assisted single-component assembly of spherical nucleic acids for simple colorimetric detection of SARS-CoV-2. Sens Actuators B Chem 328:128971 PubMed
Ben-Ami R, Klochendler A, Seidel M, Sido T, Gurel-Gurevich O, Yassour M, Meshorer E, Benedek G, Fogel I, Oiknine-Djian E (2020) Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clin Microbiol Infect 26:1248–1253 PubMed PMC
Jiang M, Chen W, Chen Y, Chen J, Zhang Y, Yin H, Li Y, Liu W (2023) Analytical performance of rapid nucleic acid detection assays and routine RT-qPCR assays for detection of SARS-CoV-2 in Shanghai, China in 2022. Diagn Microbiol Infect Dis 105:115860 PubMed
Zhang H, Xu Y, Fohlerova Z, Chang H, Iliescu C, Neuzil P (2019) LAMP-on-a-chip: revising microfluidic platforms for loop-mediated DNA amplification. TrAC Trends Anal Chem 113:44–53
Garg N, Ahmad FJ, Kar S (2022) Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Curr Res Microb Sci 3:100120 PubMed PMC
Kumari M, Chander D, Dogra S, Chaubey A, Chakraborty S, Arun RK (2025) Portable, quantitative, real-time isothermal nucleic acid amplification test using microfluidic device-coupled UV-LED photodiode detector. Biosens Bioelectron 274:117194 PubMed
Zhang S, Duan M, Li S, Hou J, Qin T, Teng Z, Hu J, Zhang H, Xia X (2024) Current status of recombinase polymerase amplification technologies for the detection of pathogenic microorganisms. Diagn Microbiol Infect Dis 108:116097
Madadelahi M, Agarwal R, Martinez-Chapa SO, Madou MJ (2024) A roadmap to high-speed polymerase chain reaction (PCR): COVID-19 as a technology accelerator. Biosens Bioelectron 246:115830 PubMed
Papadakis G, Pantazis AK, Fikas N, Chatziioannidou S, Tsiakalou V, Michaelidou K, Pogka V, Megariti M, Vardaki M, Giarentis K (2022) Portable real-time colorimetric LAMP-device for rapid quantitative detection of nucleic acids in crude samples. Sci Rep 12:3775 PubMed PMC
Dong H, Mo J, Yu Y, Xie W, Zheng J, Jia C (2023) A portable system for economical nucleic acid amplification testing. Front Bioeng Biotechnol 11:1214624 PubMed PMC
Lu S, Yang Y, Cui S, Li A, Qian C, Li X (2024) Integrated high-throughput centrifugal microfluidic chip device for pathogen detection on-site. Biosensors 14:313 PubMed PMC
Cui S, Wang K, Yang Y, Lv X, Li X (2025) An integrated and paper-based microfluidic system employing LAMP-CRISPR and equipped with a portable device for simultaneous detection of pathogens. Anal Bioanal Chem 417:785–797 PubMed
Sun A, Vopařilová P, Liu X, Kou B, Řezníček T, Lednický T, Ni S, Kudr J, Zítka O, Fohlerová Z (2024) An integrated microfluidic platform for nucleic acid testing. Microsyst Nanoeng 10:66 PubMed PMC
Sun A, Vopařilová P, Liu X, Řezníček T, Brodský J, Gablech I, Zítka O, Neužil P (2025) Two colorimetric LAMP systems for nucleic acid-based diagnostics. Anal Chim Acta 1346:343752 PubMed
Zhu H, Liu X, Wang Y, Sun A, Teplý T, Korabečná M, Zhang H, Neuzil P (2023) Smallest dual-color qPCR device. Sens Actuators B Chem 394:134299
Balram KC, Westly DA, Davanco M, Grutter KE, Li Q, Michels T, Ray CH, Yu L, Kasica RJ, Wallin CB (2016) The nanolithography toolbox. J Res Natl Inst Stand Technol 121:464 PubMed PMC
Zhang H, Pekárek J, Feng J, Liu X, Li H, Zhu H, Svatoš V, Gablech I, Podešva P, Ni S (2020) Nanolithography toolbox—simplifying the design complexity of microfluidic chips. J Vac Sci Technol B 38:063002
Liu X, Sun A, Brodský J, Gablech I, Lednický T, Vopařilová P, Zítka O, Zeng W, Neužil P (2024) Microfluidics chips fabrication techniques comparison. Sci Rep 14:28793 PubMed PMC
Zhu H, Podesva P, Liu X, Zhang H, Teply T, Xu Y, Chang H, Qian A, Lei Y, Li Y (2020) IoT PCR for pandemic disease detection and its spread monitoring. Sens Actuators B Chem 303:127098 PubMed
Novak L, Neuzil P, Pipper J, Zhang Y, Lee S (2007) An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 7:27–29 PubMed
Neuzil P, Zhang C, Pipper J, Oh S, Zhuo L (2006) Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes. Nucleic Acids Res 34:e77–e77 PubMed PMC
Liu I-S (1990) On Fourier’s law of heat conduction. Continuum Mech Thermodyn 2:301–305
Winterton R (1999) Newton’s law of cooling. Contemp Phys 40:205–212
Svatoš V, Gablech I, Pekárek J, Klempa J, Neužil P (2018) Precise determination of thermal parameters of a microbolometer. Infrared Phys Technol 93:286–290
Zhu H, Zhang Y, Wang L, Brodský J, Gablech I, Feng J, Yan Q-L, Yang S, Lee LP, Neuzil P (2025) A low-cost picowatt calorimeter using a flexible printed circuit board. Nat Commun 16:2994 PubMed PMC
Bondar O, Brezhneva E, Kalmykov A (2022) Increasing temperature measurement accuracy: method of two-wire connection of a resistance thermometer. Meas Tech 65:206–212
The Engineering ToolBox (2003). Understanding convective heat transfer: coefficients, formulas & examples. [online] Available at: https://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html
Rubin M (1985) Optical properties of soda lime silica glasses. Sol Energy Mater 12:275–288
Wen C-D, Mudawar I (2005) Emissivity characteristics of polished aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. Int J Heat Mass Transf 48:1316–1329
Berry SM, Alarid ET, Beebe DJ (2011) One-step purification of nucleic acid for gene expression analysis via immiscible filtration assisted by surface tension (IFAST). Lab Chip 11:1747–1753 PubMed PMC
Mao K, Tao Y, Guo W, Shi C, Zhang X, Yang R, Xue R, Sun Y, Ren Y (2025) Universal portable colorimetric isothermal nucleic acid amplification equipment for immediate diagnosis. Sens Actuators B Chem 427:137218
Liu X, Wang X, Zhang H, Yan Z, Gaňová M, Lednický T, Řezníček T, Xu Y, Zeng W, Korabečná M (2023) Smartphone integrated handheld (SPEED) digital polymerase chain reaction device. Biosens Bioelectron 232:115319 PubMed
Zhang H, Liu X, Wang X, Yan Z, Xu Y, Gaňová M, Řezníček T, Korabečná M, Neuzil P (2024) SPEED: an integrated, smartphone-operated, handheld digital PCR device for point-of-care testing. Microsyst Nanoeng 10:62 PubMed PMC
Snodgrass R, Gardner A, Semeere A, Kopparthy VL, Duru J, Maurer T, Martin J, Cesarman E, Erickson D (2018) A portable device for nucleic acid quantification powered by sunlight, a flame or electricity. Nat Biomed Eng 2:657–665 PubMed PMC