Skin and gut microbiota composition and immune regulatory response differentiate IgE and non-IgE cow's milk allergy patients with atopic dermatitis

. 2025 Dec 19 ; 28 (12) : 113943. [epub] 20251104

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41438035
Odkazy

PubMed 41438035
PubMed Central PMC12719065
DOI 10.1016/j.isci.2025.113943
PII: S2589-0042(25)02204-7
Knihovny.cz E-zdroje

Precise identification of food allergy and atopic dermatitis (AD) endotypes in infants is needed to target treatments effectively. Therefore, we investigated markers associated with changes in the microbiota and immune responses within the gut-skin axis of immunoglobulin E (IgE) and non-IgE-mediated cow's milk allergy (CMA) patients with AD. We report that the skin microbiota of patients with IgE CMA differs significantly from healthy controls (HCs) and from patients with non-IgE CMA, despite similar AD severity. Regarding the immune response to bacteria, we found a significant increase in soluble CD14 in patients with non-IgE CMA compared to patients with IgE CMA. Patients with a non-IgE CMA have more regulatory T cells in their blood that migrate into the intestine than patients with IgE CMA. These findings provide insights into the complex interplay between the damaged epithelial barrier, microbiome, and immune responses in CMA patients with AD.

Zobrazit více v PubMed

Osborne N.J., Koplin J.J., Martin P.E., Gurrin L.C., Lowe A.J., Matheson M.C., Ponsonby A.L., Wake M., Tang M.L.K., Dharmage S.C., et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J. Allergy Clin. Immunol. 2011;127:668–676.e762. doi: 10.1016/j.jaci.2011.01.039. PubMed DOI

Boyce J.A., Assa'ad A., Burks A.W., Jones S.M., Sampson H.A., Wood R.A., Plaut M., Cooper S.F., Fenton M.J., Arshad S.H., et al. Guidelines for the Diagnosis and Management of Food Allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. J. Allergy Clin. Immunol. 2010;126:1105–1118. doi: 10.1016/j.jaci.2010.10.008. PubMed DOI PMC

Flom J.D., Sicherer S.H. Epidemiology of Cow's Milk Allergy. Nutrients. 2019;11 doi: 10.3390/nu11051051. PubMed DOI PMC

Cianferoni A., Spergel J.M. Food allergy: review, classification and diagnosis. Allergol. Int. 2009;58:457–466. doi: 10.2332/allergolint.09-RAI-0138. PubMed DOI

Cianferoni A., Muraro A. Food-induced anaphylaxis. Immunol. Allergy Clin. North Am. 2012;32:165–195. doi: 10.1016/j.iac.2011.10.002. PubMed DOI PMC

Dellon E.S., Gonsalves N., Hirano I., Furuta G.T., Liacouras C.A., Katzka D.A., American College of Gastroenterology ACG clinical guideline: Evidenced based approach to the diagnosis and management of esophageal eosinophilia and eosinophilic esophagitis (EoE) Am. J. Gastroenterol. 2013;108:679–693. doi: 10.1038/ajg.2013.71. [quiz: 693] PubMed DOI

Tsakok T., Marrs T., Mohsin M., Baron S., du Toit G., Till S., Flohr C. Does atopic dermatitis cause food allergy? A systematic review. J. Allergy Clin. Immunol. 2016;137:1071–1078. doi: 10.1016/j.jaci.2015.10.049. PubMed DOI

Christensen M.O., Barakji Y.A., Loft N., Khatib C.M., Egeberg A., Thomsen S.F., Silverberg J.I., Flohr C., Maul J.T., Schmid-Grendelmeier P., et al. Prevalence of and association between atopic dermatitis and food sensitivity, food allergy and challenge-proven food allergy: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2023;37:984–1003. doi: 10.1111/jdv.18919. PubMed DOI

Fyhrquist N., Yang Y., Karisola P., Alenius H. Endotypes of atopic dermatitis. J. Allergy Clin. Immunol. 2025;156:24–40.e4. doi: 10.1016/j.jaci.2025.02.029. PubMed DOI

Facheris P., Jeffery J., Del Duca E., Guttman-Yassky E. The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell. Mol. Immunol. 2023;20:448–474. doi: 10.1038/s41423-023-00992-4. PubMed DOI PMC

