Decoding retinitis pigmentosa: molecular targets and therapy with focus on pre-mRNA splicing
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.01.01/00/22_008/0004575
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
41315142
PubMed Central
PMC12753617
DOI
10.1007/s00018-025-05987-0
PII: 10.1007/s00018-025-05987-0
Knihovny.cz E-zdroje
- Klíčová slova
- Models, Molecular mechanisms, Retinitis pigmentosa, Splicing, Therapeutics,
- MeSH
- antisense oligonukleotidy terapeutické užití MeSH
- genetická terapie metody MeSH
- lidé MeSH
- mutace MeSH
- prekurzory RNA * genetika metabolismus MeSH
- retina metabolismus patologie MeSH
- retinopathia pigmentosa * genetika terapie patologie metabolismus MeSH
- sestřih RNA * genetika MeSH
- sestřihové faktory genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antisense oligonukleotidy MeSH
- prekurzory RNA * MeSH
- sestřihové faktory MeSH
Retinitis pigmentosa (RP) is the most common cause of inherited blindness, with mutations in splicing factors playing a significant role in its pathogenesis. Many scientists have been puzzled by the fact that mutations in several key spliceosomal components have such a confined effect on the retina. In this review, we summarize findings gained from studies using cell culture, animal models, and retinal organoids to better understand the molecular mechanisms underlying the tissue specificity of splicing factor dysfunction to retinal degeneration. Although RP currently has no definitive cure, recent advances in gene therapy, antisense oligonucleotides, and cell transplantation are opening new therapeutic approaches to slow disease progression and preserve retinal function. We also discuss the strengths and challenges of current strategies and point to the critical improvements required for their successful clinical application.
Institute of Molecular Genetics of the Czech Academy of Sciences Videnska 1083 Prague Czech Republic
Zobrazit více v PubMed
Parmeggiani F (2011) Clinics, epidemiology and genetics of retinitis pigmentosa. Curr Genomics 12:236–237. 10.2174/138920211795860080 PubMed DOI PMC
Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40. 10.1186/1750-1172-1-40 PubMed DOI PMC
Sahel JA, Marazova K, Audo I (2015) Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med 5:1–26. 10.1101/cshperspect.a017111 PubMed DOI PMC
Ayuso C, Millan JM (2010) Retinitis pigmentosa and allied conditions today: a paradigm of translational research. Genome Med 2:34. 10.1186/gm155 PubMed DOI PMC
Fahim AT, Daiger SP, Weleber RG (1993) In: GeneReviews((R)). eds; M. P. Adam et al.
Ruzickova S, Stanek D (2017) Mutations in spliceosomal proteins and retina degeneration. RNA Biol 14:544–552. 10.1080/15476286.2016.1191735 PubMed DOI PMC
Quinodoz M et al (2025) De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa. medRxiv. 10.1101/2025.01.06.24317169 PubMed DOI PMC
Tycowski KT, Kolev NG, Conrad NK, Fok V & Steitz JA (2006) In: The RNA world (eds R.F. Gesteland, T.R. Cech, & J.F. Atkins) 327–368 (Cold Spring Harbor Laboratory Press)
Lines MA et al (2012) Haploinsufficiency of a spliceosomal GTPase encoded by PubMed DOI PMC
Wieczorek D et al (2014) Compound heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes Burn-McKeown syndrome. Am J Hum Genet 95:698–707. 10.1016/j.ajhg.2014.10.014 PubMed DOI PMC
