Zinc and Copper Metallic Instability: Investigating Altered Metal Functionality in both Human and Animal Studies
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
41569441
DOI
10.1007/s12011-026-04983-0
PII: 10.1007/s12011-026-04983-0
Knihovny.cz E-zdroje
- Klíčová slova
- Copper, CuONPs, Neurodegeneration, Solute carriers, Trace elements, Zinc, ZnONPs,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Homeostasis is the regulatory mechanism for the expression of all genes, the function of all metabolic pathways, the utilization of any essential trace element (TEs), while its disruptions lead to many pathological states. The pathologies include cardiovascular disease, anaemia, diabetes, neurological disorders, and cell death. For this, copper and zinc are two of the major TEs involved in controlling the physiological and pathological processes in both humans and animals. Zinc deficiency, for instance, is linked with decreased body weight, decreased ability to metabolize glucose, and impaired immune function. By contrast, deficiency of copper can lead to several neurological disorders, oxidative stress, mitochondrial dysfunction, and changes in lipid metabolism. On the other hand, there excessive exposure can have adverse effects on health, including the development of epilepsy, neuronal excitability, genotoxic effects, and cellular toxicity. Moreover, dual biological functions of zinc further complicate the understanding of their roles in both health and disease. Such as, zinc has a neuromodulatory function and helps to control excitably in neurons, but sometimes zinc in the synapse, inhibit the functioning of inhibitory neurotransmitter and cause damage to the neurons. Likewise, in metabolic diseases, particularly diabetes mellitus, there is often dysregulation of the levels of zinc and copper, resulting in steel-like interactions; elevated levels of copper and reduced levels of zinc contribute towards the pathogenesis of both the disease and the progression of dementia. Despite this antagonistic relationship, both trace metals act synergistically as necessary derivatives of superoxide dismutase; therefore, both play a vital role in maintaining cellular antioxidant defense systems. Therefore, this review covers published articles from 1992-2025 with regard to zinc and copper in their dietary and nanoparticle forms in animal and human models to demonstrate their differing roles and how they complement one another, or conflict with one another.
Department of Biotechnology Graphic Era Dehradun Uttarakhand 248002 India
Division of Microbiology Career Point University Hamirpur HP 176041 India
School of Applied and Life Sciences Uttaranchal University Dehradun 248007 India
School of Biological and Environmental Sciences Shoolini University Solan HP 173229 India
Zobrazit více v PubMed
Abdelrahman SA, El-Shal AS, Abdelrahman AA, Saleh EZH, Mahmoud AA (2023) Neuroprotective effects of quercetin on the cerebellum of zinc oxide nanoparticles (ZnoNps)-exposed rats. Tissue Barriers 11(3):2115273 PubMed DOI
Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30(5):1631–1636 PubMed DOI PMC
Arciello M, Rotilio G, Rossi L (2005) Copper-dependent toxicity in SH-SY5Y neuroblastoma cells involves mitochondrial damage. Biochem Biophys Res Commun 327(2):454–459 PubMed DOI
Argüello JM, Eren E, González-Guerrero M (2007) The structure and function of heavy metal transport P 1B-ATPases. Biometals 20:233–248 PubMed DOI
Atar D, Backx PH, Appel MM, Gao WD, Marban E (1995) Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels (∗). J Biol Chem 270(6):2473–2477 PubMed DOI