Tokura Y., Hayano S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol. Int. 2022;71:14–24. doi: 10.1016/j.alit.2021.07.003. PubMed DOI

Peters R.L., Krawiec M., Koplin J.J., Santos A.F. Update on food allergy. Pediatr. Allergy Immunol. 2021;32:647–657. doi: 10.1111/pai.13443. PubMed DOI PMC

Lozano-Ojalvo D., Berin C., Tordesillas L. Immune Basis of Allergic Reactions to Food. J Investig. Allergol. Clin. Immunol. 2019;29:1–14. doi: 10.18176/jiaci.0355. PubMed DOI

Brough H.A., Nadeau K.C., Sindher S.B., Alkotob S.S., Chan S., Bahnson H.T., Leung D.Y.M., Lack G. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy. 2020;75:2185–2205. doi: 10.1111/all.14304. PubMed DOI PMC

Davis K.L., Claudio-Etienne E., Frischmeyer-Guerrerio P.A. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol. 2024;17:1128–1140. doi: 10.1016/j.mucimm.2024.06.005. PubMed DOI PMC

Harris-Tryon T.A., Grice E.A. Microbiota and maintenance of skin barrier function. Science. 2022;376:940–945. doi: 10.1126/science.abo0693. PubMed DOI

Baviera G., Leoni M.C., Capra L., Cipriani F., Longo G., Maiello N., Ricci G., Galli E. Microbiota in healthy skin and in atopic eczema. BioMed Res. Int. 2014;2014 doi: 10.1155/2014/436921. PubMed DOI PMC

Kennedy E.A., Connolly J., Hourihane J.O., Fallon P.G., McLean W.H.I., Murray D., Jo J.H., Segre J.A., Kong H.H., Irvine A.D. Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J. Allergy Clin. Immunol. 2017;139:166–172. doi: 10.1016/j.jaci.2016.07.029. PubMed DOI PMC

Nakamura Y., Oscherwitz J., Cease K.B., Chan S.M., Muñoz-Planillo R., Hasegawa M., Villaruz A.E., Cheung G.Y.C., McGavin M.J., Travers J.B., et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503:397–401. doi: 10.1038/nature12655. PubMed DOI PMC

Galli S.J., Tsai M. IgE and mast cells in allergic disease. Nat. Med. 2012;18:693–704. doi: 10.1038/nm.2755. PubMed DOI PMC

Liu F.T., Goodarzi H., Chen H.Y. IgE, mast cells, and eosinophils in atopic dermatitis. Clin. Rev. Allergy Immunol. 2011;41:298–310. doi: 10.1007/s12016-011-8252-4. PubMed DOI

Azad M.B., Konya T., Guttman D.S., Field C.J., Sears M.R., HayGlass K.T., Mandhane P.J., Turvey S.E., Subbarao P., Becker A.B., et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clin. Exp. Allergy. 2015;45:632–643. doi: 10.1111/cea.12487. PubMed DOI

Simonyte Sjodin K., Hammarstrom M.L., Ryden P., Sjodin A., Hernell O., Engstrand L., West C.E. Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age. Allergy. 2019;74:176–185. doi: 10.1111/all.13485. PubMed DOI

Bjorksten B., Sepp E., Julge K., Voor T., Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 2001;108:516–520. doi: 10.1067/mai.2001.118130. PubMed DOI

Wesemann D.R., Nagler C.R. The Microbiome, Timing, and Barrier Function in the Context of Allergic Disease. Immunity. 2016;44:728–738. doi: 10.1016/j.immuni.2016.02.002. PubMed DOI PMC

Zhu T.H., Zhu T.R., Tran K.A., Sivamani R.K., Shi V.Y. Epithelial barrier dysfunctions in atopic dermatitis: a skin-gut-lung model linking microbiome alteration and immune dysregulation. Br. J. Dermatol. 2018;179:570–581. doi: 10.1111/bjd.16734. PubMed DOI

Thijs J.L., Strickland I., Bruijnzeel-Koomen C.A.F.M., Nierkens S., Giovannone B., Knol E.F., Csomor E., Sellman B.R., Mustelin T., Sleeman M.A., et al. Serum biomarker profiles suggest that atopic dermatitis is a systemic disease. J. Allergy Clin. Immunol. 2018;141:1523–1526. doi: 10.1016/j.jaci.2017.12.991. PubMed DOI