Kurtovic-Kozaric A et al (2015) PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 29:126–136. 10.1038/leu.2014.144 PubMed DOI PMC
Lopez-Canovas JL et al (2023) PRPF8 increases the aggressiveness of hepatocellular carcinoma by regulating FAK/AKT pathway via fibronectin 1 splicing. Exp Mol Med 55:132–142. 10.1038/s12276-022-00917-7 PubMed DOI PMC
Buskin A et al (2018) Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat Commun 9:4234. 10.1038/s41467-018-06448-y PubMed DOI PMC
Malinova A, Cvackova Z, Mateju D, Horejsi Z, Abeza C, Vandermoere F, Bertrand E, Stanek D, Verheggen C (2017) Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Biol 216:1579–1596. 10.1083/jcb.201701165 PubMed DOI PMC
Cvackova Z, Mateju D, Stanek D (2014) Retinitis pigmentosa mutations of SNRNP200 enhance cryptic splice-site recognition. Hum Mutat 35:308–317. 10.1002/humu.22481 PubMed DOI
Krausova M, Stanek D (2018) SnRNP proteins in health and disease. Semin Cell Dev Biol 79:92–102. 10.1016/j.semcdb.2017.10.011 PubMed DOI
Rubio-Pena K et al (2015) Modeling of autosomal-dominant retinitis pigmentosa in PubMed DOI PMC
Kukhtar D, Rubio-Pena K, Serrat X, Ceron J (2020) Mimicking of splicing-related retinitis pigmentosa mutations in PubMed DOI
Stankovic D, Claudius AK, Schertel T, Bresser T, Uhlirova M (2020) A Drosophila model to study retinitis pigmentosa pathology associated with mutations in the core splicing factor Prp8. Dis Model Mech 13:043174. 10.1242/dmm.043174 PubMed DOI PMC
Graziotto JJ, Inglehearn CF, Pack MA, Pierce EA (2008) Decreased levels of the RNA splicing factor Prpf3 in mice and zebrafish do not cause photoreceptor degeneration. Invest Ophthalmol Vis Sci 49:3830–3838. 10.1167/iovs.07-1483 PubMed DOI
Linder B et al (2011) Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa. Hum Mol Genet 20:368–377. 10.1093/hmg/ddq473 PubMed DOI
Liu Y, Chen X, Qin B, Zhao K, Zhao Q, Staley JP, Zhao C (2015) Knocking down Snrnp200 initiates demorphogenesis of rod photoreceptors in zebrafish. J Ophthalmol 2015:816329. 10.1155/2015/816329 PubMed DOI PMC
Wang Y, Han Y, Xu P, Ding S, Li G, Jin H, Meng Y, Meng A, Jia S (2018) Prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish. J Genet Genomics 45:443–453. 10.1016/j.jgg.2018.05.008 PubMed DOI
Yin J, Brocher J, Fischer U, Winkler C (2011) Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for retinitis pigmentosa. Mol Neurodegener 6:56. 10.1186/1750-1326-6-56 PubMed DOI PMC
Huranova M, Hnilicova J, Fleischer B, Cvackova Z, Stanek D (2009) A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs. Hum Mol Genet 18:2014–2023. 10.1093/hmg/ddp125 PubMed DOI
Li J et al (2021) Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing. Nucleic Acids Res 49:2027–2043. 10.1093/nar/gkab003 PubMed DOI PMC
Ulhaq ZS, Okamoto K, Ogino Y, Tse WKF (2023) Dysregulation of spliceosomes complex induces retinitis pigmentosa-like characteristics in sf3b4-depleted zebrafish. Am J Pathol 193:1223–1233. 10.1016/j.ajpath.2023.05.008 PubMed DOI
Bernier FP et al (2012) Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Am J Hum Genet 90:925–933. 10.1016/j.ajhg.2012.04.004 PubMed DOI PMC
Bujakowska K et al (2009) Study of gene-targeted mouse models of splicing factor gene PubMed DOI