Ayhanci A, Uyar R, Aral E, Kabadere S, Appak S (2008) Protective effect of zinc on cyclophosphamide-induced hematoxicity and urotoxicity. Biol Trace Elem Res 126:186–193 PubMed DOI
Baj J, Flieger W, Teresiński G, Buszewicz G, Sitarz R, Forma A, Karakuła K (1901) Maciejewski R (2020) Magnesium, calcium, potassium, sodium, phosphorus, selenium, zinc, and chromium levels in alcohol use disorder: a review. Journal of Clinical Medicine 9(6)
Balakrishnan V, Thangaraj K, Palani M, Vaiyapuri M (2022) Green synthesis of copper oxide nanoparticles using Euphorbia hirta leaves extract and its biological applications. Inorg Nano-Met Chem 52(6):809–818 DOI
Baraibar AM, Hernández-Guijo JM (2020) Micromolar concentrations of Zn2+ depress cellular excitability through a blockade of calcium current in rat adrenal slices. Toxicology 444:152543 PubMed DOI
Bayer TA, Schäfer S, Simons A, Kemmling A, Kamer T, Tepests R, Eckert A, Schüssel K, Eikenberg O, Sturchler-Pierrat C (2003) Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice. Proc Natl Acad Sci U S A 100(24):14187–14192 PubMed DOI PMC
Behbehani GR, Barzegar L, Mohebbian M (2012) Saboury A (2012) A Comparative Interaction between Copper Ions with Alzheimer’s β Amyloid Peptide and Human Serum Albumin. Bioinorganic Chemistry and Applications 1:208641
Betsy A, Binitha M, Sarita S (2013) Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichol 5(1):40–42 DOI
Bhowmik D, Chiranjib K, Kumar S (2010) A potential medicinal importance of zinc in human health and chronic. Int J Pharm 1(1):05–11
Binesh A, Venkatachalam K (2024) Copper in human health and disease: a comprehensive review. J Biochem Mol Toxicol 38(11):e70052 PubMed DOI
Bryliński Ł, Brylińska K, Woliński F, Sado J, Smyk M, Komar O, Karpiński R, Prządka M, Baj J (2025a) Trace elements—role in joint function and impact on joint diseases. Int J Mol Sci 26(15):7493 PubMed DOI PMC
Bryliński Ł, Kostelecka K, Woliński F, Komar O, Miłosz A, Michalczyk J, Biłogras J, Machrowska A, Karpiński R, Maciejewski M (2025b) Effects of trace elements on endocrine function and pathogenesis of thyroid diseases—a literature review. Nutrients 17(3):398 PubMed DOI PMC
Brzóska MM, Kozłowska M, Rogalska J, Gałażyn-Sidorczuk M, Roszczenko A, Smereczański NM (2021) Enhanced zinc intake protects against oxidative stress and its consequences in the brain: a study in an in vivo rat model of cadmium exposure. Nutrients 13(2):478 PubMed DOI PMC
Bugata LSP, Pitta Venkata P, Gundu AR, Mohammed Fazlur R, Reddy UA, Kumar JM, Mekala VR, Bojja S, Mahboob M (2019) Acute and subacute oral toxicity of copper oxide nanoparticles in female albino Wistar rats. J Appl Toxicol 39(5):702–716 PubMed DOI
Bulcke F, Dringen R (2016) Handling of copper and copper oxide nanoparticles by astrocytes. Neurochem Res 41:33–43 PubMed DOI
Bulcke F, Dringen R, Scheiber IF (2017) Neurotoxicity of copper. Neurotoxicity of Metals, pp 313–343 DOI
Bulcke F, Dringen R, Thiel K (2015) Copper oxide nanoparticles: synthesis, toxic potential and modulation of astrocytic metabolism. SpringerPlus 4(Suppl 1):P5 DOI PMC
Bulcke F, Thiel K, Dringen R (2014) Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology 8(7):775–785 PubMed
Cai H, He J, Zheng W, Cheng H, Ge X, Bao Y, Wei Y, Zhou Y, Liang X, Chen X (2025) Zinc mitigates the combined neurotoxicity of binary metal mixtures via mitophagy and mitochondrial fusion. Mol Neurobiol 62(5):5961–5976 PubMed DOI
Carmona ER, Inostroza-Blancheteau C, Obando V, Rubio L, Marcos R (2015) Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster. Mutat Res Genet Toxicol Environ Mutagen 791:1–11 PubMed DOI