Marrs T., Sim K. Demystifying Dysbiosis: Can the Gut Microbiome Promote Oral Tolerance Over IgE-mediated Food Allergy? Curr. Pediatr. Rev. 2018;14:156–163. doi: 10.2174/1573396314666180507120424. PubMed DOI

Irvine A.D., McLean W.H.I., Leung D.Y.M. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011;365:1315–1327. doi: 10.1056/NEJMra1011040. PubMed DOI

Coufal S., Galanova N., Bajer L., Gajdarova Z., Schierova D., Jiraskova Zakostelska Z., Kostovcikova K., Jackova Z., Stehlikova Z., Drastich P., et al. Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response. Cells. 2019;8 doi: 10.3390/cells8070719. PubMed DOI PMC

Coufal S., Kverka M., Kreisinger J., Thon T., Rob F., Kolar M., Reiss Z., Schierova D., Kostovcikova K., Roubalova R., et al. Serum TGF-beta1 and CD14 Predicts Response to Anti-TNF-alpha Therapy in IBD. J. Immunol. Res. 2023;2023 doi: 10.1155/2023/1535484. PubMed DOI PMC

Kong H.H., Oh J., Deming C., Conlan S., Grice E.A., Beatson M.A., Nomicos E., Polley E.C., Komarow H.D., NISC Comparative Sequence Program, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–859. doi: 10.1101/gr.131029.111. PubMed DOI PMC

Castro A.M., Navarro S., Carvajal I., García A., Suárez M., Toyos P., Rodríguez S., Jimenez S., González D., Molinos C., et al. Evolutive Study of Dietary Aspects and Intestinal Microbiota of Pediatric Cohort with Cow's Milk Protein Allergy. Children. 2024;11 doi: 10.3390/children11091113. PubMed DOI PMC

Bunyavanich S., Shen N., Grishin A., Wood R., Burks W., Dawson P., Jones S.M., Leung D.Y.M., Sampson H., Sicherer S., Clemente J.C. Early-life gut microbiome composition and milk allergy resolution. J. Allergy Clin. Immunol. 2016;138:1122–1130. doi: 10.1016/j.jaci.2016.03.041. PubMed DOI PMC

Los-Rycharska E., Golebiewski M., Sikora M., Grzybowski T., Gorzkiewicz M., Popielarz M., Gawryjolek J., Krogulska A. A Combined Analysis of Gut and Skin Microbiota in Infants with Food Allergy and Atopic Dermatitis: A Pilot Study. Nutrients. 2021;13:1682. doi: 10.3390/nu13051682. PubMed DOI PMC

Barnett T.C., Cole J.N., Rivera-Hernandez T., Henningham A., Paton J.C., Nizet V., Walker M.J. Streptococcal toxins: role in pathogenesis and disease. Cell. Microbiol. 2015;17:1721–1741. doi: 10.1111/cmi.12531. PubMed DOI

Cogen A.L., Yamasaki K., Sanchez K.M., Dorschner R.A., Lai Y., MacLeod D.T., Torpey J.W., Otto M., Nizet V., Kim J.E., Gallo R.L. Selective Antimicrobial Action Is Provided by Phenol-Soluble Modulins Derived from Staphylococcus epidermidis, a Normal Resident of the Skin. J. Invest. Dermatol. 2010;130:192–200. doi: 10.1038/jid.2009.243. PubMed DOI PMC

Cukrowska B., Ceregra A., Maciorkowska E., Surowska B., Zegadło-Mylik M.A., Konopka E., Trojanowska I., Zakrzewska M., Bierła J.B., Zakrzewski M., et al. The Effectiveness of Probiotic Lactobacillus rhamnosus and Lactobacillus casei Strains in Children with Atopic Dermatitis and Cow’s Milk Protein Allergy: A Multicenter, Randomized, Double Blind, Placebo Controlled Study. Nutrients. 2021;13:1169. PubMed PMC

Moriki D., León E.D., García-Gamero G., Jiménez-Hernández N., Artacho A., Pons X., Koumpagioti D., Dinopoulos A., Papaevangelou V., Priftis K.N., et al. Specific Gut Microbiome Signatures in Children with Cow's Milk Allergy. Nutrients. 2024;16:2752. doi: 10.3390/nu16162752. PubMed DOI PMC

