Mortality patterns in multimorbid populations: cross-sectional population-wide analysis of Czech national registry data, 2014-2023

. 2026 Jan 21 ; 16 (1) : e106277. [epub] 20260121

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41565329

OBJECTIVES: The aim is to (i) examine the evolution of (multi-)morbidity in Czechia, (ii) analyse changes in mortality by (multi-)morbidity between 2014 and 2023 and (iii) analyse factors driving mortality change in these subpopulations, using national health registry data, which is unique among countries of the former Eastern Bloc. DESIGN: Cross-sectional population-wide analysis. SETTING: Czechia. PARTICIPANTS: Adult population aged 30 and above (n~7.5 million). OUTCOME MEASURES: 1-year period prevalence proportion by age, age-specific and disease-specific occurrence-exposure mortality rates and their coefficient of variation, contributions of age composition, multimorbidity composition and mortality rates to mortality change. RESULTS: Between 2014 and 2023, the prevalence of no or single diseases remained stable at 55%, while complex multimorbidity patterns (3+ diseases) decreased, especially in the 60+ group (from 20% to 16%). Despite additional diagnoses being associated with elevated mortality, especially for those with diabetes and chronic obstructive pulmonary disease (COPD), mortality risks homogenised across (multi)morbid groups, and overall mortality declined (9 pp in neoplasm and COPD, 7 pp in cerebrovascular diseases and 3 pp in diabetes). This decline was primarily due to shifts in multimorbidity composition; without this, mortality in groups with cerebrovascular diseases, diabetes and COPD would have risen. CONCLUSION: The change in mortality over the past decade in Czechia among people with chronic diseases is mainly driven by shifts in multimorbidity composition, rather than pure effects of decline in mortality, contributing to diverging patterns of change between individuals with and without chronic conditions.

Zobrazit více v PubMed

Bartoňová D. Populační Vývoj České Republiky 2007. Přírodovědecká fakulta Univerzity Karlovy; 2008.

HMD Max planck institute for demographic research (germany), university of california, berkeley (usa), and french institute for demographic studies (france) 2024. www.mortality.org Available.

Eurostat Life expectancy at birth and at birth bysex. 2024. https://ec.europa.eu/eurostat Available.

Luy M, Wegner C, Lutz W. In International handbook of adult mortality. Dordrecht: Springer Netherlands; 2011. Adult mortality in europe; pp. 49–81.

Burcin B. Vývoj odvratitelné úmrtnosti v České republice v období 1990-2006. Demografie. 2008;50:15–31.

Rychtarikova J. The case of the Czech Republic: Determinants of the recent favourable turnover in mortality. Demogr Res. 2004;2:105–38. doi: 10.4054/DemRes.2004.S2.5. DOI

Meslé F, Vallin J. In International handbook of adult mortality. Dordrecht: Springer Netherlands; 2011. Historical trends in mortality; pp. 9–47.

Burcin B, Kučera T. Strukturální změny úmrtnosti v českých zemích a na Slovensku mezi roky 1991 a 2006. Demografie. 2008;50:173–85.

Eurostat Two-thirds of deaths under 75 could have been avoided. 2017. https://ec.europa.eu/eurostat/web/products-eurostat-news/product/-/asset_publisher/VWJkHuaYvLIN/content/DDN-20200814-1/pop_up Available.

OECD/European Commission . Health at a Glance: Europe 2024: State of Health in the EU Cycle. OECD Publishing, Paris; 2024. Available. DOI

Czech Statistical Office Population database. 2025. https://csu.gov.cz/pocet-struktura-a-projekce-obyvatel?pocet=10&start=0&podskupiny=132&razeni=-datumVydani Available.

Lantz PM, House JS, Lepkowski JM, et al. Socioeconomic factors, health behaviors, and mortality: results from a nationally representative prospective study of US adults. JAMA. 1998;279:1703–8. doi: 10.1001/jama.279.21.1703. PubMed DOI

World Health Organization Global health risks: mortality and burden of disease attributable to selected major risks. 2009

Booske BC, Athens JK, Kindig DA, et al. Different perspectives for assigning weights to determinants of health. University of Wisconsin: Population Health Institute. 2010;22

Stringhini S, Sabia S, Shipley M, et al. Association of socioeconomic position with health behaviors and mortality. JAMA. 2010;303:1159–66. doi: 10.1001/jama.2010.297. PubMed DOI PMC

Eurostat Health database. 2019. https://ec.europa.eu/eurostat/fr/web/products-eurostat-news/-/ddn-20210721 Available.

