Transgenerational Drought and Methyl Jasmonate Memory Interactively Shape Metabolome and Physiology in Clonal Grass
Jazyk angličtina Země Dánsko Médium print
Typ dokumentu časopisecké články
Grantová podpora
171724
Grantová Agentura, Univerzita Karlova
RVO 67985939
Institute of Botany of the Czech Academy of Sciences
GAČR 22-00761S
Grantová Agentura České Republiky
PubMed
41467754
PubMed Central
PMC12752454
DOI
10.1111/ppl.70720
Knihovny.cz E-zdroje
- Klíčová slova
- MeJA memory, clonal plants, drought resilience, untargated metabolomics,
- MeSH
- acetáty * farmakologie metabolismus MeSH
- cyklopentany * farmakologie metabolismus MeSH
- Festuca * fyziologie metabolismus účinky léků MeSH
- fotosyntéza účinky léků MeSH
- fyziologický stres MeSH
- metabolom * účinky léků MeSH
- metabolomika MeSH
- období sucha * MeSH
- oxylipiny * farmakologie metabolismus MeSH
- regulátory růstu rostlin * metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty * MeSH
- cyklopentany * MeSH
- methyl jasmonate MeSH Prohlížeč
- oxylipiny * MeSH
- regulátory růstu rostlin * MeSH
As droughts become more common due to climate change, plant survival may rely not only on its immediate response but also on what it has learned from past challenges. However, we still know little about how plants integrate different types of experiences, such as recurrent drought and hormonal cues, from previous generations. In this study, we examined whether clonal offspring of a grass species, Festuca rubra, previously exposed to drought, stress hormone methyl jasmonate (MeJA), or their combination inherited biological memories that help them tolerate new drought stress. We combined untargeted LC-MS metabolomics with morpho-physiological measurements to evaluate these memory effects. We found that each type of memory changed plant metabolism and physiology, but the most notable changes occurred when both memories were present, and plants faced recurrent drought conditions again. This interaction between drought memory, MeJA memory, and current stress did not just add effects; it created entirely new metabolic responses, not seen in any single treatment. These combined memories fine-tuned water conservation, photosynthesis, and extensive metabolomic reshuffling, revealing a deeper level of drought resilience. Our results uncover a layered memory system in plants where past stresses do not act in isolation but interact to reshape future responses. This offers new insight into how plants prepare for stress and suggests practical strategies for priming drought tolerance across plant generations.
Department of Botany Faculty of Sciences Charles University Prague Czech Republic
Institute for Environmental Studies Faculty of Science Charles University Prague 2 Czech Republic
Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Ashrafi, M. , Azimi‐Moqadam M.‐R., Moradi P., MohseniFard E., Shekari F., and Kompany‐Zareh M.. 2018. “Effect of Drought Stress on Metabolite Adjustments in Drought Tolerant and Sensitive Thyme.” Plant Physiology and Biochemistry 132: 391–399. 10.1016/j.plaphy.2018.09.009. PubMed DOI
Avramova, Z. 2019. “Defence‐Related Priming and Responses to Recurring Drought: Two Manifestations of Plant Transcriptional Memory Mediated by the ABA and JA Signalling Pathways.” Plant, Cell & Environment 42, no. 3: 983–997. PubMed
Banerjee, S. , Rathore N., Semerád J., Cajthaml T., Münzbergová Z., and Thakur D.. 2025. “Soil Moisture and Its Interaction With Temperature Determine Root Metabolomes of a Himalayan Alpine Shrub.” Physiologia Plantarum 177, no. 4: e70444. 10.1111/ppl.70444. PubMed DOI PMC
Barrs, H. D. , and Weatherley P. E.. 1962. “A Re‐Examination of the Relative Turgidity Technique for Estimating Water Deficits in Leaves.” Australian Journal of Biological Sciences 15, no. 3: 413–428.