Reiss Z., Rob F., Kolar M., Schierova D., Kreisinger J., Jackova Z., Roubalova R., Coufal S., Mihula M., Thon T., et al. Skin microbiota signature distinguishes IBD patients and reflects skin adverse events during anti-TNF therapy. Front. Cell. Infect. Microbiol. 2022;12 doi: 10.3389/fcimb.2022.1064537. PubMed DOI PMC

Leung D.Y.M., Calatroni A., Zaramela L.S., LeBeau P.K., Dyjack N., Brar K., David G., Johnson K., Leung S., Ramirez-Gama M., et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci. Transl. Med. 2019;11 doi: 10.1126/scitranslmed.aav2685. PubMed DOI PMC

Glatthardt T., van Tilburg Bernardes E., Arrieta M.-C. The mycobiome in atopic diseases: Inducers and triggers. J. Allergy Clin. Immunol. 2023;152:1368–1375. doi: 10.1016/j.jaci.2023.10.006. PubMed DOI

van Tilburg Bernardes E., Pettersen V.K., Gutierrez M.W., Laforest-Lapointe I., Jendzjowsky N.G., Cavin J.-B., Vicentini F.A., Keenan C.M., Ramay H.R., Samara J., et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat. Commun. 2020;11:2577. doi: 10.1038/s41467-020-16431-1. PubMed DOI PMC

Hansen C.H.F., Nielsen D.S., Kverka M., Zakostelska Z., Klimesova K., Hudcovic T., Tlaskalova-Hogenova H., Hansen A.K. Patterns of early gut colonization shape future immune responses of the host. PLoS One. 2012;7 doi: 10.1371/journal.pone.0034043. PubMed DOI PMC

Chavapradit N., Angkasekwinai N. Disseminated cryptococcosis in Crohn’s disease: a case report. BMC Infect. Dis. 2018;18:620. doi: 10.1186/s12879-018-3553-3. PubMed DOI PMC

Elsegeiny W., Marr K.A., Williamson P.R. Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy. Front. Immunol. 2018;9:651. doi: 10.3389/fimmu.2018.00651. PubMed DOI PMC

Hui-Beckman J.W., Goleva E., Berdyshev E., Leung D.Y.M. Endotypes of atopic dermatitis and food allergy. J. Allergy Clin. Immunol. 2023;151:26–28. doi: 10.1016/j.jaci.2022.07.021. PubMed DOI

Lee J., Kim B., Chu H., Zhang K., Kim H., Kim J.H., Kim S.H., Pan Y., Noh J.Y., Sun Z., et al. FABP5 as a possible biomarker in atopic march: FABP5-induced Th17 polarization, both in mouse model and human samples. EBioMedicine. 2020;58 doi: 10.1016/j.ebiom.2020.102879. PubMed DOI PMC

Gao P.S., Mao X.Q., Baldini M., Roberts M.H., Adra C.N., Shirakawa T., Holt P.G., Martinez F.D., Hopkin J.M. Serum total IgE levels and CD14 on chromosome 5q31. Clin. Genet. 1999;56:164–165. doi: 10.1034/j.1399-0004.1999.560213.x. PubMed DOI

Bucková D., Hollá L.I., Schüller M., Znojil V., Vácha J. Two CD14 promoter polymorphisms and atopic phenotypes in Czech patients with IgE-mediated allergy. Allergy. 2003;58:1023–1026. doi: 10.1034/j.1398-9995.2003.00271.x. PubMed DOI

Litonjua A.A., Belanger K., Celedón J.C., Milton D.K., Bracken M.B., Kraft P., Triche E.W., Sredl D.L., Weiss S.T., Leaderer B.P., Gold D.R. Polymorphisms in the 5' region of the CD14 gene are associated with eczema in young children. J. Allergy Clin. Immunol. 2005;115:1056–1062. doi: 10.1016/j.jaci.2005.02.006. PubMed DOI

Coufal S., Kverka M., Kreisinger J., Thon T., Rob F., Kolar M., Reiss Z., Schierova D., Kostovcikova K., Roubalova R., et al. Serum TGF-β1 and CD14 Predicts Response to Anti-TNF-α Therapy in IBD. J. Immunol. Res. 2023;2023 doi: 10.1155/2023/1535484. PubMed DOI PMC