Eurostat Morbidity statistics in the EU. 2014. https://ec.europa.eu/eurostat/documents/3888793/5858521/KS-TC-14-003-EN-N.pdf/bd959e6e-10ed-4078-915e-308941c02811 Available.

Eurostat Morbidity statistics in the eu. report on pilot studies – 2023 edition. 2023. https://ec.europa.eu/eurostat/documents/7870049/18398480/KS-FT-23-003-EN-N.pdf/a0282e57-cbd0-8105-01ab-9765d454f61a?version=1.0&t=1706518823902 Available.

Schmidt M, Schmidt SAJ, Sandegaard JL, et al. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol. 2015;7:449–90. doi: 10.2147/CLEP.S91125. PubMed DOI PMC

Sen A. Health: perception versus observation: self reported morbidity has severe limitations and can be extremely misleading. BMJ. 2002;324:860–1. PubMed PMC

Carvalho Yokota RT, Oyen H. International handbook of health expectancies. 2020. Operationalization of concepts of health and disability; pp. 3–18.

Jylhä M. What is self-rated health and why does it predict mortality? Towards a unified conceptual model. Social Science & Medicine . 2009;69:307–16. doi: 10.1016/j.socscimed.2009.05.013. PubMed DOI

Kučerová H, Benešová K, Jarkovský J, et al. Národní zdravotnický informační portál [online]. Praha: Ministerstvo zdravotnictví ČR a Ústav zdravotnických informací a statistiky ČR. 2024. [7-Jan-2025]. Polymorbidita obyvatel dle kraje bydliště včetně příčiny úmrtí.http://www.nzip.cz/data/2196-polymorbidita-obyvatel-kraj-bydliste-pricina-umrti-otevrena-data Available. accessed.

UZIS. 2025. https://www.uzis.cz/index-en.php?pg=nhis--other-registries Available.

VZP. 2025. https://www.vzp.cz/platci/informace/povinnosti-platcu-metodika/1-2-ucel-zdravotniho-pojisteni Available.

Charlson ME, Carrozzino D, Guidi J, et al. Charlson Comorbidity Index: A Critical Review of Clinimetric Properties. Psychother Psychosom. 2022;91:8–35. doi: 10.1159/000521288. PubMed DOI

Roffman CE, Buchanan J, Allison GT. Charlson Comorbidities Index. J Physiother. 2016;62:171. doi: 10.1016/j.jphys.2016.05.008. PubMed DOI

Spronk I, Korevaar JC, Poos R, et al. Calculating incidence rates and prevalence proportions: not as simple as it seems. BMC Public Health. 2019;19:512. doi: 10.1186/s12889-019-6820-3. PubMed DOI PMC

Jasilioniene A, Jdanov DA, Sobotka T, et al. Methods Protocol for the Human Fertility Database. Rostock: Max Planck Institute for Demographic Research; 2015.

Camarda CG. MortalitySmooth: An R package for smoothing Poisson counts with P-splines. J Stat Softw. 2012;50:1–24.

Gupta PD. A general method of decomposing a difference between two rates into several components. Demography. 1978;15:99–112. doi: 10.2307/2060493. PubMed DOI

Kitagawa EM. Components of a Difference Between Two Rates. J Am Stat Assoc. 1955;50:1168. doi: 10.2307/2281213. DOI

Gupta PD. Standardization and Decomposition of Rates: A User’s Manual (No.186) US Department of Commerce, Economics and Statistics Administration, Bureau of the Census; 1993.

Fortin M, Stewart M, Poitras ME, et al. A systematic review of prevalence studies on multimorbidity: toward a more uniform methodology. Ann Fam Med. 2012;10:142–51. doi: 10.1370/afm.1337. PubMed DOI PMC

International Diabetes Federation . IDF Diabetes Atlas. 10th. Brussels, Belgium: 2021. https://diabetesatlas.org/data/en/country/53/cz.html edn. Available.

Chronic diseases. 2023. https://www.oecd.org/en/topics/chronic-diseases.html Available.