Cater MA, La Fontaine S, Shield K, Deal Y, Mercer JF (2006) ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion. Gastroenterology 130(2):493–506 PubMed DOI
Chen N-N, Zhao D-J, Sun Y-X, Wang D-D, Ni H (2019) Long-term effects of zinc deficiency and zinc supplementation on developmental seizure-induced brain damage and the underlying GPR39/ZnT-3 and MBP expression in the hippocampus. Front Neurosci 13:920 PubMed DOI PMC
Chirizzi D, Guascito MR, Filippo E, Malitesta C, Tepore A (2016) A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@ Cu2O nanowires embedded into poly (vinyl alcohol). Talanta 147:124–131 PubMed DOI
Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD (2000) Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res 39(2):153–169 PubMed DOI
Costello RB, Dwyer JT, Bailey RL (2016) Chromium supplements for glycemic control in type 2 diabetes: limited evidence of effectiveness. Nutr Rev 74(7):455–468 PubMed DOI PMC
Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G (2010) Copper-related diseases: from chemistry to molecular pathology. Coord Chem Rev 254(7–8):876–889 DOI
Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20(11):115101 PubMed DOI
Dexter DT, Jenner P, Schapira AH, Marsden CD (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. Ann Neurol 32(S1):S94–S100 PubMed DOI
Dusek P, Litwin T, Czlonkowska A (2015) Wilson disease and other neurodegenerations with metal accumulations. Neurol Clin 33(1):175–204 PubMed DOI
Ebisch I, Pierik F, De Jong F, Thomas C, Steegers-Theunissen R (2006) Does folic acid and zinc sulphate intervention affect endocrine parameters and sperm characteristics in men? Int J Androl 29(2):339–345 PubMed DOI
El Hendy HA, Yousef MI, El-Naga NIA (2001) Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats. Toxicology 167(2):163–170 PubMed DOI
Engle-Stone R, Ndjebayi AO, Nankap M, Killilea DW, Brown KH (2014) Stunting prevalence, plasma zinc concentrations, and dietary zinc intakes in a nationally representative sample suggest a high risk of zinc deficiency among women and young children in Cameroon. J Nutr 144(3):382–391 PubMed DOI
Fanni D, Fanos V, Gerosa C, Piras M, Dessi A, Atzei A, Van EP, Gibo Y, Faa G (2014) Effects of iron and copper overload on the human liver: an ultrastructural study. Curr Med Chem 21(33):3768–3774 PubMed DOI
Farshori NN, Siddiqui MA, Al-Oqail MM, Al-Sheddi ES, Al-Massarani SM, Ahamed M, Ahmad J, Al-Khedhairy AA (2022) Copper oxide nanoparticles exhibit cell death through oxidative stress responses in human airway epithelial cells: a mechanistic study. Biol Trace Elem Res 200(12):5042–5051 PubMed DOI
Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 96(7):2889–2908 PubMed DOI
Franchitto N, Gandia-Mailly P, Georges B, Galinier A, Telmon N, Ducassé JL, Rougé D (2008) Acute copper sulphate poisoning: a case report and literature review. Resuscitation 78(1):92–96 PubMed DOI
Frederickson CJ, Koh J-Y, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6(6):449–462 PubMed DOI
Frelon S, Douki T, Favier A, Cadet J (2003) Hydroxyl radical is not the main reactive species involved in the degradation of DNA bases by copper in the presence of hydrogen peroxide. Chem Res Toxicol 16(2):191–197 PubMed DOI
Fu X, Zhang Y, Jiang W, Monnot AD, Bates CA, Zheng W (2014) Regulation of copper transport crossing brain barrier systems by Cu-ATPases: effect of manganese exposure. Toxicol Sci 139(2):432–451 PubMed DOI PMC
Gawande MB, Goswami A, Felpin F-X, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116(6):3722–3811 PubMed DOI