Menzies-Gow A., Ying S., Sabroe I., Stubbs V.L., Soler D., Williams T.J., Kay A.B. Eotaxin (CCL11) and Eotaxin-2 (CCL24) Induce Recruitment of Eosinophils, Basophils, Neutrophils, and Macrophages As Well As Features of Early- and Late-Phase Allergic Reactions Following Cutaneous Injection in Human Atopic and Nonatopic Volunteers1. J. Immunol. 2002;169:2712–2718. doi: 10.4049/jimmunol.169.5.2712. PubMed DOI

Bertolini T.B., Biswas M., Terhorst C., Daniell H., Herzog R.W., Piñeros A.R. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell. Immunol. 2021;359 doi: 10.1016/j.cellimm.2020.104251. PubMed DOI PMC

Wang J., Zheng S., Yang X., Huazeng B., Cheng Q. Influences of non-IgE-mediated cow's milk protein allergy-associated gut microbial dysbiosis on regulatory T cell-mediated intestinal immune tolerance and homeostasis. Microb. Pathog. 2021;158 doi: 10.1016/j.micpath.2021.105020. PubMed DOI

Arvey A., van der Veeken J., Samstein R.M., Feng Y., Stamatoyannopoulos J.A., Rudensky A.Y. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 2014;15:580–587. doi: 10.1038/ni.2868. PubMed DOI PMC

van der Veeken J., Gonzalez A.J., Cho H., Arvey A., Hemmers S., Leslie C.S., Rudensky A.Y. Memory of Inflammation in Regulatory T Cells. Cell. 2016;166:977–990. doi: 10.1016/j.cell.2016.07.006. PubMed DOI PMC

Josefowicz S.Z., Niec R.E., Kim H.Y., Treuting P., Chinen T., Zheng Y., Umetsu D.T., Rudensky A.Y. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482:395–399. doi: 10.1038/nature10772. PubMed DOI PMC

Perezabad L., López-Abente J., Alonso-Lebrero E., Seoane E., Pion M., Correa-Rocha R. The establishment of cow's milk protein allergy in infants is related with a deficit of regulatory T cells (Treg) and vitamin D. Pediatr. Res. 2017;81:722–730. doi: 10.1038/pr.2017.12. PubMed DOI

Karlsson M.R., Rugtveit J., Brandtzaeg P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J. Exp. Med. 2004;199:1679–1688. doi: 10.1084/jem.20032121. PubMed DOI PMC

Shreffler W.G., Wanich N., Moloney M., Nowak-Wegrzyn A., Sampson H.A. Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J. Allergy Clin. Immunol. 2009;123:43–52.e7. doi: 10.1016/j.jaci.2008.09.051. PubMed DOI

Smith M., Tourigny M.R., Noakes P., Thornton C.A., Tulic M.K., Prescott S.L. Children with egg allergy have evidence of reduced neonatal CD4(+)CD25(+)CD127(lo/-) regulatory T cell function. J. Allergy Clin. Immunol. 2008;121:1460–1466.e14667. doi: 10.1016/j.jaci.2008.03.025. PubMed DOI

Campbell E., Hesser L.A., Berni Canani R., Carucci L., Paparo L., Patry R.T., Nagler C.R. A Lipopolysaccharide-Enriched Cow's Milk Allergy Microbiome Promotes a TLR4-Dependent Proinflammatory Intestinal Immune Response. J. Immunol. 2024;212:702–714. doi: 10.4049/jimmunol.2300518. PubMed DOI PMC

Ohnmacht C., Park J.H., Cording S., Wing J.B., Atarashi K., Obata Y., Gaboriau-Routhiau V., Marques R., Dulauroy S., Fedoseeva M., et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science. 2015;349:989–993. doi: 10.1126/science.aac4263. PubMed DOI

Sujino T., London M., Hoytema van Konijnenburg D.P., Rendon T., Buch T., Silva H.M., Lafaille J.J., Reis B.S., Mucida D. Tissue adaptation of regulatory and intraepithelial CD4(+) T cells controls gut inflammation. Science. 2016;352:1581–1586. doi: 10.1126/science.aaf3892. PubMed DOI PMC

Weissler K.A., Rasooly M., DiMaggio T., Bolan H., Cantave D., Martino D., Neeland M.R., Tang M.L.K., Dang T.D., Allen K.J., Frischmeyer-Guerrerio P.A. Identification and analysis of peanut-specific effector T and regulatory T cells in children allergic and tolerant to peanut. J. Allergy Clin. Immunol. 2018;141:1699–1710.e7. doi: 10.1016/j.jaci.2018.01.035. PubMed DOI PMC

