Structural and functional insights into calmodulin-mediated lipid binding and proteolytic cleavage of the M-PMV matrix protein
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41448436
PubMed Central
PMC12858339
DOI
10.1016/j.jbc.2025.111102
PII: S0021-9258(25)02954-0
Knihovny.cz E-zdroje
- Klíčová slova
- calmodulin, matrix protein, retrovirus, structural proteomics,
- Publikační typ
- časopisecké články MeSH
The matrix (MA) domain of the Mason-Pfizer monkey virus (M-PMV) Gag polyprotein plays a central role in retroviral assembly and trafficking, coordinating membrane association and proteolytic maturation. Unlike HIV-1, M-PMV assembles immature particles in the cytoplasm prior to plasma membrane targeting, but the molecular mechanisms governing this process remain poorly understood. Here, we identify calmodulin (CaM) as a calcium-dependent modulator of MA structural dynamics. Using a combination of biophysical and biochemical methods, we demonstrate that CaM directly interacts with myristoylated MA, promoting its oligomerization and enhancing its cleavage by the viral protease. In-depth characterization of MA-CaM complex by protein cross-linking mass spectrometry, hydrogen/deuterium exchange mass spectrometry and NMR spectroscopy reveals that the N-terminal parts of both proteins are in close proximity within the complex and that CaM binding induces increased conformational flexibility of key regions within MA, including the basic patch and C-terminal cleavage site. These dynamic changes suggest an allosteric mechanism by which CaM regulates MA function, potentially facilitating the temporal coordination of membrane targeting, the myristoyl switch and proteolytic processing. Our findings broaden the understanding of CaM as a regulatory factor in retroviral assembly and underscore the importance of conformational plasticity in viral maturation.
Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
Institute of Organic Chemistry and Biochemistry The Czech Academy of Science Prague Czech Republic
Zobrazit více v PubMed
Qu Y., Sun Y., Yang Z., Ding C. Calcium ions signaling: targets for attack and utilization by viruses. Front. Microbiol. 2022;13 PubMed PMC
Panda S., Behera S., Alam M.F., Syed G.H. Endoplasmic reticulum & mitochondrial calcium homeostasis: the interplay with viruses. Mitochondrion. 2021;58:227–242. PubMed PMC
Saimi Y., Kung C. Calmodulin as an ion channel subunit. Annu. Rev. Physiol. 2002;64:289–311. PubMed
Liu J.O. Calmodulin-dependent phosphatase, kinases, and transcriptional corepressors involved in T-cell activation. Immunol. Rev. 2009;228:184–198. PubMed PMC
Ross D.H., Cardenas H.L. Calmodulin stimulation of Ca2+-dependent ATP hydrolysis and ATP-dependent Ca2+ transport in synaptic membranes. J. Neurochem. 1983;41:161–171. PubMed
Virdi A.S., Singh S., Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci. 2015;6:809. PubMed PMC
Pardo J.M., Reddy M.P., Yang S., Maggio A., Huh G.H., Matsumoto T., et al. Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci U. S. A. 1998;95:9681–9686. PubMed PMC
Liu S., Zhao L.Y., Cheng M.Z., Sun J.F., Ji X.M., Ullah A., et al. Calmodulins and calmodulin-like proteins-mediated plant organellar calcium signaling networks under abiotic stress. Crop. J. 2024;12:1321–1332.