Graziotto JJ, Farkas MH, Bujakowska K, Deramaudt BM, Zhang Q, Nandrot EF, Inglehearn CF, Bhattacharya SS, Pierce EA (2011) Three gene-targeted mouse models of RNA splicing factor RP show late-onset RPE and retinal degeneration. Invest Ophthalmol Vis Sci 52:190–198. 10.1167/iovs.10-5194 PubMed DOI PMC
Farkas MH, Lew DS, Sousa ME, Bujakowska K, Chatagnon J, Bhattacharya SS, Pierce EA, Nandrot EF (2014) Mutations in pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. Am J Pathol 184:2641–2652. 10.1016/j.ajpath.2014.06.026 PubMed DOI PMC
Valdes-Sanchez L et al (2019) Retinal pigment epithelium degeneration caused by aggregation of PRPF31 and the role of HSP70 family of proteins. Mol Med 26:1. 10.1186/s10020-019-0124-z PubMed DOI PMC
Krausova M et al (2023) Retinitis pigmentosa-associated mutations in mouse Prpf8 cause misexpression of circRNAs and degeneration of cerebellar granule cells. Life Sci Alliance 6:e202201855. 10.26508/lsa.202201855 PubMed DOI PMC
Ashworth KE, Weisbrod J, Ballios BG (2024) Inherited retinal diseases and retinal organoids as preclinical cell models for inherited retinal disease research. Genes 15:705. 10.3390/genes15060705 PubMed DOI PMC
Idelson M et al (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408. 10.1016/j.stem.2009.07.002 PubMed DOI
Gozlan S et al (2023) Bankable human iPSC-derived retinal progenitors represent a valuable source of multipotent cells. Commun Biol 6:762. 10.1038/s42003-023-04956-2 PubMed DOI PMC
Zhong X et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047. 10.1038/ncomms5047 PubMed DOI PMC
Peskova L et al (2020) MiR-183/96/182 cluster is an important morphogenetic factor targeting PAX6 expression in differentiating human retinal organoids. Stem Cells 38:1557–1567. 10.1002/stem.3272 PubMed DOI
Sanjurjo-Soriano C et al (2022) Retinoic acid delays initial photoreceptor differentiation and results in a highly structured mature retinal organoid. Stem Cell Res Ther 13:478. 10.1186/s13287-022-03146-x PubMed DOI PMC
Corral-Serrano JC et al (2025) <article-title update="added">A novel recurrent ARL3 variant c.209G > A p.(Gly70Glu) causes variable non-syndromic dominant retinal dystrophy with defective lipidated protein transport in human retinal stem cell models. Hum Mol Genet 34(9):821–834. 10.1093/hmg/ddaf029 PubMed DOI PMC
Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56. 10.1038/nature09941 PubMed DOI
Nakano T et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785. 10.1016/j.stem.2012.05.009 PubMed DOI
Zhang X, Zhang D, Chen SC, Lamey T, Thompson JA, McLaren T, De Roach JN, Chen FK, McLenachan S (2018) Establishment of an induced pluripotent stem cell line from a retinitis pigmentosa patient with compound heterozygous CRB1 mutation. Stem Cell Res 31:147–151. 10.1016/j.scr.2018.08.001 PubMed DOI
Gao ML, Lei XL, Han F, He KW, Jin SQ, Zhang YY, Jin ZB (2020) Patient-specific retinal organoids recapitulate disease features of late-onset retinitis pigmentosa. Front Cell Dev Biol 8:128. 10.3389/fcell.2020.00128 PubMed DOI PMC
Lin X, Liu ZL, Zhang X, Wang W, Huang ZQ, Sun SN, Jin ZB (2024) Modeling autosomal dominant retinitis pigmentosa by using patient-specific retinal organoids with a class-3 RHO mutation. Exp Eye Res 241:109856. 10.1016/j.exer.2024.109856 PubMed DOI
Lane A et al (2020) Modeling and rescue of RP2 retinitis pigmentosa using iPSC-derived retinal organoids. Stem Cell Reports 15:67–79. 10.1016/j.stemcr.2020.05.007 PubMed DOI PMC
