Potent Competitive Inhibitors of Ecto-5'-nucleotidase (CD73) based on 6‑(Het)aryl-7-deazapurine Ribonucleoside 5'‑O‑Bisphosphonates
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41536280
PubMed Central
PMC12797170
DOI
10.1021/acsptsci.5c00707
Knihovny.cz E-zdroje
- Klíčová slova
- CD73 inhibitors, cancer immunotherapy, nucleoside bisphosphonates, nucleotides, pyrrolopyrimidines,
- Publikační typ
- časopisecké články MeSH
CD73 generates immunosuppressive adenosine in the tumor microenvironment and is a promising target for cancer immunotherapy. We have designed and systematically studied diverse 2-substituted 7-deazapurine ribonucleoside 5'-O-bisphosphonates bearing a variety of (het)-aryl groups at position 6 and discovered their highly potent and selective CD73 inhibition activity. The most active compounds (with single-digit picomolar K i) contained bicyclic (het)-aryl groups at position 6 in combination with chlorine at position 2. Further optimization of pharmacokinetic properties identified inhibitors with low clearance, long half-life, high solubility, and excellent selectivity over CD39 and NTPDase3. They effectively suppressed adenosine formation in MDA-MB-231 cells, rescued CD8+ T cell activation, and were nontoxic to human fibroblasts. Overall, their profile compares favorably with AB680, a CD73 inhibitor currently in phase I/II clinical trials.
Zobrazit více v PubMed
Noringriis I. M., Donia M., Madsen K., Schmidt H., Haslund C. A., Bastholt L., Svane I. M., Ellebaek E.. Long-Term Clinical Outcome of Patients with Metastatic Melanoma and Initial Stable Disease during Anti-PD-1 Checkpoint Inhibitor Immunotherapy with Pembrolizumab. Br. J. Cancer. 2025;133:337–345. doi: 10.1038/s41416-025-03048-8. PubMed DOI PMC
Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.-J., Rutkowski P., Lao C. D., Cowey C. L., Schadendorf D., Wagstaff J., Dummer R., Ferrucci P. F., Smylie M., Hogg D., Hill A., Márquez-Rodas I., Haanen J., Guidoboni M., Maio M., Schöffski P., Carlino M. S., Lebbé C., McArthur G., Ascierto P. A., Daniels G. A., Long G. V., Bastholt L., Rizzo J. I., Balogh A., Moshyk A., Hodi F. S., Wolchok J. D.. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019;381:1535–1546. doi: 10.1056/NEJMoa1910836. PubMed DOI
Boison D., Yegutkin G. G.. Adenosine Metabolism: Emerging Concepts for Cancer Therapy. Cancer Cell. 2019;36:582–596. doi: 10.1016/j.ccell.2019.10.007. PubMed DOI PMC
Knapp K., Zebisch M., Pippel J., El-Tayeb A., Müller C. E., Sträter N.. Crystal Structure of the Human Ecto-5′-Nucleotidase (CD73): Insights into the Regulation of Purinergic Signaling. Structure. 2012;20:2161–2173. doi: 10.1016/j.str.2012.10.001. PubMed DOI
Klemens M. R., Sherman W. R., Holmberg N. J., Ruedi J. M., Low M. G., Thompson L. F.. Characterization of Soluble vs Membrane-Bound Human Placental 5′-Nucleotidase. Biochem. Biophys. Res. Commun. 1990;172:1371–1377. doi: 10.1016/0006-291X(90)91601-N. PubMed DOI
Synnestvedt K., Furuta G. T., Comerford K. M., Louis N., Karhausen J., Eltzschig H. K., Hansen K. R., Thompson L. F., Colgan S. P.. Ecto-5′-Nucleotidase (CD73) Regulation by Hypoxia-Inducible Factor-1 Mediates Permeability Changes in Intestinal Epithelia. J. Clin. Invest. 2002;110:993–1002. doi: 10.1172/JCI15337. PubMed DOI PMC