Giese A, Buchholz M, Herms J, Kretzschmar HA (2005) Mouse brain synaptosomes accumulate copper-67 efficiently by two distinct processes independent of cellular prion protein. J Mol Neurosci 27:347–354 PubMed DOI
Goma AA, Salama AR, Tohamy HG, Rashed RR, Shukry M, El-Kazaz SE (2024) Examining the influence of zinc oxide nanoparticles and bulk zinc oxide on rat brain functions: a comprehensive neurobehavioral, antioxidant, gene expression, and histopathological investigation. Biol Trace Elem Res 202(10):4654–4673 PubMed DOI PMC
Gower-Winter SD, Levenson CW (2012) Zinc in the central nervous system: from molecules to behavior. Biofactors 38(3):186–193 PubMed DOI PMC
Grabrucker AM, Garner CC, Boeckers TM, Bondioli L, Ruozi B, Forni F, Vandelli MA, Tosi G (2011) Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: in vitro evidences. PLoS One 6(3):e17851 PubMed DOI PMC
Gromadzka G, Tarnacka B, Flaga A, Adamczyk A (2020) Copper dyshomeostasis in neurodegenerative diseases—therapeutic implications. Int J Mol Sci 21(23):9259 PubMed DOI PMC
Guilloreau L, Combalbert S, Sournia-Saquet A, Mazarguil H, Faller P (2007) Redox chemistry of copper–amyloid-β: the generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state. Chembiochem 8(11):1317–1325 PubMed DOI
Haase H, Beyersmann D (2002) Intracellular zinc distribution and transport in C6 rat glioma cells. Biochem Biophys Res Commun 296(4):923–928 PubMed DOI
Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658 PubMed DOI
Hidalgo J, Aschner M, Zatta P, Vašák M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55(2):133–145 PubMed DOI
Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M (2015) Manganese is essential for neuronal health. Annu Rev Nutr 35(1):71–108 PubMed DOI PMC
Huang YZ, Pan E, Xiong Z-Q, McNamara JO (2008) Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 57(4):546–558 PubMed DOI
Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Aspects Med 34(2–3):612–619 PubMed DOI PMC
Jing X, Park JH, Peters TM, Thorne PS (2015) Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicol In Vitro 29(3):502–511 PubMed DOI PMC
Jomova K, Alomar SY, Valko R, Nepovimova E, Kuca K, Valko M (2025) The role of redox-active iron, copper, manganese, and redox-inactive zinc in toxicity, oxidative stress, and human diseases. EXCLI J 24:880 PubMed PMC
Joshi A, Rastedt W, Faber K, Schultz AG, Bulcke F, Dringen R (2016) Uptake and toxicity of copper oxide nanoparticles in C6 glioma cells. Neurochem Res 41:3004–3019 PubMed DOI
Juriol LV, Gobetto MN, Mendes Garrido Abregú F, Dasso ME, Pineda G, Güttlein L, Carranza A, Podhajcer O, Toblli JE, Elesgaray R (2018) Cardiac changes in apoptosis, inflammation, oxidative stress, and nitric oxide system induced by prenatal and postnatal zinc deficiency in male and female rats. Eur J Nutr 57:569–583 PubMed DOI
Kaler SG (2011) ATP7A-related copper transport diseases—emerging concepts and future trends. Nat Rev Neurol 7(1):15–29 PubMed DOI PMC
Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cellular and Molecular Life Sciences CMLS 61:49–68 PubMed DOI PMC
Kao Y-Y, Cheng T-J, Yang D-M, Wang C-T, Chiung Y-M, Liu P-S (2012) Demonstration of an olfactory bulb–brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J Mol Neurosci 48:464–471 PubMed DOI
Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732 PubMed DOI
Kidane TZ, Farhad R, Lee KJ, Santos A, Russo E, Linder MC (2012) Uptake of copper from plasma proteins in cells where expression of CTR1 has been modulated. Biometals 25:697–709 PubMed DOI
