Protease-mediated maturation of M-PMV reverse transcriptase into a functional heterodimer
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5103
National Institute of Virology and Bacteriology
22-17118S
the European Union-Next Generation EU and by the Czech Science Foundation
PubMed
41556630
PubMed Central
PMC12817477
DOI
10.1002/pro.70469
Knihovny.cz E-zdroje
- Klíčová slova
- Mason‐Pfizer monkey virus, analytical ultracentrifugation, polymerase activity, proteolytic processing, reverse transcriptase,
- MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus * enzymologie genetika MeSH
- multimerizace proteinu * MeSH
- proteasy * metabolismus MeSH
- reverzní transkriptasa * chemie metabolismus genetika MeSH
- Sf9 buňky MeSH
- virové proteiny * chemie genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteasy * MeSH
- reverzní transkriptasa * MeSH
- virové proteiny * MeSH
Reverse transcriptase (RT) of retroviruses orchestrates viral replication, yet its structural diversity remains poorly understood. Well-studied RTs, such as those from HIV-1, murine leukemia virus, and avian myeloblastosis virus, were characterized decades ago, but less prominent retroviruses have escaped detailed analysis. Despite being discovered alongside HIV-1, the RT of Mason-Pfizer monkey virus (M-PMV) has resisted recombinant expression, leaving its properties unresolved. Here, we report the first detailed analysis of M-PMV RT, a betaretroviral enzyme previously thought challenging to obtain recombinantly. Using baculovirus-based expression in insect cells, we produced soluble full-length RT that, upon proteolytic maturation by the M-PMV protease, yielded a heterodimer composed of p65 and p51 subunits. Mass spectrometry, N-terminal sequencing, and analytical ultracentrifugation demonstrated that full-length RT forms a homodimer, which converts into a stable and more enzymatically active heterodimer following proteolytic removal of the C-terminal RNase H domain from one subunit. Functional assays revealed that heterodimer formation enhances polymerase activity while preserving RNase H function, directly linking proteolytic maturation to enzymatic activation. Notably, this heterodimeric architecture is uncommon among betaretroviruses and resembles the well-characterized lentiviral HIV-1 RT. These results broaden the evolutionary perspective on RT heterodimerisation by revealing that this architecture extends into betaretroviruses.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Biotechnology University of Chemistry and Technology Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Abram ME, Parniak MA. Virion instability of human immunodeficiency virus type 1 reverse transcriptase (RT) mutated in the protease cleavage site between RT p51 and the RT RNase H domain. J Virol. 2005;79(18):11952–11961. 10.1128/jvi.79.18.11952-11961.2005 PubMed DOI PMC
Baltimore D. Viral RNA‐dependent DNA polymerase: RNA‐dependent DNA polymerase in virions of RNA tumour viruses. Nature. 1970;226(5252):1209–1211. 10.1038/2261209a0 PubMed DOI
Bláha J, Skálová T, Kalousková B, Skořepa O, Cmunt D, Grobárová V, et al. Structure of the human NK cell NKR‐P1:LLT1 receptor:ligand complex reveals clustering in the immune synapse. Nat Commun. 2022;13(1):5022. 10.1038/s41467-022-32577-6 PubMed DOI PMC
Brautigam CA. Chapter five: calculations and publication‐quality illustrations for analytical ultracentrifugation data. In: Cole JL, editor. Analytical ultracentrifugation. Methods in Enzymology. Volume 562. San Diego, CA: Academic Press; 2015. p. 109–133. 10.1016/bs.mie.2015.05.001 PubMed DOI
Coffin JM, Hughes SH, Varmus HE. Retroviruses. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1997. PubMed
Das D, Georgiadis MM. The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. 2004;12(5):819–829. 10.1016/j.str.2004.02.032 PubMed DOI
Dostálková A, Křížová I, Junková P, Racková J, Kapisheva M, Novotný R, et al. Unveiling the DHX15–G‐patch interplay in retroviral RNA packaging. Proc Natl Acad Sci U S A. 2024;121(40):e2407990121. 10.1073/pnas.2407990121 PubMed DOI PMC
Dostálková A, Škach K, Kaufman F, Křížová I, Hadravová R, Flegel M, et al. PF74 and its novel derivatives stabilize Hexameric lattice of HIV‐1 mature‐like particles. Molecules. 2020;25(8):1895. 10.3390/molecules25081895 PubMed DOI PMC
Füzik T, Ulbrich P, Ruml T. Efficient mutagenesis independent of ligation (EMILI). J Microbiol Methods. 2014;106:67–71. 10.1016/j.mimet.2014.08.003 PubMed DOI
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci. 2010;67(16):2717–2747. 10.1007/s00018-010-0346-2 PubMed DOI PMC
Hizi A, Herschhorn A. Retroviral reverse transcriptases (other than those of HIV‐1 and murine leukemia virus): a comparison of their molecular and biochemical properties. Virus Res. 2008;134(1):203–220. 10.1016/j.virusres.2007.12.008 PubMed DOI
Huber LB, Betz K, Marx A. Reverse Transcriptases: from discovery and applications to xenobiology. Chembiochem. 2023;24(5):e202200521. 10.1002/cbic.202200521 PubMed DOI
Kohoutová Z, Rumlová M, Andreánsky M, Sakalian M, Hunter E, Pichová I, et al. The impact of altered polyprotein ratios on the assembly and infectivity of Mason‐Pfizer monkey virus. Virology. 2009;384(1):59–68. 10.1016/j.virol.2008.10.048 PubMed DOI PMC
Křízová I, Hadravová R, Štokrová J, Günterová J, Doležal M, Ruml T, et al. The G‐patch domain of Mason‐Pfizer monkey virus is a part of reverse transcriptase. J Virol. 2012;86(4):1988–1998. 10.1128/JVI.06638-11 PubMed DOI PMC
London RE. Structural maturation of HIV‐1 reverse transcriptase‐a metamorphic solution to genomic instability. Viruses. 2016;8(10):260. 10.3390/v8100260 PubMed DOI PMC
London RE. HIV‐1 reverse transcriptase: a metamorphic protein with three stable states. Structure. 2019;27(3):420–426. 10.1016/j.str.2018.11.011 PubMed DOI PMC
Marx PA. Simian Retrovirus D. In: Mahy BWJ, Regenmortel MHVV, editors. Encyclopedia of virology. 3rd ed. San Diego, CA: Academic Press; 2008. p. 623–630.