Yang C.F., Tsai W.C. Calmodulin: the switch button of calcium signaling. Tzu Chi Med. J. 2022;34:15–22. PubMed PMC
Bhowmick R., Banik G., Chanda S., Chattopadhyay S., Chawla-Sarkar M. Rotavirus infection induces G1 to S phase transition in MA104 cells via Ca(+)(2)/Calmodulin pathway. Virology. 2014;454-455:270–279. PubMed PMC
Han Z., Harty R.N. Influence of calcium/calmodulin on budding of Ebola VLPs: implications for the involvement of the Ras/Raf/MEK/ERK pathway. Virus Genes. 2007;35:511–520. PubMed
Li F., Zhao N., Li Z., Xu X., Wang Y., Yang X., et al. A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog. 2017;13 PubMed PMC
Tian W.J., Zhang X.Z., Wang J., Liu J.F., Li F.H., Wang X.J. Calmodulin-like 5 promotes PEDV replication by regulating late-endosome synthesis and innate immune response. Virol Sin. 2024;39:501–512. PubMed PMC
Mosialos G., Hanissian S.H., Jawahar S., Vara L., Kieff E., Chatila T.A. A Ca2+/calmodulin-dependent protein kinase, CaM kinase-Gr, expressed after transformation of primary human B lymphocytes by Epstein-Barr virus (EBV) is induced by the EBV oncogene LMP1. J Virol. 1994;68:1697–1705. PubMed PMC
Haolong C., Du N., Hongchao T., Yang Y., Wei Z., Hua Z., et al. Enterovirus 71 VP1 activates calmodulin-dependent protein kinase II and results in the rearrangement of vimentin in human astrocyte cells. PLoS One. 2013;8 PubMed PMC
Chattopadhyay S., Basak T., Nayak M.K., Bhardwaj G., Mukherjee A., Bhowmick R., et al. Identification of cellular calcium binding protein Calmodulin as a regulator of rotavirus A infection during comparative proteomic study. PLoS One. 2013;8 PubMed PMC
Lewis M.G., Chang J.Y., Olsen R.G., Fertel R.H. Identification of calmodulin activity in purified retroviruses. Biochem. Biophys. Res. Commun. 1986;141:1077–1083. PubMed
Srinivas S.K., Srinivas R.V., Anantharamaiah G.M., Compans R.W., Segrest J.P. Cytosolic domain of the human immunodeficiency virus envelope glycoproteins binds to calmodulin and inhibits calmodulin-regulated proteins. J. Biol. Chem. 1993;268:22895–22899. PubMed
Radding W., Pan Z.Q., Hunter E., Johnston P., Williams J.P., McDonald J.M. Expression of HIV-1 envelope glycoprotein alters cellular calmodulin. Biochem. Biophys. Res. Commun. 1996;218:192–197. PubMed
Yuan T., Tencza S., Mietzner T.A., Montelaro R.C., Vogel H.J. Calmodulin binding properties of peptide analogues and fragments of the calmodulin-binding domain of simian immunodeficiency virus transmembrane glycoprotein 41. Biopolymers. 2001;58:50–62. PubMed
Matsubara M., Jing T., Kawamura K., Shimojo N., Titani K., Hashimoto K., et al. Myristoyl moiety of HIV Nef is involved in regulation of the interaction with calmodulin in vivo. Protein Sci. 2005;14:494–503. PubMed PMC
Radding W., Williams J.P., McKenna M.A., Tummala R., Hunter E., Tytler E.M., et al. Calmodulin and HIV type 1: interactions with Gag and Gag products. AIDS Res Hum Retroviruses. 2000;16:1519–1525. PubMed
Tzou Y.M., Shin R., Krishna N.R. HIV-1 virus interactions with host proteins: interaction of the N-terminal domain of the HIV-1 capsid protein with Human Calmodulin. Nat. Prod. Commun. 2019;14 PubMed PMC
Chow J.Y., Jeffries C.M., Kwan A.H., Guss J.M., Trewhella J. Calmodulin disrupts the structure of the HIV-1 MA protein. J. Mol. Biol. 2010;400:702–714. PubMed PMC
Ghanam R.H., Fernandez T.F., Fledderman E.L., Saad J.S. Binding of calmodulin to the HIV-1 matrix protein triggers myristate exposure. J. Biol. Chem. 2010;285:41911–41920. PubMed PMC
Vlach J., Samal A.B., Saad J.S. Solution structure of Calmodulin bound to the binding domain of the HIV-1 matrix protein. J. Biol. Chem. 2014;289:8697–8705. PubMed PMC
Samal A.B., Ghanam R.H., Fernandez T.F., Monroe E.B., Saad J.S. NMR, biophysical, and biochemical studies reveal the minimal Calmodulin binding domain of the HIV-1 matrix protein. J. Biol. Chem. 2011;286:33533–33543. PubMed PMC