Guo Y et al (2019) Modeling retinitis pigmentosa: retinal organoids generated from the iPSCs of a patient with the USH2A mutation show early developmental abnormalities. Front Cell Neurosci 13:361. 10.3389/fncel.2019.00361 PubMed DOI PMC
Deng WL et al (2018) Gene correction reverses ciliopathy and photoreceptor loss in PubMed DOI PMC
Georgiou M et al (2022) Activation of autophagy reverses progressive and deleterious protein aggregation in PubMed DOI PMC
Rodrigues A et al (2022) Modeling PubMed DOI PMC
Xi Z, Vats A, Sahel JA, Chen Y, Byrne LC (2022) Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa. Nat Commun 13:7695. 10.1038/s41467-022-35361-8 PubMed DOI PMC
Atkinson R et al (2024) PRPF8-mediated dysregulation of hBrr2 helicase disrupts human spliceosome kinetics and 5 -splice-site selection causing tissue-specific defects. Nat Commun 15:3138. 10.1038/s41467-024-47253-0 PubMed DOI PMC
Kandoi S, Martinez C, Chen KX, Mehine M, Reddy LVK, Mansfield BC, Duncan JL, Lamba DA (2024) Disease modeling and pharmacological rescue of autosomal dominant retinitis pigmentosa associated with RHO copy number variation. Elife 12:RP90575. 10.7554/eLife.90575 PubMed DOI PMC
Sladen PE et al (2024) AAV-RPGR gene therapy rescues opsin mislocalisation in a human retinal organoid model of RPGR-associated X-linked retinitis pigmentosa. Int J Mol Sci 25:1839. 10.3390/ijms25031839 PubMed DOI PMC
Brydon EM, Bronstein R, Buskin A, Lako M, Pierce EA, Fernandez-Godino R (2019) AAV-mediated gene augmentation therapy restores critical functions in mutant PRPF31(+/-) iPSC-derived RPE cells. Mol Ther Methods Clin Dev 15:392–402. 10.1016/j.omtm.2019.10.014 PubMed DOI PMC
Boon N, Lu X, Andriessen CA, Orlova M, Quinn PMJ, Boon CJF, Wijnholds J (2023) Characterization and AAV-mediated CRB gene augmentation in human-derived CRB1(KO) and CRB1(KO)CRB2(+/-) retinal organoids. Mol Ther Methods Clin Dev 31:101128. 10.1016/j.omtm.2023.101128 PubMed DOI PMC
Kruczek K, Swaroop A (2020) Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies. Stem Cells 38:1206–1215. 10.1002/stem.3239 PubMed DOI PMC
Tanackovic G, Ransijn A, Thibault P, Abou Elela S, Klinck R, Berson EL, Chabot B, Rivolta C (2011) PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet 20:2116–2130. 10.1093/hmg/ddr094 PubMed DOI PMC
McLenachan S et al (2021) Determinants of disease penetrance in PRPF31-associated retinopathy. Genes 12:1542. 10.3390/genes12101542 PubMed DOI PMC
Lisbjerg K, Gronskov K, Bertelsen M, Moller LB, Kessel L (2023) Genetic modifiers of non-penetrance and RNA expression levels in PRPF31-associated retinitis pigmentosa in a danish cohort. Genes (Basel) 14:435. 10.3390/genes14020435 PubMed DOI PMC
Vithana EN, Abu-Safieh L, Pelosini L, Winchester E, Hornan D, Bird AC, Hunt DM, Bustin SA, Bhattacharya SS (2003) Expression of PRPF31 mRNA in patients with autosomal dominant retinitis pigmentosa: a molecular clue for incomplete penetrance? Invest Ophthalmol Vis Sci 44:4204–4209. 10.1167/iovs.03-0253 PubMed DOI
Venturini G, Rose AM, Shah AZ, Bhattacharya SS, Rivolta C (2012) CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet 8:e1003040. 10.1371/journal.pgen.1003040 PubMed DOI PMC
Rose AM, Shah AZ, Venturini G, Krishna A, Chakravarti A, Rivolta C, Bhattacharya SS (2016) Transcriptional regulation of PubMed DOI PMC
