Skin and gut microbiota composition and immune regulatory response differentiate IgE and non-IgE cow's milk allergy patients with atopic dermatitis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41438035
PubMed Central
PMC12719065
DOI
10.1016/j.isci.2025.113943
PII: S2589-0042(25)02204-7
Knihovny.cz E-zdroje
- Klíčová slova
- Immunology, Microbiology,
- Publikační typ
- časopisecké články MeSH
Precise identification of food allergy and atopic dermatitis (AD) endotypes in infants is needed to target treatments effectively. Therefore, we investigated markers associated with changes in the microbiota and immune responses within the gut-skin axis of immunoglobulin E (IgE) and non-IgE-mediated cow's milk allergy (CMA) patients with AD. We report that the skin microbiota of patients with IgE CMA differs significantly from healthy controls (HCs) and from patients with non-IgE CMA, despite similar AD severity. Regarding the immune response to bacteria, we found a significant increase in soluble CD14 in patients with non-IgE CMA compared to patients with IgE CMA. Patients with a non-IgE CMA have more regulatory T cells in their blood that migrate into the intestine than patients with IgE CMA. These findings provide insights into the complex interplay between the damaged epithelial barrier, microbiome, and immune responses in CMA patients with AD.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Paediatric Dermatology Motol University Hospital Prague Czech Republic
Zobrazit více v PubMed
Osborne N.J., Koplin J.J., Martin P.E., Gurrin L.C., Lowe A.J., Matheson M.C., Ponsonby A.L., Wake M., Tang M.L.K., Dharmage S.C., et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J. Allergy Clin. Immunol. 2011;127:668–676.e762. doi: 10.1016/j.jaci.2011.01.039. PubMed DOI
Boyce J.A., Assa'ad A., Burks A.W., Jones S.M., Sampson H.A., Wood R.A., Plaut M., Cooper S.F., Fenton M.J., Arshad S.H., et al. Guidelines for the Diagnosis and Management of Food Allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. J. Allergy Clin. Immunol. 2010;126:1105–1118. doi: 10.1016/j.jaci.2010.10.008. PubMed DOI PMC
Flom J.D., Sicherer S.H. Epidemiology of Cow's Milk Allergy. Nutrients. 2019;11 doi: 10.3390/nu11051051. PubMed DOI PMC
Cianferoni A., Spergel J.M. Food allergy: review, classification and diagnosis. Allergol. Int. 2009;58:457–466. doi: 10.2332/allergolint.09-RAI-0138. PubMed DOI
Cianferoni A., Muraro A. Food-induced anaphylaxis. Immunol. Allergy Clin. North Am. 2012;32:165–195. doi: 10.1016/j.iac.2011.10.002. PubMed DOI PMC
Dellon E.S., Gonsalves N., Hirano I., Furuta G.T., Liacouras C.A., Katzka D.A., American College of Gastroenterology ACG clinical guideline: Evidenced based approach to the diagnosis and management of esophageal eosinophilia and eosinophilic esophagitis (EoE) Am. J. Gastroenterol. 2013;108:679–693. doi: 10.1038/ajg.2013.71. [quiz: 693] PubMed DOI
Tsakok T., Marrs T., Mohsin M., Baron S., du Toit G., Till S., Flohr C. Does atopic dermatitis cause food allergy? A systematic review. J. Allergy Clin. Immunol. 2016;137:1071–1078. doi: 10.1016/j.jaci.2015.10.049. PubMed DOI
Christensen M.O., Barakji Y.A., Loft N., Khatib C.M., Egeberg A., Thomsen S.F., Silverberg J.I., Flohr C., Maul J.T., Schmid-Grendelmeier P., et al. Prevalence of and association between atopic dermatitis and food sensitivity, food allergy and challenge-proven food allergy: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2023;37:984–1003. doi: 10.1111/jdv.18919. PubMed DOI