Bhatt, T. , Thakur D., and Munzbergova Z.. n.d. “Unveiling the Interactive Dynamics: Recurring Drought, Methyl Jasmonate, and Plant Performance in a Perennial Grass. Methyl Jasmonate, and Plant Performance in a Perennial Grass.”
Björkman, O. , and Demmig B.. 1987. “Photon Yield of O PubMed
Blumenthal, D. M. , Mueller K. E., Kray J. A., Ocheltree T. W., Augustine D. J., and Wilcox K. R.. 2020. “Traits Link Drought Resistance With Herbivore Defence and Plant Economics in Semi‐Arid Grasslands: The Central Roles of Phenology and Leaf Dry Matter Content.” Journal of Ecology 108, no. 6: 2336–2351.
Calderón‐Santiago, M. , Fernández‐Peralbo M. A., Priego‐Capote F., and de Luque Castro M. D.. 2016. “MSCombine: A Tool for Merging Untargeted Metabolomic Data From High‐Resolution Mass Spectrometry in the Positive and Negative Ionization Modes.” Metabolomics 12, no. 3: 43. 10.1007/s11306-016-0970-4. DOI
Chang, Y.‐N. , Zhu C., Jiang J., Zhang H., Zhu J.‐K., and Duan C.‐G.. 2020. “Epigenetic Regulation in Plant Abiotic Stress Responses.” Journal of Integrative Plant Biology 62, no. 5: 563–580. 10.1111/jipb.12901. PubMed DOI
Chungloo, D. , Tisarum R., Sotesaritkul T., et al. 2023. “Exogenous Foliar Application of Methyl Jasmonate Alleviates Water‐Deficit Stress in DOI
Crisp, P. A. , Ganguly D., Eichten S. R., Borevitz J. O., and Pogson B. J.. 2016. “Reconsidering Plant Memory: Intersections Between Stress Recovery, RNA Turnover, and Epigenetics.” Science Advances 2, no. 2: e1501340. PubMed PMC
Dias, M. C. , Pinto D. C. G. A., Figueiredo C., Santos C., and Silva A. M. S.. 2021. “Phenolic and Lipophilic Metabolite Adjustments in PubMed DOI
Fàbregas, N. , and Fernie A. R.. 2019. “The Metabolic Response to Drought.” Journal of Experimental Botany 70, no. 4: 1077–1085. 10.1093/jxb/ery437. PubMed DOI
Falcone Ferreyra, M. L. , Rius S. P., and Casati P.. 2012. “Flavonoids: Biosynthesis, Biological Functions, and Biotechnological Applications.” Frontiers in Plant Science 3: 222. PubMed PMC
Fleta‐Soriano, E. , and Munné‐Bosch S.. 2016. “Stress Memory and the Inevitable Effects of Drought: A Physiological Perspective.” Frontiers in Plant Science 7: 143. PubMed PMC
Gonzalez‐Paleo, L. , and Ravetta D. A.. 2018. “Relationship Between Photosynthetic Rate, Water Use and Leaf Structure in Desert Annual and Perennial Forbs Differing in Their Growth.” Photosynthetica 56, no. 4: 1177–1187. 10.1007/s11099-018-0810-z. DOI
Hewedy, O. A. , Elsheery N. I., Karkour A. M., et al. 2023. “Jasmonic Acid Regulates Plant Development and Orchestrates Stress Response During Tough Times.” Environmental and Experimental Botany 208: 105260.
Hoover, D. L. , Pfennigwerth A. A., and Duniway M. C.. 2021. “Drought Resistance and Resilience: The Role of Soil Moisture–Plant Interactions and Legacies in a Dryland Ecosystem.” Journal of Ecology 109, no. 9: 3280–3294.