Maubaret CcG, Vaclavik V, Mukhopadhyay R, Waseem NH, Churchill A, Holder GE, Moore AT, Bhattacharya SS, Webster AR (2011) Autosomal dominant retinitis pigmentosa with intrafamilial variability and incomplete penetrance in two families carrying mutations in prpf8. Invest Ophthalmol Vis Sci 52:9304–9309. 10.1167/iovs.11-8372 PubMed DOI
Griffin C, Saint-Jeannet JP (2020) Spliceosomopathies: diseases and mechanisms. Dev Dyn 249:1038–1046. 10.1002/dvdy.214 PubMed DOI PMC
Santos KF, Jovin SM, Weber G, Pena V, Luhrmann R, Wahl MC (2012) Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc Natl Acad Sci USA 109:17418–17423. 10.1073/pnas.1208098109 PubMed DOI PMC
Mozaffari-Jovin S, Wandersleben T, Santos KF, Will CL, Luhrmann R, Wahl MC (2014) Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biol 11:298–312. 10.4161/rna.28353 PubMed DOI PMC
Pena V, Liu S, Bujnicki JM, Luhrmann R, Wahl MC (2007) Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol Cell 25:615–624. 10.1016/j.molcel.2007.01.023 PubMed DOI
Tanackovic G, Rivolta C (2009) PRPF31 alternative splicing and expression in human retina. Ophthalmic Genet 30:76–83. 10.1080/13816810902744621 PubMed DOI
Wilkie SE, Vaclavik V, Wu H, Bujakowska K, Chakarova CF, Bhattacharya SS, Warren MJ, Hunt DM (2008) Disease mechanism for retinitis pigmentosa (RP11) caused by missense mutations in the splicing factor gene PRPF31. Mol Vis 14:683–690 PubMed PMC
Mordes D, Yuan L, Xu L, Kawada M, Molday RS, Wu JY (2007) Identification of photoreceptor genes affected by PRPF31 mutations associated with autosomal dominant retinitis pigmentosa. Neurobiol Dis 26:291–300. 10.1016/j.nbd.2006.08.026 PubMed DOI PMC
Yuan L, Kawada M, Havlioglu N, Tang H, Wu JY (2005) Mutations in PRPF31 inhibit pre-mRNA splicing of rhodopsin gene and cause apoptosis of retinal cells. J Neurosci 25:748–757. 10.1523/JNEUROSCI.2399-04.2005 PubMed PMC
Azizzadeh Pormehr L, Ahmadian S, Daftarian N, Mousavi SA, Shafiezadeh M (2020) PRPF31 reduction causes mis-splicing of the phototransduction genes in human organotypic retinal culture. Eur J Hum Genet 28:491–498. 10.1038/s41431-019-0531-1 PubMed DOI PMC
Ivings L, Towns KV, Matin MA, Taylor C, Ponchel F, Grainger RJ, Ramesar RS, Mackey DA, Inglehearn CF (2008) Evaluation of splicing efficiency in lymphoblastoid cell lines from patients with splicing-factor retinitis pigmentosa. Mol Vis 14:2357–2366 PubMed PMC
Zimmann F et al (2025) Retinitis pigmentosa-linked mutations impair the snRNA unwinding activity of SNRNP200 and reduce pre-mRNA binding of PRPF8. Cell Mol Life Sci 82:103. 10.1007/s00018-025-05621-z PubMed DOI PMC
Hong DS et al (2014) A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest New Drugs 32:436–444. 10.1007/s10637-013-0046-5 PubMed DOI
Zimmann F et al. (2025) PRPF8-associated retinitis pigmentosa variant induces human neural retina-autonomous photoreceptor defects. bioRxiv:2025.2006.2004.657822. 10.1101/2025.06.04.657822
Taylor AW (2009) Ocular immune privilege. Eye Lond 23:1885–1889. 10.1038/eye.2008.382 PubMed DOI PMC
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G (2024) Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 9:78. 10.1038/s41392-024-01780-w PubMed DOI PMC
Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N, Hunt DM, Bhattacharya SS (1996) Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 5:591–594. 10.1093/hmg/5.5.591 PubMed DOI
Jomary C, Vincent KA, Grist J, Neal MJ, Jones SE (1997) Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration. Gene Ther 4:683–690. 10.1038/sj.gt.3300440 PubMed DOI
Ali RR et al (2000) Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 25:306–310. 10.1038/77068 PubMed DOI
Schlichtenbrede FC, da Cruz L, Stephens C, Smith AJ, Georgiadis A, Thrasher AJ, Bainbridge JW, Seeliger MW, Ali RR (2003) Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 5:757–764. 10.1002/jgm.401 PubMed DOI
Smith AJ, Schlichtenbrede FC, Tschernutter M, Bainbridge JW, Thrasher AJ, Ali RR (2003) AAV-mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther 8:188–195. 10.1016/s1525-0016(03)00144-8 PubMed DOI
Mao H, Gorbatyuk MS, Hauswirth WW, Lewin AS (2012) Gene delivery of wild-type rhodopsin rescues retinal function in an autosomal dominant retinitis pigmentosa mouse model. Adv Exp Med Biol 723:199–205. 10.1007/978-1-4614-0631-0_27 PubMed DOI PMC
Koch S et al (2012) Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Hum Mol Genet 21:4486–4496. 10.1093/hmg/dds290 PubMed DOI
Zhong H et al (2015) AAV8(Y733F)-mediated gene therapy in a PubMed DOI PMC
Mookherjee S et al (2015) Long-term rescue of cone photoreceptor degeneration in retinitis pigmentosa 2 (RP2)-knockout mice by gene replacement therapy. Hum Mol Genet 24:6446–6458. 10.1093/hmg/ddv354 PubMed DOI PMC
Schon C et al (2017) Gene therapy successfully delays degeneration in a mouse model of PDE6A-linked retinitis pigmentosa (RP43). Hum Gene Ther 28:1180–1188. 10.1089/hum.2017.156 PubMed DOI
Han IC, Wiley LA, Ochoa D, Lang MJ, Harman BE, Sheehan KM, Mullins RF, Stone EM, Tucker BA (2023) Characterization of a novel Pde6b-deficient rat model of retinal degeneration and treatment with adeno-associated virus (AAV) gene therapy. Gene Ther 30:362–368. 10.1038/s41434-022-00365-y PubMed DOI
Gorbatyuk MS, Knox T, LaVail MM, Gorbatyuk OS, Noorwez SM, Hauswirth WW, Lin JH, Muzyczka N, Lewin AS (2010) Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci U S A 107:5961–5966. 10.1073/pnas.0911991107 PubMed DOI PMC
Liang FQ, Dejneka NS, Cohen DR, Krasnoperova NV, Lem J, Maguire AM, Dudus L, Fisher KJ, Bennett J (2001) AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse. Mol Ther 3:241–248. 10.1006/mthe.2000.0252 PubMed DOI
Buch PK, MacLaren RE, Duran Y, Balaggan KS, MacNeil A, Schlichtenbrede FC, Smith AJ, Ali RR (2006) In contrast to AAV-mediated Cntf expression, AAV-mediated Gdnf expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther 14:700–709. 10.1016/j.ymthe.2006.05.019 PubMed DOI
McNamee S et al (2024) Preclinical dose response study shows NR2E3 can attenuate retinal degeneration in the retinitis pigmentosa mouse model Rho(P23H+/). Gene Ther 31:255–262. 10.1038/s41434-024-00440-6 PubMed DOI PMC
Sun X et al (2010) Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by PubMed DOI PMC
Cai X, Conley SM, Naash MI (2009) RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet 30:57–62. 10.1080/13816810802626399 PubMed DOI PMC
Berger A, Lorain S, Josephine C, Desrosiers M, Peccate C, Voit T, Garcia L, Sahel JA, Bemelmans AP (2015) Repair of rhodopsin mRNA by spliceosome-mediated RNA trans-splicing: a new approach for autosomal dominant retinitis pigmentosa. Mol Ther 23:918–930. 10.1038/mt.2015.11 PubMed DOI PMC