Fyhrquist N., Yang Y., Karisola P., Alenius H. Endotypes of atopic dermatitis. J. Allergy Clin. Immunol. 2025;156:24–40.e4. doi: 10.1016/j.jaci.2025.02.029. PubMed DOI
Facheris P., Jeffery J., Del Duca E., Guttman-Yassky E. The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell. Mol. Immunol. 2023;20:448–474. doi: 10.1038/s41423-023-00992-4. PubMed DOI PMC
Tokura Y., Hayano S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol. Int. 2022;71:14–24. doi: 10.1016/j.alit.2021.07.003. PubMed DOI
Peters R.L., Krawiec M., Koplin J.J., Santos A.F. Update on food allergy. Pediatr. Allergy Immunol. 2021;32:647–657. doi: 10.1111/pai.13443. PubMed DOI PMC
Lozano-Ojalvo D., Berin C., Tordesillas L. Immune Basis of Allergic Reactions to Food. J Investig. Allergol. Clin. Immunol. 2019;29:1–14. doi: 10.18176/jiaci.0355. PubMed DOI
Brough H.A., Nadeau K.C., Sindher S.B., Alkotob S.S., Chan S., Bahnson H.T., Leung D.Y.M., Lack G. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy. 2020;75:2185–2205. doi: 10.1111/all.14304. PubMed DOI PMC
Davis K.L., Claudio-Etienne E., Frischmeyer-Guerrerio P.A. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol. 2024;17:1128–1140. doi: 10.1016/j.mucimm.2024.06.005. PubMed DOI PMC
Harris-Tryon T.A., Grice E.A. Microbiota and maintenance of skin barrier function. Science. 2022;376:940–945. doi: 10.1126/science.abo0693. PubMed DOI
Baviera G., Leoni M.C., Capra L., Cipriani F., Longo G., Maiello N., Ricci G., Galli E. Microbiota in healthy skin and in atopic eczema. BioMed Res. Int. 2014;2014 doi: 10.1155/2014/436921. PubMed DOI PMC
Kennedy E.A., Connolly J., Hourihane J.O., Fallon P.G., McLean W.H.I., Murray D., Jo J.H., Segre J.A., Kong H.H., Irvine A.D. Skin microbiome before development of atopic dermatitis: Early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J. Allergy Clin. Immunol. 2017;139:166–172. doi: 10.1016/j.jaci.2016.07.029. PubMed DOI PMC
Nakamura Y., Oscherwitz J., Cease K.B., Chan S.M., Muñoz-Planillo R., Hasegawa M., Villaruz A.E., Cheung G.Y.C., McGavin M.J., Travers J.B., et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503:397–401. doi: 10.1038/nature12655. PubMed DOI PMC
Galli S.J., Tsai M. IgE and mast cells in allergic disease. Nat. Med. 2012;18:693–704. doi: 10.1038/nm.2755. PubMed DOI PMC
Liu F.T., Goodarzi H., Chen H.Y. IgE, mast cells, and eosinophils in atopic dermatitis. Clin. Rev. Allergy Immunol. 2011;41:298–310. doi: 10.1007/s12016-011-8252-4. PubMed DOI
Azad M.B., Konya T., Guttman D.S., Field C.J., Sears M.R., HayGlass K.T., Mandhane P.J., Turvey S.E., Subbarao P., Becker A.B., et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clin. Exp. Allergy. 2015;45:632–643. doi: 10.1111/cea.12487. PubMed DOI
Simonyte Sjodin K., Hammarstrom M.L., Ryden P., Sjodin A., Hernell O., Engstrand L., West C.E. Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age. Allergy. 2019;74:176–185. doi: 10.1111/all.13485. PubMed DOI
Bjorksten B., Sepp E., Julge K., Voor T., Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 2001;108:516–520. doi: 10.1067/mai.2001.118130. PubMed DOI
Wesemann D.R., Nagler C.R. The Microbiome, Timing, and Barrier Function in the Context of Allergic Disease. Immunity. 2016;44:728–738. doi: 10.1016/j.immuni.2016.02.002. PubMed DOI PMC
Zhu T.H., Zhu T.R., Tran K.A., Sivamani R.K., Shi V.Y. Epithelial barrier dysfunctions in atopic dermatitis: a skin-gut-lung model linking microbiome alteration and immune dysregulation. Br. J. Dermatol. 2018;179:570–581. doi: 10.1111/bjd.16734. PubMed DOI