Menéndez‐Arias L, Sebastián‐Martín A, Álvarez M. Viral reverse transcriptases. Virus Res. 2017;234:153–176. 10.1016/j.virusres.2016.12.019 PubMed DOI
Müller B, Restle T, Weiss S, Gautel M, Sczakiel G, Goody RS. Co‐expression of the subunits of the heterodimer of HIV‐1 reverse transcriptase in Escherichia coli. J Biol Chem. 1989;264(24):13975–13978. 10.1016/S0021-9258(18)71628-1 PubMed DOI
Parniak MA, Min K‐L, Budihas SR, le Grice SFJ, Beutler JA. A fluorescence‐based high‐throughput screening assay for inhibitors of human immunodeficiency virus‐1 reverse transcriptase‐associated ribonuclease H activity. Anal Biochem. 2003;322(1):33–39. 10.1016/j.ab.2003.06.001 PubMed DOI
Perach M, Hizi A. Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology. 1999;259(1):176–189. 10.1006/viro.1999.9761 PubMed DOI
Philo JS. SEDNTERP: a calculation and database utility to aid interpretation of analytical ultracentrifugation and light scattering data. Eur Biophys J. 2023;52(4):233–266. 10.1007/s00249-023-01629-0 PubMed DOI
Rumlová M, Křížová I, Keprová A, Hadravová R, Doležal M, Strohalmová K, et al. HIV‐1 protease‐induced apoptosis. Retrovirology. 2014;11:37. 10.1186/1742-4690-11-37 PubMed DOI PMC
Schuck P. Size‐distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J. 2000;78(3):1606–1619. 10.1016/S0006-3495(00)76713-0 PubMed DOI PMC
Schulze T, Nawrath M, Moelling K. Cleavage of the HIV‐1 p66 reverse transcriptase/RNase H by the p9 protease in vitro generates active p15 RNase H. Arch Virol. 1991;118(3–4):179–188. 10.1007/BF01314028 PubMed DOI
Sevilya Z, Loya S, Adir N, Hizi A. The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is modulated by residue 294 of the small subunit. Nucleic Acids Res. 2003;31(5):1481–1487. 10.1093/nar/gkg235 PubMed DOI PMC
Skořepa O, Pazicky S, Kalousková B, Bláha J, Abreu C, Ječmen T, et al. Natural killer cell activation receptor NKp30 oligomerization depends on its N‐glycosylation. Cancers (Basel). 2020;12(7):1998. 10.3390/cancers12071998 PubMed DOI PMC
Stahlhut M, Li Y, Condra JH, Fu J, Gotlib L, Graham DJ, et al. Purification and characterization of HIV‐1 reverse transcriptase having a 1:1 ratio of p66 and p51 subunits. Protein Expr Purif. 1994;5(6):614–621. 10.1006/prep.1994.1084 PubMed DOI
Taube R, Loya S, Avidan O, Perach M, Hizi A. Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. 1998;329:579–587. 10.1042/bj3290579 PubMed DOI PMC
Temin HM, Mizutani S. Viral RNA‐dependent DNA polymerase: RNA‐dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970;226(5252):1211–1213. 10.1038/2261211a0 PubMed DOI
Tözsér J. Comparative studies on retroviral proteases: substrate specificity. Viruses. 2010;2(1):147–165. 10.3390/v2010147 PubMed DOI PMC
Troshin PV, Procter JB, Barton GJ. Java bioinformatics analysis web services for multiple sequence alignment—JABAWS:MSA. Bioinformatics. 2011;27(14):2001–2002. 10.1093/bioinformatics/btr304 PubMed DOI PMC
Troshin PV, Procter JB, Sherstnev A, Barton DL, Madeira F, Barton GJ. JABAWS 2.2 distributed web services for bioinformatics: protein disorder, conservation and RNA secondary structure. Bioinformatics. 2018;34(11):1939–1940. 10.1093/bioinformatics/bty045 PubMed DOI PMC
Veverka V, Bauerová H, Zábranský A, Lang J, Ruml T, Pichová I, et al. Three‐dimensional structure of a monomeric form of a retroviral protease. J Mol Biol. 2003;333(4):771–780. 10.1016/j.jmb.2003.08.049 PubMed DOI
Werner S, Wöhrl BM. Soluble Rous sarcoma virus reverse transcriptases alpha, alphabeta, and beta purified from insect cells are processive DNA polymerases that lack an RNase H 3′ → 5′ directed processing activity. J Biol Chem. 1999;274(37):26329–26336. 10.1074/jbc.274.37.26329 PubMed DOI
Xavier Ruiz F, Arnold E. Evolving understanding of HIV‐1 reverse transcriptase structure, function, inhibition, and resistance. Curr Opin Struct Biol. 2020;61:113–123. 10.1016/j.sbi.2019.11.011 PubMed DOI PMC
Zheng X, Perera L, Mueller GA, DeRose EF, London RE. Asymmetric conformational maturation of HIV‐1 reverse transcriptase. Elife. 2015;4:e06359. 10.7554/eLife.06359 PubMed DOI PMC