Niemelä J., Ifergan I., Yegutkin G. G., Jalkanen S., Prat A., Airas L.. IFN-β Regulates CD73 and Adenosine Expression at the Blood–Brain Barrier. Eur. J. Immunol. 2008;38:2718–2726. doi: 10.1002/eji.200838437. PubMed DOI
Xing Y., Ren Z., Jin R., Liu L., Pei J., Yu K.. Therapeutic Efficacy and Mechanism of CD73-TGFβ Dual-Blockade in a Mouse Model of Triple-Negative Breast Cancer. Acta Pharmacol. Sin. 2022;43:2410–2418. doi: 10.1038/s41401-021-00840-z. PubMed DOI PMC
Xia C., Yin S., To K. K. W., Fu L.. CD39/CD73/A2AR Pathway and Cancer Immunotherapy. Mol. Cancer. 2023;22:44. doi: 10.1186/s12943-023-01733-x. PubMed DOI PMC
Bhattarai S., Freundlieb M., Pippel J., Meyer A., Abdelrahman A., Fiene A., Lee S.-Y., Zimmermann H., Yegutkin G. G., Sträter N., El-Tayeb A., Müller C. E.. α,β-Methylene-ADP (AOPCP) Derivatives and Analogues: Development of Potent and Selective Ecto −5′-Nucleotidase (CD73) Inhibitors. J. Med. Chem. 2015;58:6248–6263. doi: 10.1021/acs.jmedchem.5b00802. PubMed DOI
Bhattarai S., Pippel J., Meyer A., Freundlieb M., Schmies C., Abdelrahman A., Fiene A., Lee S., Zimmermann H., El-Tayeb A., Yegutkin G. G., Sträter N., Müller C. E.. X-Ray Co-Crystal Structure Guides the Way to Subnanomolar Competitive Ecto-5′-Nucleotidase (CD73) Inhibitors for Cancer Immunotherapy. Adv. Ther. 2019;2:1900075. doi: 10.1002/adtp.201900075. DOI
Bhattarai S., Pippel J., Scaletti E., Idris R., Freundlieb M., Rolshoven G., Renn C., Lee S.-Y., Abdelrahman A., Zimmermann H., El-Tayeb A., Müller C. E., Sträter N.. 2-Substituted α,β-Methylene-ADP Derivatives: Potent Competitive Ecto-5′-Nucleotidase (CD73) Inhibitors with Variable Binding Modes. J. Med. Chem. 2020;63:2941–2957. doi: 10.1021/acs.jmedchem.9b01611. PubMed DOI
Junker A., Renn C., Dobelmann C., Namasivayam V., Jain S., Losenkova K., Irjala H., Duca S., Balasubramanian R., Chakraborty S., Börgel F., Zimmermann H., Yegutkin G. G., Müller C. E., Jacobson K. A.. Structure-Activity Relationship of Purine and Pyrimidine Nucleotides as Ecto-5′-Nucleotidase (CD73) Inhibitors. J. Med. Chem. 2019;62:3677–3695. doi: 10.1021/acs.jmedchem.9b00164. PubMed DOI PMC
Ge G.-H., Wang Q.-Y., Zhang Z.-H., Zhang X., Guo S., Zhang T.-J., Meng F.-H.. Small Molecular CD73 Inhibitors: Recent Progress and Future Perspectives. Eur. J. Med. Chem. 2024;264:116028. doi: 10.1016/j.ejmech.2023.116028. PubMed DOI
Sharif E. U., Kalisiak J., Lawson K. V., Miles D. H., Newcomb E., Lindsey E. A., Rosen B. R., Debien L. P. P., Chen A., Zhao X., Young S. W., Walker N. P., Sträter N., Scaletti E. R., Jin L., Xu G., Leleti M. R., Powers J. P.. Discovery of Potent and Selective Methylenephosphonic Acid CD73 Inhibitors. J. Med. Chem. 2021;64:845–860. doi: 10.1021/acs.jmedchem.0c01835. PubMed DOI
Lawson K. V., Kalisiak J., Lindsey E. A., Newcomb E. T., Leleti M. R., Debien L., Rosen B. R., Miles D. H., Sharif E. U., Jeffrey J. L., Tan J. B. L., Chen A., Zhao S., Xu G., Fu L., Jin L., Park T. W., Berry W., Moschütz S., Scaletti E., Sträter N., Walker N. P., Young S. W., Walters M. J., Schindler U., Powers J. P.. Discovery of AB680: A Potent and Selective Inhibitor of CD73. J. Med. Chem. 2020;63:11448–11468. doi: 10.1021/acs.jmedchem.0c00525. PubMed DOI
Debien, L. P. P. ; Jaen, J. C. ; Kalisiak, J. ; Lawson, K. V. ; Leleti, M. R. ; Lindsey, E. A. ; Miles, D. H. ; Newcomb, E. ; Powers, J. P. ; Rosen, B. R. ; Sharif, E. U. . Modulators of 5 ’ -Nucleotidase, ecto and the use of thereof. U.S. Patent US10981944B2, 2021.