Thijs J.L., Strickland I., Bruijnzeel-Koomen C.A.F.M., Nierkens S., Giovannone B., Knol E.F., Csomor E., Sellman B.R., Mustelin T., Sleeman M.A., et al. Serum biomarker profiles suggest that atopic dermatitis is a systemic disease. J. Allergy Clin. Immunol. 2018;141:1523–1526. doi: 10.1016/j.jaci.2017.12.991. PubMed DOI
Marrs T., Sim K. Demystifying Dysbiosis: Can the Gut Microbiome Promote Oral Tolerance Over IgE-mediated Food Allergy? Curr. Pediatr. Rev. 2018;14:156–163. doi: 10.2174/1573396314666180507120424. PubMed DOI
Irvine A.D., McLean W.H.I., Leung D.Y.M. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011;365:1315–1327. doi: 10.1056/NEJMra1011040. PubMed DOI
Coufal S., Galanova N., Bajer L., Gajdarova Z., Schierova D., Jiraskova Zakostelska Z., Kostovcikova K., Jackova Z., Stehlikova Z., Drastich P., et al. Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response. Cells. 2019;8 doi: 10.3390/cells8070719. PubMed DOI PMC
Coufal S., Kverka M., Kreisinger J., Thon T., Rob F., Kolar M., Reiss Z., Schierova D., Kostovcikova K., Roubalova R., et al. Serum TGF-beta1 and CD14 Predicts Response to Anti-TNF-alpha Therapy in IBD. J. Immunol. Res. 2023;2023 doi: 10.1155/2023/1535484. PubMed DOI PMC
Kong H.H., Oh J., Deming C., Conlan S., Grice E.A., Beatson M.A., Nomicos E., Polley E.C., Komarow H.D., NISC Comparative Sequence Program, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–859. doi: 10.1101/gr.131029.111. PubMed DOI PMC
Castro A.M., Navarro S., Carvajal I., García A., Suárez M., Toyos P., Rodríguez S., Jimenez S., González D., Molinos C., et al. Evolutive Study of Dietary Aspects and Intestinal Microbiota of Pediatric Cohort with Cow's Milk Protein Allergy. Children. 2024;11 doi: 10.3390/children11091113. PubMed DOI PMC
Bunyavanich S., Shen N., Grishin A., Wood R., Burks W., Dawson P., Jones S.M., Leung D.Y.M., Sampson H., Sicherer S., Clemente J.C. Early-life gut microbiome composition and milk allergy resolution. J. Allergy Clin. Immunol. 2016;138:1122–1130. doi: 10.1016/j.jaci.2016.03.041. PubMed DOI PMC
Los-Rycharska E., Golebiewski M., Sikora M., Grzybowski T., Gorzkiewicz M., Popielarz M., Gawryjolek J., Krogulska A. A Combined Analysis of Gut and Skin Microbiota in Infants with Food Allergy and Atopic Dermatitis: A Pilot Study. Nutrients. 2021;13:1682. doi: 10.3390/nu13051682. PubMed DOI PMC
Barnett T.C., Cole J.N., Rivera-Hernandez T., Henningham A., Paton J.C., Nizet V., Walker M.J. Streptococcal toxins: role in pathogenesis and disease. Cell. Microbiol. 2015;17:1721–1741. doi: 10.1111/cmi.12531. PubMed DOI
Cogen A.L., Yamasaki K., Sanchez K.M., Dorschner R.A., Lai Y., MacLeod D.T., Torpey J.W., Otto M., Nizet V., Kim J.E., Gallo R.L. Selective Antimicrobial Action Is Provided by Phenol-Soluble Modulins Derived from Staphylococcus epidermidis, a Normal Resident of the Skin. J. Invest. Dermatol. 2010;130:192–200. doi: 10.1038/jid.2009.243. PubMed DOI PMC
Cukrowska B., Ceregra A., Maciorkowska E., Surowska B., Zegadło-Mylik M.A., Konopka E., Trojanowska I., Zakrzewska M., Bierła J.B., Zakrzewski M., et al. The Effectiveness of Probiotic Lactobacillus rhamnosus and Lactobacillus casei Strains in Children with Atopic Dermatitis and Cow’s Milk Protein Allergy: A Multicenter, Randomized, Double Blind, Placebo Controlled Study. Nutrients. 2021;13:1169. PubMed PMC