Cideciyan AV et al (2018) Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci U S A 115:E8547–E8556. 10.1073/pnas.1805055115 PubMed DOI PMC
Orlans HO, McClements ME, Barnard AR, Martinez-Fernandez de la Camara C, MacLaren RE (2021) Mirtron-mediated RNA knockdown/replacement therapy for the treatment of dominant retinitis pigmentosa. Nat Commun 12:4934. 10.1038/s41467-021-25204-3 PubMed DOI PMC
Martins KM, Breton C, Zheng Q, Zhang Z, Latshaw C, Greig JA, Wilson JM (2023) Prevalent and disseminated recombinant and wild-type adeno-associated virus integration in macaques and humans. Hum Gene Ther 34:1081–1094. 10.1089/hum.2023.134 PubMed DOI PMC
Hanlon KS et al (2019) High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat Commun 10:4439. 10.1038/s41467-019-12449-2 PubMed DOI PMC
Crooke ST, Liang XH, Baker BF, Crooke RM (2021) Antisense technology: a review. J Biol Chem 296:100416. 10.1016/j.jbc.2021.100416 PubMed DOI PMC
Kim Y (2023) Drug discovery perspectives of antisense oligonucleotides. Biomol Ther Seoul 31:241–252. 10.4062/biomolther.2023.001 PubMed DOI PMC
Lauffer MC, van Roon-Mom W, Aartsma-Rus A (2024) Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. Commun Med 4:6. 10.1038/s43856-023-00419-1 PubMed DOI PMC
Liang XH et al (2017) Antisense oligonucleotides targeting translation inhibitory elements in 5’ UTRs can selectively increase protein levels. Nucleic Acids Res 45:9528–9546. 10.1093/nar/gkx632 PubMed DOI PMC
Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR, van der Meel R (2021) The current landscape of nucleic acid therapeutics. Nat Nanotechnol 16:630–643. 10.1038/s41565-021-00898-0 PubMed DOI
Vazquez-Dominguez I, Anido AA, Duijkers L, Hoppenbrouwers T, Hoogendoorn ADM, Koster C, Collin RWJ, Garanto A (2024) Efficacy, biodistribution and safety comparison of chemically modified antisense oligonucleotides in the retina. Nucleic Acids Res 52:10447–10463. 10.1093/nar/gkae686 PubMed DOI PMC
Slijkerman RW et al (2016) Antisense oligonucleotide-based splice correction for USH2A-associated retinal degeneration caused by a frequent deep-intronic mutation. Mol Ther 5:e381. 10.1038/mtna.2016.89 PubMed DOI
Dulla K et al (2021) Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol Ther 29:2441–2455. 10.1016/j.ymthe.2021.04.024 PubMed DOI PMC
Chan HW, Oh J, Leroy B (2023) Therapeutic landscape for inherited ocular diseases: current and emerging therapies. Singapore Med J 64:17–26. 10.4103/singaporemedj.SMJ-2022-179 PubMed DOI PMC
Panagiotopoulos AL et al (2020) Antisense oligonucleotide- and CRISPR-Cas9-mediated rescue of mRNA splicing for a deep intronic CLRN1 mutation. Mol Ther Nucleic Acids 21:1050–1061. 10.1016/j.omtn.2020.07.036 PubMed DOI PMC
Murray SF et al (2015) Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration. Invest Ophthalmol Vis Sci 56:6362–6375. 10.1167/iovs.15-16400 PubMed DOI PMC
Grainok J, Pitout IL, Chen FK, McLenachan S, Heath Jeffery RC, Mitrpant C, Fletcher S (2024) A precision therapy approach for retinitis pigmentosa 11 using splice-switching antisense oligonucleotides to restore the open reading frame of PRPF31. Int J Mol Sci 25:3391. 10.3390/ijms25063391 PubMed DOI PMC