Šímová M., Ormsby T., Šinkevičiu̅tė U., Sirotová Veselovská L., Čermáková K., Hadzima M., Bartoň L., Staňurová J., Kramná A., Šácha P., Tichý M., Hocek M., Konvalinka J., Blazkova K.. Identification of 6-Aryl-7-Deazapurine Ribonucleoside Phosphonates as Inhibitors of Ecto-5′-Nucleotidase (CD73) ACS Pharmacol. Transl. Sci. 2025;8:2575–2585. doi: 10.1021/acsptsci.5c00180. PubMed DOI PMC
Malnuit V., Slavětínská L. P., Nauš P., Džubák P., Hajdúch M., Stolaříková J., Snášel J., Pichová I., Hocek M.. 2-Substituted 6-(Het)Aryl-7-deazapurine Ribonucleosides: Synthesis, Inhibition of Adenosine Kinases, and Antimycobacterial Activity. ChemMedChem. 2015;10:1079–1093. doi: 10.1002/cmdc.201500081. PubMed DOI
Kim Y. A., Sharon A., Chu C. K., Rais R. H., Al Safarjalani O. N., Naguib F. N. M., El Kouni M. H.. Structure–Activity Relationships of 7-Deaza-6-Benzylthioinosine Analogues as Ligands of Toxoplasma Gondii Adenosine Kinase. J. Med. Chem. 2008;51:3934–3945. doi: 10.1021/jm800201s. PubMed DOI
Serafinowski P., Dorland E., Balzarini J., De Clercq E.. The Synthesis and Antiviral Activity of Some New S-Adenosyl-L-Homocysteine Derivatives and Their Nucleoside Precursors. Nucleosides, Nucleotides Nucleic Acids. 1995;14:545–547. doi: 10.1080/15257779508012423. DOI
Eldrup A. B., Prhavc M., Brooks J., Bhat B., Prakash T. P., Song Q., Bera S., Bhat N., Dande P., Cook P. D., Bennett C. F., Carroll S. S., Ball R. G., Bosserman M., Burlein C., Colwell L. F., Fay J. F., Flores O. A., Getty K., LaFemina R. L., Leone J., MacCoss M., McMasters D. R., Tomassini J. E., Von Langen D., Wolanski B., Olsen D. B.. Structure–Activity Relationship of Heterobase-Modified 2‘- C -Methyl Ribonucleosides as Inhibitors of Hepatitis C Virus RNA Replication. J. Med. Chem. 2004;47:5284–5297. doi: 10.1021/jm040068f. PubMed DOI
Seela F., Soulimane T., Mersmann K., Jürgens T.. 2,4-Disubstituted Pyrrolo[2,3-d]Pyrimidine α-d- and ß-d-Ribofuranosides Related to 7-Deazaguanosine. Helv. Chim. Acta. 1990;73:1879–1887. doi: 10.1002/hlca.19900730710. DOI
Nauš P., Perlíková P., Pohl R., Hocek M.. Sugar-Modified Derivatives of Cytostatic 6-(Het)Aryl-7-Deazapurine Nucleosides: 2′-C-Methylribonucleosides, Arabinonucleosides and 2′-Deoxy-2′-Fluoroarabinonucleosides. Collect. Czech. Chem. Commun. 2011;76:957–988. doi: 10.1135/cccc2011082. DOI
Colclough N., Ruston L., Wood J. M., MacFaul P. A.. Species Differences in Drug Plasma Protein Binding. Med. Chem. Commun. 2014;5(7):963–967. doi: 10.1039/C4MD00148F. DOI