IPCC . 2023. “Climate Change 2023: Synthesis Report.” In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Core Writing Team , Lee H., and Romero J., 35–115. IPCC. 10.59327/IPCC/AR6-9789291691647. DOI
Itam, M. , Mega R., Tadano S., et al. 2020. “Metabolic and Physiological Responses to Progressive Drought Stress in Bread Wheat.” Scientific Reports 10, no. 1: 17189. 10.1038/s41598-020-74303-6. PubMed DOI PMC
Jiao, T. , Williams C. A., De Kauwe M. G., and Medlyn B. E.. 2023. “Limited Evidence of Cumulative Effects From Recurrent Droughts in Vegetation Responses to Australia's Millennium Drought.” Journal of Geophysical Research—Biogeosciences 128, no. 5: e2022JG006818. 10.1029/2022JG006818. DOI
Kambona, C. M. , Koua P. A., Léon J., and Ballvora A.. 2023. “Stress Memory and Its Regulation in Plants Experiencing Recurrent Drought Conditions.” Theoretical and Applied Genetics 136, no. 2: 26. PubMed PMC
Kinoshita, T. , and Seki M.. 2014. “Epigenetic Memory for Stress Response and Adaptation in Plants.” Plant and Cell Physiology 55, no. 11: 1859–1863. 10.1093/pcp/pcu125. PubMed DOI
Künzi, Y. , Zeiter M., Fischer M., and Stampfli A.. 2025. “Rooting Depth and Specific Leaf Area Modify the Impact of Experimental Drought Duration on Temperate Grassland Species.” Journal of Ecology 113, no. 2: 445–458. 10.1111/1365-2745.14468. DOI
Lee, D. Y. , Park D. Y., and Park H. C.. 2024. “Exogenous Methyl Jasmonate Mediates Tolerance of Heat Stress in Korean Fir ( DOI
Li, Z.‐K. , Li H.‐L., Gong X.‐W., Wang H.‐F., and Hao G.‐Y.. 2024. “Prediction and Mapping of Leaf Water Content in PubMed DOI PMC
Liu, L. , Cao X., Zhai Z., Ma S., Tian Y., and Cheng J.. 2022. “Direct Evidence of Drought Stress Memory in Mulberry From a Physiological Perspective: Antioxidative, Osmotic and Phytohormonal Regulations.” Plant Physiology and Biochemistry 186: 76–87. PubMed
Luo, W. , Ma W., Song L., et al. 2023. “Compensatory Dynamics Drive Grassland Recovery From Drought.” Journal of Ecology 111, no. 6: 1281–1291.
Lv, P. , Sun S., Li Y., et al. 2024. “Growing‐Season Drought and Nitrogen Addition Interactively Impair Grassland Ecosystem Stability by Reducing Species Diversity, Asynchrony, and Stability.” Science of the Total Environment 912: 169122. PubMed
Matkowski, H. , and Daszkowska–Golec A.. 2025. “Wisdom Comes After Facts – An Update on Plants Priming Using Phytohormones.” Journal of Plant Physiology 305: 154414. 10.1016/j.jplph.2024.154414. PubMed DOI
Maxwell, K. , and Johnson G. N.. 2000. “Chlorophyll Fluorescence—A Practical Guide.” Journal of Experimental Botany 51, no. 345: 659–668. PubMed
Michaletti, A. , Naghavi M. R., Toorchi M., Zolla L., and Rinalducci S.. 2018. “Metabolomics and Proteomics Reveal Drought‐Stress Responses of Leaf Tissues From Spring‐Wheat.” Scientific Reports 8, no. 1: 5710. PubMed PMC
Mohamed, H. I. , and Latif H. H.. 2017. “Improvement of Drought Tolerance of Soybean Plants by Using Methyl Jasmonate.” Physiology and Molecular Biology of Plants 23, no. 3: 545–556. PubMed PMC
Möhl, P. , Vorkauf M., Kahmen A., and Hiltbrunner E.. 2023. “Recurrent Summer Drought Affects Biomass Production and Community Composition Independently of Snowmelt Manipulation in Alpine Grassland.” Journal of Ecology 111, no. 11: 2357–2375.