Taylor J.E.N., Chow Y.H., John J.M., Cy K.H., Ann D.P., Anthony H.A., et al. Calmodulin binds a highly extended HIV-1 MA protein that refolds upon its release. Biophysical. J. 2012;103:541–549. PubMed PMC
Ihling C.H., Piersimoni L., Kipping M., Sinz A. Cross-Linking/Mass spectrometry combined with ion mobility on a timsTOF pro instrument for structural proteomics. Anal. Chem. 2021;93:11442–11450. PubMed
Konermann L., Metwally H., Duez Q., Peters I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst. 2019;144:6157–6171. PubMed
Osterholz H., Stevens A., Abramsson M.L., Lama D., Brackmann K., Rising A., et al. Native mass spectrometry captures the conformational plasticity of proteins with low-complexity domains. JACS Au. 2025;5:281–290. PubMed PMC
Castoralova M., Sys J., Prchal J., Pavlu A., Prokopova L., Briki Z., et al. A myristoyl switch at the plasma membrane triggers cleavage and oligomerization of Mason-Pfizer monkey virus matrix protein. Elife. 2024;13 PubMed PMC
Doktorova M., Heberle F.A., Kingston R.L., Khelashvili G., Cuendet M.A., Wen Y., et al. Cholesterol promotes protein binding by affecting membrane electrostatics and solvation properties. Biophys. J. 2017;113:2004–2015. PubMed PMC
Kalkhof S., Sinz A. Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters. Anal. Bioanal. Chem. 2008;392:305–312. PubMed
Prchal J., Srb P., Hunter E., Ruml T., Hrabal R. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. J. Mol. Biol. 2012;423:427–438. PubMed PMC
Labat-de-Hoz L., Comas L., Rubio-Ramos A., Casares-Arias J., Fernandez-Martin L., Pantoja-Uceda D., et al. Structure and function of the N-terminal extension of the formin INF2. Cell. Mol. Life. Sci. 2022;79:571. PubMed PMC
Proksova P.G., Lipov J., Zelenka J., Hunter E., Langerova H., Rumlova M., et al. Mason-Pfizer monkey virus Envelope Glycoprotein cycling and its vesicular Co-Transport with immature particles. Viruses. 2018;10 PubMed PMC
Ono A., Ablan S.D., Lockett S.J., Nagashima K., Freed E.O. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc. Natl. Acad. Sci. U. S. A. 2004;101:14889–14894. PubMed PMC
Kroupa T., Langerova H., Dolezal M., Prchal J., Spiwok V., Hunter E., et al. Membrane interactions of the mason-pfizer monkey virus matrix protein and its budding deficient mutants. J. Mol. Biol. 2016;428:4708–4722. PubMed
Tang C., Loeliger E., Luncsford P., Kinde I., Beckett D., Summers M.F. Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc. Natl. Acad. Sci. U. S. A. 2004;101:517–522. PubMed PMC
Fledderman E.L., Fujii K., Ghanam R.H., Waki K., Prevelige P.E., Freed E.O., et al. Myristate exposure in the human immunodeficiency virus type 1 matrix protein is modulated by pH. Biochemistry. 2010;49:9551–9562. PubMed PMC
Alfadhli A., Barklis R.L., Barklis E. HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology. 2009;387:466–472. PubMed PMC
Srb P., Vlach J., Prchal J., Grocky M., Ruml T., Lang J., et al. Oligomerization of a retroviral matrix protein is facilitated by backbone flexibility on nanosecond time scale. J. Phys. Chem. B. 2011;115:2634–2644. PubMed PMC
Vlach J., Srb P., Prchal J., Grocky M., Lang J., Ruml T., et al. Nonmyristoylated matrix protein from the Mason-Pfizer monkey virus forms oligomers. J. Mol. Biol. 2009;390:967–980. PubMed
Johnson C.K., Harms G.S. Tracking and localization of calmodulin in live cells. Biochim. Biophys. Acta. 2016;1863:2017–2026. PubMed
Kishor C., Spillings B.L., Luhur J., Lutomski C.A., Lin C.H., McKinstry W.J., et al. Calcium contributes to polarized targeting of HIV assembly machinery by regulating complex stability. JACS Au. 2022;2:522–530. PubMed PMC
Contreras X., Bennasser Y., Chazal N., Moreau M., Leclerc C., Tkaczuk J., et al. Human immunodeficiency virus type 1 Tat protein induces an intracellular calcium increase in human monocytes that requires DHP receptors: involvement in TNF-alpha production. Virology. 2005;332:316–328. PubMed