Ersoz E, Demir-Dora D (2024) Unveiling the potential of antisense oligonucleotides: mechanisms, therapies, and safety insights. Drug Dev Res 85:e22187. 10.1002/ddr.22187 PubMed DOI
Klymenko V, Gonzalez Martinez OG, Zarbin MA (2024) Recent progress in photoreceptor cell-based therapy for degenerative retinal disease. Stem Cells Transl Med 13:332–345. 10.1093/stcltm/szae005 PubMed DOI PMC
Voisin A, Penaguin A, Gaillard A, Leveziel N (2023) Stem cell therapy in retinal diseases. Neural Regen Res 18:1478–1485. 10.4103/1673-5374.361537 PubMed DOI PMC
Singh MS et al (2020) Retinal stem cell transplantation: balancing safety and potential. Prog Retin Eye Res 75:100779. 10.1016/j.preteyeres.2019.100779 PubMed DOI PMC
West EL et al (2010) Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 28:1997–2007. 10.1002/stem.520 PubMed DOI PMC
MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207. 10.1038/nature05161 PubMed DOI
Pearson RA et al (2012) Restoration of vision after transplantation of photoreceptors. Nature 485:99–103. 10.1038/nature10997 PubMed DOI PMC
Bartsch U, Oriyakhel W, Kenna PF, Linke S, Richard G, Petrowitz B, Humphries P, Farrar GJ, Ader M (2008) Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp Eye Res 86:691–700. 10.1016/j.exer.2008.01.018 PubMed DOI
Wang Y, Tang Z, Gu P (2020) Stem/progenitor cell-based transplantation for retinal degeneration: a review of clinical trials. Cell Death Dis 11:793. 10.1038/s41419-020-02955-3 PubMed DOI PMC
Seiler MJ, Aramant RB (2012) Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 31:661–687. 10.1016/j.preteyeres.2012.06.003 PubMed DOI PMC
Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ (2008) Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 146:172–182. 10.1016/j.ajo.2008.04.009 PubMed DOI
Lakowski J et al (2018) Isolation of human photoreceptor precursors via a cell surface marker panel from stem cell-derived retinal organoids and fetal retinae. Stem Cells 36:709–722. 10.1002/stem.2775 PubMed DOI PMC
Watari K et al (2023) Self-organization, quality control, and preclinical studies of human iPSC-derived retinal sheets for tissue-transplantation therapy. Commun Biol 6:164. 10.1038/s42003-023-04543-5 PubMed DOI PMC
Meyer JS et al (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218. 10.1002/stem.674 PubMed DOI PMC
Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, Sasai Y, Takahashi M (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3d retinal sheets into retinal degenerative mice. Stem Cell Rep 2:662–674. 10.1016/j.stemcr.2014.03.011 PubMed DOI PMC
Mandai M et al (2017) iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Rep 8:69–83. 10.1016/j.stemcr.2016.12.008 PubMed DOI PMC
Iraha S et al (2018) Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation. Stem Cell Rep 10:1059–1074. 10.1016/j.stemcr.2018.01.032 PubMed DOI PMC
Tu HY et al (2019) Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine 39:562–574. 10.1016/j.ebiom.2018.11.028 PubMed DOI PMC
Hirami Y et al (2023) Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell 30(1585–1596):e1586. 10.1016/j.stem.2023.11.004 PubMed DOI
Sen S, de Guimaraes TAC, Filho AG, Fabozzi L, Pearson RA, Michaelides M (2025) Stem cell-based therapies for retinal diseases: focus on clinical trials and future prospects. Ophthalmic Genet 46:324–337. 10.1080/13816810.2024.2423784 PubMed DOI