Moriki D., León E.D., García-Gamero G., Jiménez-Hernández N., Artacho A., Pons X., Koumpagioti D., Dinopoulos A., Papaevangelou V., Priftis K.N., et al. Specific Gut Microbiome Signatures in Children with Cow's Milk Allergy. Nutrients. 2024;16:2752. doi: 10.3390/nu16162752. PubMed DOI PMC
Reiss Z., Rob F., Kolar M., Schierova D., Kreisinger J., Jackova Z., Roubalova R., Coufal S., Mihula M., Thon T., et al. Skin microbiota signature distinguishes IBD patients and reflects skin adverse events during anti-TNF therapy. Front. Cell. Infect. Microbiol. 2022;12 doi: 10.3389/fcimb.2022.1064537. PubMed DOI PMC
Leung D.Y.M., Calatroni A., Zaramela L.S., LeBeau P.K., Dyjack N., Brar K., David G., Johnson K., Leung S., Ramirez-Gama M., et al. The nonlesional skin surface distinguishes atopic dermatitis with food allergy as a unique endotype. Sci. Transl. Med. 2019;11 doi: 10.1126/scitranslmed.aav2685. PubMed DOI PMC
Glatthardt T., van Tilburg Bernardes E., Arrieta M.-C. The mycobiome in atopic diseases: Inducers and triggers. J. Allergy Clin. Immunol. 2023;152:1368–1375. doi: 10.1016/j.jaci.2023.10.006. PubMed DOI
van Tilburg Bernardes E., Pettersen V.K., Gutierrez M.W., Laforest-Lapointe I., Jendzjowsky N.G., Cavin J.-B., Vicentini F.A., Keenan C.M., Ramay H.R., Samara J., et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat. Commun. 2020;11:2577. doi: 10.1038/s41467-020-16431-1. PubMed DOI PMC
Hansen C.H.F., Nielsen D.S., Kverka M., Zakostelska Z., Klimesova K., Hudcovic T., Tlaskalova-Hogenova H., Hansen A.K. Patterns of early gut colonization shape future immune responses of the host. PLoS One. 2012;7 doi: 10.1371/journal.pone.0034043. PubMed DOI PMC
Chavapradit N., Angkasekwinai N. Disseminated cryptococcosis in Crohn’s disease: a case report. BMC Infect. Dis. 2018;18:620. doi: 10.1186/s12879-018-3553-3. PubMed DOI PMC
Elsegeiny W., Marr K.A., Williamson P.R. Immunology of Cryptococcal Infections: Developing a Rational Approach to Patient Therapy. Front. Immunol. 2018;9:651. doi: 10.3389/fimmu.2018.00651. PubMed DOI PMC
Hui-Beckman J.W., Goleva E., Berdyshev E., Leung D.Y.M. Endotypes of atopic dermatitis and food allergy. J. Allergy Clin. Immunol. 2023;151:26–28. doi: 10.1016/j.jaci.2022.07.021. PubMed DOI
Lee J., Kim B., Chu H., Zhang K., Kim H., Kim J.H., Kim S.H., Pan Y., Noh J.Y., Sun Z., et al. FABP5 as a possible biomarker in atopic march: FABP5-induced Th17 polarization, both in mouse model and human samples. EBioMedicine. 2020;58 doi: 10.1016/j.ebiom.2020.102879. PubMed DOI PMC
Gao P.S., Mao X.Q., Baldini M., Roberts M.H., Adra C.N., Shirakawa T., Holt P.G., Martinez F.D., Hopkin J.M. Serum total IgE levels and CD14 on chromosome 5q31. Clin. Genet. 1999;56:164–165. doi: 10.1034/j.1399-0004.1999.560213.x. PubMed DOI
Bucková D., Hollá L.I., Schüller M., Znojil V., Vácha J. Two CD14 promoter polymorphisms and atopic phenotypes in Czech patients with IgE-mediated allergy. Allergy. 2003;58:1023–1026. doi: 10.1034/j.1398-9995.2003.00271.x. PubMed DOI
Litonjua A.A., Belanger K., Celedón J.C., Milton D.K., Bracken M.B., Kraft P., Triche E.W., Sredl D.L., Weiss S.T., Leaderer B.P., Gold D.R. Polymorphisms in the 5' region of the CD14 gene are associated with eczema in young children. J. Allergy Clin. Immunol. 2005;115:1056–1062. doi: 10.1016/j.jaci.2005.02.006. PubMed DOI
Coufal S., Kverka M., Kreisinger J., Thon T., Rob F., Kolar M., Reiss Z., Schierova D., Kostovcikova K., Roubalova R., et al. Serum TGF-β1 and CD14 Predicts Response to Anti-TNF-α Therapy in IBD. J. Immunol. Res. 2023;2023 doi: 10.1155/2023/1535484. PubMed DOI PMC