Gerber P. R., Müller K.. MAB, a Generally Applicable Molecular Force Field for Structure Modelling in Medicinal Chemistry. J. Comput.-Aided Mol. Des. 1995;9:251–268. doi: 10.1007/BF00124456. PubMed DOI
Nocentini A., Capasso C., Supuran C. T.. Small-Molecule CD73 Inhibitors for the Immunotherapy of Cancer: A Patent and Literature Review (2017–Present) Expert Opin. Ther. Pat. 2021;31:867–876. doi: 10.1080/13543776.2021.1923694. PubMed DOI
Pecina A., Fanfrlík J., Lepšík M., Řezáč J.. SQM2.20: Semiempirical Quantum-Mechanical Scoring Function Yields DFT-Quality Protein–Ligand Binding Affinity Predictions in Minutes. Nat. Commun. 2024;15:1127. doi: 10.1038/s41467-024-45431-8. PubMed DOI PMC
Lepsik, M. CD73_inhibitors_SQM; Mendeley Data: V2, 2025. 10.17632/j4rbk4gnr4.2. DOI
Fanfrlík J., Ruiz F. X., Kadlčíková A., Řezáč J., Cousido-Siah A., Mitschler A., Haldar S., Lepšík M., Kolář M. H., Majer P., Podjarny A. D., Hobza P.. The Effect of Halogen-to-Hydrogen Bond Substitution on Human Aldose Reductase Inhibition. ACS Chem. Biol. 2015;10:1637–1642. doi: 10.1021/acschembio.5b00151. PubMed DOI
Piovesan D., Tan J. B. L., Becker A., Banuelos J., Narasappa N., DiRenzo D., Zhang K., Chen A., Ginn E., Udyavar A. R., Yin F., Paprcka S. L., Purandare B., Park T. W., Kimura N., Kalisiak J., Young S. W., Powers J. P., Schindler U., Sivick K. E., Walters M. J.. Targeting CD73 with AB680 (Quemliclustat), a Novel and Potent Small-Molecule CD73 Inhibitor, Restores Immune Functionality and Facilitates Antitumor Immunity. Mol. Cancer Ther. 2022;21(6):948–959. doi: 10.1158/1535-7163.MCT-21-0802. PubMed DOI PMC
Allard B., Pommey S., Smyth M. J., Stagg J.. Targeting CD73 Enhances the Antitumor Activity of Anti-PD-1 and Anti-CTLA-4 mAbs. Clin. Cancer Res. 2013;19:5626–5635. doi: 10.1158/1078-0432.CCR-13-0545. PubMed DOI
Chen Q., Yin H., He J., Xie Y., Wang W., Xu H., Zhang L., Shi C., Yu J., Wu W., Liu L., Pu N., Lou W.. Tumor Microenvironment Responsive CD8+ T Cells and Myeloid-Derived Suppressor Cells to Trigger CD73 Inhibitor AB680-Based Synergistic Therapy for Pancreatic Cancer. Adv. Sci. 2023;10:2302498. doi: 10.1002/advs.202302498. PubMed DOI PMC
Tang T., Huang X., Lu M., Zhang G., Han X., Liang T.. Transcriptional Control of Pancreatic Cancer Immunosuppression by Metabolic Enzyme CD73 in a Tumor-Autonomous and -Autocrine Manner. Nat. Commun. 2023;14:3364. doi: 10.1038/s41467-023-38578-3. PubMed DOI PMC
RDKit: Open-source cheminformatics. https://www.rdkit.org.
Jakalian A., Jack D. B., Bayly C. I.. Fast, Efficient Generation of High-quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation. J. Comput. Chem. 2002;23:1623–1641. doi: 10.1002/jcc.10128. PubMed DOI