Motallebi, P. , Niknam V., Ebrahimzadeh H., et al. 2015. “Methyl Jasmonate Strengthens Wheat Plants Against Root and Crown Rot Pathogen Fusarium Culmorum Infection.” Journal of Plant Growth Regulation 34, no. 3: 624–636. 10.1007/s00344-015-9496-7. DOI
Mozgova, I. , Mikulski P., Pecinka A., and Farrona S.. 2019. “Epigenetic Mechanisms of Abiotic Stress Response and Memory in Plants.” In Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications: Transcriptional Regulation and Chromatin Remodelling in Plants, edited by Alvarez‐Venegas R., De‐la‐Peña C., and Casas‐Mollano J. A., 1–64. Springer International Publishing. 10.1007/978-3-030-14760-0_1. DOI
Mukarram, M. , Choudhary S., Kurjak D., Petek A., and Khan M. M. A.. 2021. “Drought: Sensing, Signalling, Effects and Tolerance in Higher Plants.” Physiologia Plantarum 172, no. 2: 1291–1300. 10.1111/ppl.13423. PubMed DOI
Muller, B. , Pantin F., Génard M., et al. 2011. “Water Deficits Uncouple Growth From Photosynthesis, Increase C Content, and Modify the Relationships Between C and Growth in Sink Organs.” Journal of Experimental Botany 62, no. 6: 1715–1729. 10.1093/jxb/erq438. PubMed DOI
Nordström, A. , Want E., Northen T., Lehtiö J., and Siuzdak G.. 2008. “Multiple Ionization Mass Spectrometry Strategy Used to Reveal the Complexity of Metabolomics.” Analytical Chemistry 80, no. 2: 421–429. 10.1021/ac701982e. PubMed DOI
Pang, Z. , Lu Y., Zhou G., et al. 2024. “MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation.” Nucleic Acids Research 52, no. W1: W398–W406. 10.1093/nar/gkae253. PubMed DOI PMC
Perez‐Harguindeguy, N. , Diaz S., Garnier E., et al. 2013. “New Handbook for Standardised Measurement of Plant Functional Traits Worldwide.” Australian Journal of Botany 61: 167–234.
Pérez‐Ramos, I. M. , Volaire F., Fattet M., Blanchard A., and Roumet C.. 2013. “Tradeoffs Between Functional Strategies for Resource‐Use and Drought‐Survival in Mediterranean Rangeland Species.” Environmental and Experimental Botany 87: 126–136.
Petrén, H. , Anaia R. A., Aragam K. S., et al. 2024. “Understanding the Chemodiversity of Plants: Quantification, Variation and Ecological Function.” Ecological Monographs 94, no. 4: e1635. 10.1002/ecm.1635. DOI
Petrén, H. , Köllner T. G., and Junker R. R.. 2023. “Quantifying Chemodiversity Considering Biochemical and Structural Properties of Compounds With the R Package Chemodiv.” New Phytologist 237, no. 6: 2478–2492. 10.1111/nph.18685. PubMed DOI
Ren, S. , Hinzman A. A., Kang E. L., Szczesniak R. D., and Lu L. J.. 2015. “Computational and Statistical Analysis of Metabolomics Data.” Metabolomics 11, no. 6: 1492–1513. 10.1007/s11306-015-0823-6. DOI
Salgado, A. L. , Glassmire A. E., Sedio B. E., et al. 2023. “Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass.” Journal of Chemical Ecology 49, no. 7: 437–450. 10.1007/s10886-023-01425-2. PubMed DOI
Samanta, S. , Seth C. S., and Roychoudhury A.. 2024. “The Molecular Paradigm of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) With Different Phytohormone Signaling Pathways During Drought Stress in Plants.” Plant Physiology and Biochemistry 206: 108259. PubMed