Menzies-Gow A., Ying S., Sabroe I., Stubbs V.L., Soler D., Williams T.J., Kay A.B. Eotaxin (CCL11) and Eotaxin-2 (CCL24) Induce Recruitment of Eosinophils, Basophils, Neutrophils, and Macrophages As Well As Features of Early- and Late-Phase Allergic Reactions Following Cutaneous Injection in Human Atopic and Nonatopic Volunteers1. J. Immunol. 2002;169:2712–2718. doi: 10.4049/jimmunol.169.5.2712. PubMed DOI
Bertolini T.B., Biswas M., Terhorst C., Daniell H., Herzog R.W., Piñeros A.R. Role of orally induced regulatory T cells in immunotherapy and tolerance. Cell. Immunol. 2021;359 doi: 10.1016/j.cellimm.2020.104251. PubMed DOI PMC
Wang J., Zheng S., Yang X., Huazeng B., Cheng Q. Influences of non-IgE-mediated cow's milk protein allergy-associated gut microbial dysbiosis on regulatory T cell-mediated intestinal immune tolerance and homeostasis. Microb. Pathog. 2021;158 doi: 10.1016/j.micpath.2021.105020. PubMed DOI
Arvey A., van der Veeken J., Samstein R.M., Feng Y., Stamatoyannopoulos J.A., Rudensky A.Y. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 2014;15:580–587. doi: 10.1038/ni.2868. PubMed DOI PMC
van der Veeken J., Gonzalez A.J., Cho H., Arvey A., Hemmers S., Leslie C.S., Rudensky A.Y. Memory of Inflammation in Regulatory T Cells. Cell. 2016;166:977–990. doi: 10.1016/j.cell.2016.07.006. PubMed DOI PMC
Josefowicz S.Z., Niec R.E., Kim H.Y., Treuting P., Chinen T., Zheng Y., Umetsu D.T., Rudensky A.Y. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482:395–399. doi: 10.1038/nature10772. PubMed DOI PMC
Perezabad L., López-Abente J., Alonso-Lebrero E., Seoane E., Pion M., Correa-Rocha R. The establishment of cow's milk protein allergy in infants is related with a deficit of regulatory T cells (Treg) and vitamin D. Pediatr. Res. 2017;81:722–730. doi: 10.1038/pr.2017.12. PubMed DOI
Karlsson M.R., Rugtveit J., Brandtzaeg P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J. Exp. Med. 2004;199:1679–1688. doi: 10.1084/jem.20032121. PubMed DOI PMC
Shreffler W.G., Wanich N., Moloney M., Nowak-Wegrzyn A., Sampson H.A. Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J. Allergy Clin. Immunol. 2009;123:43–52.e7. doi: 10.1016/j.jaci.2008.09.051. PubMed DOI
Smith M., Tourigny M.R., Noakes P., Thornton C.A., Tulic M.K., Prescott S.L. Children with egg allergy have evidence of reduced neonatal CD4(+)CD25(+)CD127(lo/-) regulatory T cell function. J. Allergy Clin. Immunol. 2008;121:1460–1466.e14667. doi: 10.1016/j.jaci.2008.03.025. PubMed DOI
Campbell E., Hesser L.A., Berni Canani R., Carucci L., Paparo L., Patry R.T., Nagler C.R. A Lipopolysaccharide-Enriched Cow's Milk Allergy Microbiome Promotes a TLR4-Dependent Proinflammatory Intestinal Immune Response. J. Immunol. 2024;212:702–714. doi: 10.4049/jimmunol.2300518. PubMed DOI PMC
Ohnmacht C., Park J.H., Cording S., Wing J.B., Atarashi K., Obata Y., Gaboriau-Routhiau V., Marques R., Dulauroy S., Fedoseeva M., et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science. 2015;349:989–993. doi: 10.1126/science.aac4263. PubMed DOI
Sujino T., London M., Hoytema van Konijnenburg D.P., Rendon T., Buch T., Silva H.M., Lafaille J.J., Reis B.S., Mucida D. Tissue adaptation of regulatory and intraepithelial CD4(+) T cells controls gut inflammation. Science. 2016;352:1581–1586. doi: 10.1126/science.aaf3892. PubMed DOI PMC
Weissler K.A., Rasooly M., DiMaggio T., Bolan H., Cantave D., Martino D., Neeland M.R., Tang M.L.K., Dang T.D., Allen K.J., Frischmeyer-Guerrerio P.A. Identification and analysis of peanut-specific effector T and regulatory T cells in children allergic and tolerant to peanut. J. Allergy Clin. Immunol. 2018;141:1699–1710.e7. doi: 10.1016/j.jaci.2018.01.035. PubMed DOI PMC