Uehara S., Grinberg A., Farber J.M., Love P.E. A role for CCR9 in T lymphocyte development and migration. J. Immunol. 2002;168:2811–2819. doi: 10.4049/jimmunol.168.6.2811. PubMed DOI

Vieira P.L., de Jong E.C., Wierenga E.A., Kapsenberg M.L., Kaliński P. Development of Th1-Inducing Capacity in Myeloid Dendritic Cells Requires Environmental Instruction1. J. Immunol. 2000;164:4507–4512. doi: 10.4049/jimmunol.164.9.4507. PubMed DOI

Amarnath S., Costanzo C.M., Mariotti J., Ullman J.L., Telford W.G., Kapoor V., Riley J.L., Levine B.L., June C.H., Fong T., et al. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1. PLoS Biol. 2010;8 doi: 10.1371/journal.pbio.1000302. PubMed DOI PMC

Angelina A., Martín-Cruz L., de la Rocha-Muñoz A., Lavín-Plaza B., Palomares O. C-Type Lectin Receptor Mediated Modulation of T2 Immune Responses to Allergens. Curr. Allergy Asthma Rep. 2023;23:141–151. doi: 10.1007/s11882-023-01067-0. PubMed DOI PMC

Overton N.L., Simpson A., Bowyer P., Denning D.W. Genetic susceptibility to severe asthma with fungal sensitization. Int. J. Immunogenet. 2017;44:93–106. doi: 10.1111/iji.12312. PubMed DOI

Boutin R.C.T., Sbihi H., McLaughlin R.J., Hahn A.S., Konwar K.M., Loo R.S., Dai D., Petersen C., Brinkman F.S.L., Winsor G.L., et al. Composition and Associations of the Infant Gut Fungal Microbiota with Environmental Factors and Childhood Allergic Outcomes. mBio. 2021;12 doi: 10.1128/mbio.03396-20. PubMed DOI PMC

Iliev I.D., Funari V.A., Taylor K.D., Nguyen Q., Reyes C.N., Strom S.P., Brown J., Becker C.A., Fleshner P.R., Dubinsky M., et al. Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis. Science. 2012;336:1314–1317. doi: 10.1126/science.1221789. PubMed DOI PMC

Hanifin J.M., Rajka G. Diagnostic feature of atopic dermatitis. Acta dermatovener (Stockholm) 1980;60:44–47.

Stehlikova Z., Kostovcik M., Kostovcikova K., Kverka M., Juzlova K., Rob F., Hercogova J., Bohac P., Pinto Y., Uzan A., et al. Dysbiosis of Skin Microbiota in Psoriatic Patients: Co-occurrence of Fungal and Bacterial Communities. Front. Microbiol. 2019;10:438. doi: 10.3389/fmicb.2019.00438. PubMed DOI PMC

Schierova D., Roubalova R., Kolar M., Stehlikova Z., Rob F., Jackova Z., Coufal S., Thon T., Mihula M., Modrak M., et al. Fecal Microbiome Changes and Specific Anti-Bacterial Response in Patients with IBD during Anti-TNF Therapy. Cells. 2021;10 doi: 10.3390/cells10113188. PubMed DOI PMC

Kreher C.R., Dittrich M.T., Guerkov R., Boehm B.O., Tary-Lehmann M. CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J. Immunol. Methods. 2003;278:79–93. doi: 10.1016/s0022-1759(03)00226-6. PubMed DOI

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:3. doi: 10.14806/ej.17.1.200. DOI

Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Nilsson R.H., Larsson K.H., Taylor A.F.S., Bengtsson-Palme J., Jeppesen T.S., Schigel D., Kennedy P., Picard K., Glöckner F.O., Tedersoo L., et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D264. doi: 10.1093/nar/gky1022. PubMed DOI PMC

Palarea-Albaladejo J., Martín-Fernández J.A. zCompositions — R package for multivariate imputation of left-censored data under a compositional approach. Chemometr. Intell. Lab. Syst. 2015;143:85–96. doi: 10.1016/j.chemolab.2015.02.019. DOI

Lin H., Peddada S.D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 2020;11:3514. doi: 10.1038/s41467-020-17041-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...