Martoglio B., Graf R., Dobberstein B. Signal peptide fragments of preprolactin and HIV-1 p-gp160 interact with calmodulin. EMBO J. 1997;16:6636–6645. PubMed PMC
Dostalkova A., Krizova I., Junkova P., Rackova J., Kapisheva M., Novotny R., et al. Unveiling the DHX15-G-patch interplay in retroviral RNA packaging. Proc. Natl. Acad. Sci. U. S. A. 2024;121 PubMed PMC
Bellacosa A., Testa J.R., Staal S.P., Tsichlis P.N. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science. 1991;254:274–277. PubMed
Ahmed N.N., Franke T.F., Bellacosa A., Datta K., Gonzalez-Portal M.E., Taguchi T., et al. The proteins encoded by c-akt and v-akt differ in post-translational modification, subcellular localization and oncogenic potential. Oncogene. 1993;8:1957–1963. PubMed
Bartoli M., Monneron A., Ladant D. Interaction of calmodulin with striatin, a WD-repeat protein present in neuronal dendritic spines. J. Biol. Chem. 1998;273:22248–22253. PubMed
Arbuzova A., Murray D., McLaughlin S. MARCKS, membranes, and calmodulin: kinetics of their interaction. Biochim. Biophys. Acta. 1998;1376:369–379. PubMed
Junkova P., Prchal J., Spiwok V., Pleskot R., Kadlec J., Krasny L., et al. Molecular aspects of the interaction between Mason-Pfizer monkey virus matrix protein and artificial phospholipid membrane. Proteins. 2016;84:1717–1727. PubMed
Chin D., Means A.R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000;10:322–328. PubMed
Finn B.E., Forsen S. The evolving model of calmodulin structure, function and activation. Structure. 1995;3:7–11. PubMed
Villalobo A., Ishida H., Vogel H.J., Berchtold M.W. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. Biochim. Biophys. Acta, Mol. Cell Res. 2018;1865:507–521. PubMed
Prchal J., Sys J., Junkova P., Lipov J., Ruml T. Interaction interface of mason-pfizer monkey virus matrix and envelope proteins. J. Virol. 2020;94 PubMed PMC
Prchal J., Junkova P., Strmiskova M., Lipov J., Hynek R., Ruml T., et al. Expression and purification of myristoylated matrix protein of Mason-Pfizer monkey virus for NMR and MS measurements. Protein Expr. Purif. 2011;79:122–127. PubMed PMC
Fuzik T., Ulbrich P., Ruml T. Efficient mutagenesis independent of ligation (EMILI) J Microbiol Methods. 2014;106:67–71. PubMed
Rhyner J.A., Koller M., Durussel-Gerber I., Cox J.A., Strehler E.E. Characterization of the human calmodulin-like protein expressed in Escherichia coli. Biochemistry. 1992;31:12826–12832. PubMed
Zabransky A., Andreansky M., Hruskova-Heidingsfeldova O., Havlicek V., Hunter E., Ruml T., et al. Three active forms of aspartic proteinase from Mason-Pfizer monkey virus. Virology. 1998;245:250–256. PubMed
Iacobucci C., Gotze M., Ihling C.H., Piotrowski C., Arlt C., Schafer M., et al. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein-protein interactions. Nat. Protoc. 2018;13:2864–2889. PubMed
Kukacka Z., Rosulek M., Jelinek J., Slavata L., Kavan D., Novak P. LinX: a software tool for uncommon cross-linking chemistry. J. Proteome Res. 2021;20:2021–2027. PubMed
Perez-Riverol Y., Bai J., Bandla C., Garcia-Seisdedos D., Hewapathirana S., Kamatchinathan S., et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. PubMed PMC
Honorato R.V., Koukos P.I., Jimenez-Garcia B., Tsaregorodtsev A., Verlato M., Giachetti A., et al. Structural biology in the clouds: the WeNMR-EOSC ecosystem. Front. Mol. Biosci. 2021;8 PubMed PMC
Honorato R.V., Trellet M.E., Jimenez-Garcia B., Schaarschmidt J.J., Giulini M., Reys V., et al. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat. Protoc. 2024;19:3219–3241. PubMed
Meng E.C., Goddard T.D., Pettersen E.F., Couch G.S., Pearson Z.J., Morris J.H., et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023;32 PubMed PMC
Combe C.W., Graham M., Kolbowski L., Fischer L., Rappsilber J. xiVIEW: visualisation of crosslinking mass spectrometry data. J. Mol. Biol. 2024;436 PubMed