Brož J, Malinovská J, Nunes MA, et al. Prevalence of diabetes and prediabetes and its risk factors in adults aged 25-64 in the Czech Republic: A cross-sectional study. Diabetes Res Clin Pract. 2020;170:108470. doi: 10.1016/j.diabres.2020.108470. PubMed DOI

Czech Diabetes Society National diabetes program. 2022. https://www.diab.cz/en/program Available.

Zatloukal J, Brat K, Neumannova K, et al. Chronic obstructive pulmonary disease - diagnosis and management of stable disease; a personalized approach to care, using the treatable traits concept based on clinical phenotypes. Position paper of the Czech Pneumological and Phthisiological Society. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub . 2020;164:325–56. doi: 10.5507/bp.2020.056. PubMed DOI

Vondra V. The importance of chronic obstructive pulmonary disease. Vnitr Lek. 2004;50:654–8. PubMed

WHO European Health Information Gateway. 2024. https://gateway.euro.who.int/en/indicators/hfa_403-2510-prevalence-of-chronic-obstructive-pulmonary-disease/#id=19388 Available.

Blanco I, Diego I, Bueno P, et al. Geographical distribution of COPD prevalence in Europe, estimated by an inverse distance weighting interpolation technique. Int J Chron Obstruct Pulmon Dis. 2018;13:57–67. doi: 10.2147/COPD.S150853. PubMed DOI PMC

Koblížek V, Hejduk K. Cílené vyhledávání nemocných s chronickou obstrukční plicní nemocí: stručný přehled. Vnitřní Lékařství. 2017;63:750–6. PubMed

Global Cancer Observatory Czechia fact sheet. 2022. https://gco.iarc.who.int/media/globocan/factsheets/populations/203-czechia-fact-sheet.pdf Available.

Denisa K, Jan M, Ivo Š, et al. Portal of Cancer Epidemiology in the Czech Republic. Masaryk University, Brno; 2024. [4-Feb-2025]. https://www.svod.cz/prevalence-en Available. Accessed.

Institute of health information and statistics of the czech republic. Národní zdravotnický informační systém (NZIS) Národní onkologický registr (NOR) Dostupné z. 2025. [28-Nov-2019]. http://www.uzis.cz/registry-nzis/nor Available. Accessed.

Truelsen T, Piechowski-Jóźwiak B, Bonita R, et al. Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol. 2006;13:581–98. doi: 10.1111/j.1468-1331.2006.01138.x. PubMed DOI

Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20:795–820. doi: 10.1016/S1474-4422(21)00252-0. PubMed DOI PMC

Eurostat Eurostat database. persons reporting a chronic disease, by disease, sex, age and educational attainment level. 2025. https://ec.europa.eu/eurostat/databrowser/view/hlth_ehis_cd1e/default/table?lang=en&category=hlth.hlth_state.hlth_srcm Available.

Souza DLB, Oliveras-Fabregas A, Minobes-Molina E, et al. Trends of multimorbidity in 15 European countries: a population-based study in community-dwelling adults aged 50 and over. BMC Public Health. 2021;21:76. doi: 10.1186/s12889-020-10084-x. PubMed DOI PMC

Nguyen H, Manolova G, Daskalopoulou C, et al. Prevalence of multimorbidity in community settings: A systematic review and meta-analysis of observational studies. J Comorb. 2019;9:2235042X19870934. doi: 10.1177/2235042X19870934. PubMed DOI PMC

easySHARE Team . Guide to easySHARE (release 9.0.0) easySHARE Organization; 2024. https://share-eric.eu/fileadmin/user_upload/Release_Guides/easySHARE_Release_9.0.0_ReleaseGuide.pdf Available.

Santucci C, Bertuccio P, Mignozzi S, et al. Cancer mortality in Europe in 2020, and an overview of trends since 1990. Eur J Cancer Prev. 2025:10–1097. doi: 10.1097/CEJ.0000000000000981. PubMed DOI

Miklewska MJ, Barańska K, Wojciechowska U, et al. Morbidity and mortality trends of the most common cancers in 1990–2019. Poland’s position compared to other European countries. J Oncol. 2023;73:46–55. doi: 10.5603/NJO.a2022.0065. DOI

Harrison C, Fortin M, van den Akker M, et al. Comorbidity versus multimorbidity: Why it matters. J Multimorb Comorb . 2021;11:2633556521993993. doi: 10.1177/2633556521993993. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...