Kim MS, Park DG, Gil YE, Shin IJ, Yoon JH (2023) The effect of levodopa treatment on vascular endothelial function in Parkinson’s disease. J Neurol 270(6):2964–2968 PubMed DOI
Kitala-Tańska K, Socha K, Juśkiewicz J, Krajewska-Włodarczyk M, Majewski M (2024) The effect of an elevated dietary copper level on the vascular contractility and oxidative stress in middle-aged rats. Nutrients 16(8):1172 PubMed DOI PMC
Knezevic J, Starchl C, Tmava Berisha A, Amrein K (2020) Thyroid-gut-axis: how does the microbiota influence thyroid function? Nutrients 12(6):1769 PubMed DOI PMC
Kodama H (1993) Recent developments in Menkes disease. J Inherit Metab Dis 16(4):791–799 PubMed DOI
Kreyling W, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65(20):1513–1530 PubMed DOI
Kumar H, Katyal J, Gupta YK (2015) Low dose zinc supplementation beneficially affects seizure development in experimental seizure models in rats. Biol Trace Elem Res 163(1):208–216 PubMed DOI
Kumar JS, Murmu NC, Samanta P, Banerjee A, Ganesh RS, Inokawa H, Kuila T (2018) Novel synthesis of a Cu 2 O–graphene nanoplatelet composite through a two-step electrodeposition method for selective detection of hydrogen peroxide. New J Chem 42(5):3574–3581 DOI
Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339–354 DOI
Lech T, Sadlik J (2007) Copper concentration in body tissues and fluids in normal subjects of southern Poland. Biol Trace Elem Res 118:10–15 PubMed DOI
Lee J-Y, Kim JS, Byun H-R, Palmiter RD, Koh J-Y (2011) Dependence of the histofluorescently reactive zinc pool on zinc transporter-3 in the normal brain. Brain Res 1418:12–22 PubMed DOI
Lee J, Pena MMO, Nose Y, Thiele DJ (2002a) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277(6):4380–4387 PubMed DOI
Lee J, Petris MJ, Thiele DJ (2002b) Characterization of mouse embryonic cells deficient in the Ctr1 high affinity copper transporter: identification of a Ctr1-independent copper transport system. J Biol Chem 277(43):40253–40259 PubMed DOI
Lee SJ, Michel SL (2014) Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation. Acc Chem Res 47(8):2643–2650 PubMed DOI
Lei C, Liao J, Li Q, Shi J, Zhang H, Guo J, Han Q, Hu L, Li Y, Pan J (2021) Copper induces mitochondria-mediated apoptosis via AMPK-mTOR pathway in hypothalamus of Pigs. Ecotoxicol Environ Saf 220:112395 PubMed DOI
Leteba GM, Lang CI (2013) Synthesis of bimetallic platinum nanoparticles for biosensors. Sensors 13(8):10358–10369 PubMed DOI PMC
Levenson C, Tassabehji N (2007) Role and regulation of copper and zinc transport proteins in the central nervous system. Handbook of Neurochemistry and Molecular Neurobiology, pp 257–284
Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology 387:43–56 PubMed DOI
Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L (2019) Recent progress in drug delivery. Acta Pharm Sin B 9(6):1145–1162 PubMed DOI PMC
Li F, Zhou X, Zhu J, Ma J, Huang X, Wong ST (2007) High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles. BMC Biotechnol 7:1–11 DOI
Li N, Sun Q, Yu Z, Gao X, Pan W, Wan X, Tang B (2018) Nuclear-targeted photothermal therapy prevents cancer recurrence with near-infrared triggered copper sulfide nanoparticles. ACS Nano 12(6):5197–5206 PubMed DOI
Lin W, Mohandas B, Fontaine CP, Colvin RA (2007) Release of intracellular Zn 2+ in cultured neurons after brief exposure to low concentrations of exogenous nitric oxide. Biometals 20:891–901 PubMed DOI
Linder MC (2013) Biochemistry of copper. Springer Science & Business Media
Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):S797–S811 DOI
Lucero H, Kagan H (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63:2304–2316 PubMed DOI PMC
Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, Strafaci JA, Freedman ML (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150(1):40–44 PubMed DOI
Maret W (2016) The metals in the biological periodic system of the elements: concepts and conjectures. Int J Mol Sci 17(1):66 PubMed DOI PMC
Maurer I, Zierz S, Möller HJ (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 21(3):455–462 PubMed DOI
McCall KA, Huang C-c, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130(5):1437S-1446S PubMed DOI
McCord MC, Aizenman E (2014) The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front Aging Neurosci 6:77 PubMed DOI PMC
Mehmet K, Alper EM, Oytun E (2022) Anti-seizure effect of zinc on PTZ-induced epilepsy in rat model. Bratislava Medical Journal/Bratislavské Lekárske Listy 123(9)
Mirzaei F, Jalili C, Khodadadi I, Hosseini NF, Majdoub N, Naseri N, Mirzaei A, Abbasi E (2025) ZnO Nanoparticles Normalize Pancreas Function via the GLP-1 and Oxidative Stress Pathways in Diabetic Rats. Biological Trace Element Research, pp 1–15
Mocchegiani E, Romeo J, Malavolta M, Costarelli L, Giacconi R, Diaz L-E, Marcos A (2013) Zinc: dietary intake and impact of supplementation on immune function in elderly. Age 35:839–860 PubMed DOI
Mohamed Mowafy S, Hegazy AA, Mandour DA, El-Fatah SSA (2021) Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol 45(4–5):307–318 PubMed DOI
Morris DR, Levenson CW (2012) Ion channels and zinc: mechanisms of neurotoxicity and neurodegeneration. J Toxicol 1:785647
Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, Babapoor A, Arjmand O (2018) Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif Cells Nanomed Biotechnol 46(sup3):855–872 DOI
Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, Shilpa N, Singh SB, Thriveni M, Aiyaz M (2021) Plant-mediated zinc oxide nanoparticles: advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics 13(10):1662 PubMed DOI PMC
Musci G, Polticelli F, Calabrese L (1999) Structure/function relationships in ceruloplasmin. Copper Transport and Its Disorders: Molecular and Cellular Aspects. Springer, Boston, MA, pp 175–182 DOI
Napolitano C, Scaglianti M, Scalambra E, Manfredini S, Ferraro L, Beggiato S, Vertuani S (2009) Carnitine conjugate of nipecotic acid: a new example of dual prodrug. Molecules 14(9):3268–3274 PubMed DOI PMC
Nazem MR, Asadi M, Jabbari N, Allameh A (2019) Effects of zinc supplementation on superoxide dismutase activity and gene expression, and metabolic parameters in overweight type 2 diabetes patients: a randomized, double-blind, controlled trial. Clin Biochem 69:15–20 PubMed DOI
Niciu M, Ma X-M, El Meskini R, Ronnett G, Mains R, Eipper B (2006) Developmental changes in the expression of ATP7A during a critical period in postnatal neurodevelopment. Neuroscience 139(3):947–964 PubMed DOI
O’Dell BL, Browning JD (2013) Impaired calcium entry into cells is associated with pathological signs of zinc deficiency. Adv Nutr 4(3):287–293 PubMed DOI PMC
Padhye-Pendse A, Umrani R, Paknikar K, Jadhav S, Rajwade J (2024) Zinc oxide nanoparticles prevent the onset of diabetic nephropathy by inhibiting multiple pathways associated with oxidative stress. Life Sci 347:122667 PubMed DOI
Pamphlett R, Kum Jew S (2019) Mercury is taken up selectively by cells involved in joint, bone, and connective tissue disorders. Front Med 6:168 DOI
Parmar JA, Modi GD (2020) Trace elements (Copper and Zinc) in type 2 DM patients. Int J Clin Biochem Res 7(1):36–39 DOI
Perreault F, Melegari SP, da Costa CH, Rossetto ALOF, Popovic R, Matias WG (2012) Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci Total Environ 441:117–124 PubMed DOI