Schwachtje, J. , Whitcomb S. J., Firmino A. A. P., Zuther E., Hincha D. K., and Kopka J.. 2019. “Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information?” Frontiers in Plant Science 10: 106. PubMed PMC
Sharma, A. , Das N., Pandey P., and Shukla P.. 2025. “Plant‐Microbiome Responses Under Drought Stress and Their Metabolite‐Mediated Interactions Towards Enhanced Crop Resilience.” Current Plant Biology 43: 100513. 10.1016/j.cpb.2025.100513. DOI
Sharma, M. , Kumar P., Verma V., Sharma R., Bhargava B., and Irfan M.. 2022. “Understanding Plant Stress Memory Response for Abiotic Stress Resilience: Molecular Insights and Prospects.” Plant Physiology and Biochemistry 179: 10–24. 10.1016/j.plaphy.2022.03.004. PubMed DOI
Sun, D. , Lei Z., Carriquí M., et al. 2025. “Reductions in Mesophyll Conductance Under Drought Stress Are Influenced by Increases in Cell Wall Chelator‐Soluble Pectin Content and Denser Microfibril Alignment in Cotton.” Journal of Experimental Botany 76, no. 4: 1116–1130. PubMed
Szepesi, Á. , and Szőllősi R.. 2018. “Chapter 17—Mechanism of Proline Biosynthesis and Role of Proline Metabolism Enzymes Under Environmental Stress in Plants.” In Plant Metabolites and Regulation Under Environmental Stress, edited by Ahmad P., Ahanger M. A., Singh V. P., Tripathi D. K., Alam P., and Alyemeni M. N., 337–353. Academic Press. 10.1016/B978-0-12-812689-9.00017-0. DOI
Tian, H. , Bai J., An Z., et al. 2013. “Plasma Metabolome Analysis by Integrated Ionization Rapid‐Resolution Liquid Chromatography/Tandem Mass Spectrometry.” Rapid Communications in Mass Spectrometry 27, no. 18: 2071–2080. 10.1002/rcm.6666. PubMed DOI
Tsugawa, H. , Cajka T., Kind T., et al. 2015. “MS‐DIAL: Data‐Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis.” Nature Methods 12, no. 6: 523–526. 10.1038/nmeth.3393. PubMed DOI PMC
Walter, J. , Nagy L., Hein R., et al. 2011. “Do Plants Remember Drought? Hints Towards a Drought‐Memory in Grasses.” Environmental and Experimental Botany 71, no. 1: 34–40. 10.1016/j.envexpbot.2010.10.020. DOI
Wasternack, C. , and Strnad M.. 2019. “Jasmonates Are Signals in the Biosynthesis of Secondary Metabolites—Pathways, Transcription Factors and Applied Aspects—A Brief Review.” New Biotechnology 48: 1–11. PubMed
Yu, X. , Zhang W., Zhang Y., Zhang X., Lang D., and Zhang X.. 2019. “The Roles of Methyl Jasmonate to Stress in Plants.” Functional Plant Biology 46, no. 3: 197–212. 10.1071/FP18106. PubMed DOI
Zeng, G. , Gao F., Xie R., et al. 2024. “The Ameliorative Effects of Exogenous Methyl Jasmonate on Grapevines Under Drought Stress: Reactive Oxygen Species, Carbon and Nitrogen Metabolism.” Scientia Horticulturae 335: 113354. 10.1016/j.scienta.2024.113354. DOI
Zhang, J. , Yang X., Zhang X., et al. 2022. “Linking Environmental Signals to Plant Metabolism: The Combination of Field Trials and Environment Simulators.” Molecular Plant 15, no. 2: 213–215. 10.1016/j.molp.2021.12.017. PubMed DOI
Zhou, H. , Zhou G., He Q., Zhou L., Ji Y., and Zhou M.. 2020. “Environmental Explanation of Maize Specific Leaf Area Under Varying Water Stress Regimes.” Environmental and Experimental Botany 171: 103932.