Uehara S., Grinberg A., Farber J.M., Love P.E. A role for CCR9 in T lymphocyte development and migration. J. Immunol. 2002;168:2811–2819. doi: 10.4049/jimmunol.168.6.2811. PubMed DOI
Vieira P.L., de Jong E.C., Wierenga E.A., Kapsenberg M.L., Kaliński P. Development of Th1-Inducing Capacity in Myeloid Dendritic Cells Requires Environmental Instruction1. J. Immunol. 2000;164:4507–4512. doi: 10.4049/jimmunol.164.9.4507. PubMed DOI
Amarnath S., Costanzo C.M., Mariotti J., Ullman J.L., Telford W.G., Kapoor V., Riley J.L., Levine B.L., June C.H., Fong T., et al. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1. PLoS Biol. 2010;8 doi: 10.1371/journal.pbio.1000302. PubMed DOI PMC
Angelina A., Martín-Cruz L., de la Rocha-Muñoz A., Lavín-Plaza B., Palomares O. C-Type Lectin Receptor Mediated Modulation of T2 Immune Responses to Allergens. Curr. Allergy Asthma Rep. 2023;23:141–151. doi: 10.1007/s11882-023-01067-0. PubMed DOI PMC
Overton N.L., Simpson A., Bowyer P., Denning D.W. Genetic susceptibility to severe asthma with fungal sensitization. Int. J. Immunogenet. 2017;44:93–106. doi: 10.1111/iji.12312. PubMed DOI
Boutin R.C.T., Sbihi H., McLaughlin R.J., Hahn A.S., Konwar K.M., Loo R.S., Dai D., Petersen C., Brinkman F.S.L., Winsor G.L., et al. Composition and Associations of the Infant Gut Fungal Microbiota with Environmental Factors and Childhood Allergic Outcomes. mBio. 2021;12 doi: 10.1128/mbio.03396-20. PubMed DOI PMC
Iliev I.D., Funari V.A., Taylor K.D., Nguyen Q., Reyes C.N., Strom S.P., Brown J., Becker C.A., Fleshner P.R., Dubinsky M., et al. Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis. Science. 2012;336:1314–1317. doi: 10.1126/science.1221789. PubMed DOI PMC
Hanifin J.M., Rajka G. Diagnostic feature of atopic dermatitis. Acta dermatovener (Stockholm) 1980;60:44–47.
Stehlikova Z., Kostovcik M., Kostovcikova K., Kverka M., Juzlova K., Rob F., Hercogova J., Bohac P., Pinto Y., Uzan A., et al. Dysbiosis of Skin Microbiota in Psoriatic Patients: Co-occurrence of Fungal and Bacterial Communities. Front. Microbiol. 2019;10:438. doi: 10.3389/fmicb.2019.00438. PubMed DOI PMC
Schierova D., Roubalova R., Kolar M., Stehlikova Z., Rob F., Jackova Z., Coufal S., Thon T., Mihula M., Modrak M., et al. Fecal Microbiome Changes and Specific Anti-Bacterial Response in Patients with IBD during Anti-TNF Therapy. Cells. 2021;10 doi: 10.3390/cells10113188. PubMed DOI PMC
Kreher C.R., Dittrich M.T., Guerkov R., Boehm B.O., Tary-Lehmann M. CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J. Immunol. Methods. 2003;278:79–93. doi: 10.1016/s0022-1759(03)00226-6. PubMed DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:3. doi: 10.14806/ej.17.1.200. DOI
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Nilsson R.H., Larsson K.H., Taylor A.F.S., Bengtsson-Palme J., Jeppesen T.S., Schigel D., Kennedy P., Picard K., Glöckner F.O., Tedersoo L., et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D264. doi: 10.1093/nar/gky1022. PubMed DOI PMC
Palarea-Albaladejo J., Martín-Fernández J.A. zCompositions — R package for multivariate imputation of left-censored data under a compositional approach. Chemometr. Intell. Lab. Syst. 2015;143:85–96. doi: 10.1016/j.chemolab.2015.02.019. DOI
Lin H., Peddada S.D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 2020;11:3514. doi: 10.1038/s41467-020-17041-7. PubMed DOI PMC