Perry J, Shin D, Getzoff E, Tainer J (2010) The structural biochemistry of the superoxide dismutases. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1804(2):245–262 PubMed DOI
Petters C, Irrsack E, Koch M, Dringen R (2014) Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 39:1648–1660 PubMed DOI
Pfaender S, Föhr K, Lutz A-K, Putz S, Achberger K, Linta L, Liebau S, Boeckers TM (2016) Grabrucker AM (2016) Cellular zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem cells. Neural Plasticity 1:3760702
Portbury SD, Adlard PA (2017) Zinc signal in brain diseases. Int J Mol Sci 18(12):2506 PubMed DOI PMC
Privalova LI, Katsnelson BA, Loginova NV, Gurvich VB, Shur VY, Valamina IE, Makeyev OH, Sutunkova MP, Minigalieva IA, Kireyeva EP (2014) Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci 15(7):12379–12406 PubMed DOI PMC
Puchkova LV, Babich PS, Zatulovskaia YA, Ilyechova EY, Di Sole F (2018) Copper metabolism of newborns is adapted to milk ceruloplasmin as a nutritive source of copper: overview of the current data. Nutrients 10(11):1591 PubMed DOI PMC
Qi Z, Liang J, Pan R, Dong W, Shen J, Yang Y, Zhao Y, Shi W, Luo Y, Ji X (2016) Zinc contributes to acute cerebral ischemia-induced blood–brain barrier disruption. Neurobiol Dis 95:12–21 PubMed DOI
Qian Y, Tiffany-Castiglioni E, Welsh J, Harris ED (1998) Copper efflux from murine microvascular cells requires expression of the menkes disease Cu-ATPase. J Nutr 128(8):1276–1282 PubMed DOI
Rae T, Schmidt P, Pufahl R, Culotta V, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284(5415):805–808 PubMed DOI
Rana A, Yadav K, Jagadevan S (2020) A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J Clean Prod 272:122880 DOI
Ristic AJ, Sokic D, Bascarevic V, Spasic S, Vojvodic N, Savic S, Raicevic S, Kovacevic M, Savic D, Spasojevic I (2014) Metals and electrolytes in sclerotic hippocampi in patients with drug-resistant mesial temporal lobe epilepsy. Epilepsia 55(5):E34–E37 PubMed DOI
Robinson NJ, Winge DR (2010) Copper metallochaperones. Annu Rev Biochem 79:537–562 PubMed DOI PMC
Sauer SW, Merle U, Opp S, Haas D, Hoffmann GF, Stremmel W, Okun JG (2011) Severe dysfunction of respiratory chain and cholesterol metabolism in Atp7b−/− mice as a model for Wilson disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1812(12):1607–1615 PubMed DOI
Scassellati C, Bonvicini C, Benussi L, Ghidoni R, Squitti R (2020) Neurodevelopmental disorders: metallomics studies for the identification of potential biomarkers associated to diagnosis and treatment. J Trace Elem Med Biol 60:126499 PubMed DOI
Scheiber IF, Dringen R (2013) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 62(5):556–565 PubMed DOI
Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57 PubMed DOI
Sensi SL, Canzoniero LM, Yu SP, Ying HS, Koh J-Y, Kerchner GA, Choi DW (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 17(24):9554–9564 PubMed DOI PMC
Severo JS, Morais JBS, de Freitas TEC, Andrade ALP, Feitosa MM, Fontenelle LC, de Oliveira ARS, Cruz KJC, do Nascimento Marreiro D (2019) The role of zinc in thyroid hormones metabolism. Int J Vitam Nutr Res. https://doi.org/10.1024/0300-9831/a000262 PubMed DOI
Shahid MA, Ashraf MA, Sharma S (2018) Physiology, thyroid hormone. https://www.ncbi.nlm.nih.gov/books/NBK500006/
Shahrokhian S, Kohansal R, Ghalkhani M, Amini MK (2015) Electrodeposition of copper oxide nanoparticles on precasted carbon nanoparticles film for electrochemical investigation of anti-HIV drug nevirapine. Electroanalysis 27(8):1989–1997 DOI
Shanker Sharma H, Sharma A (2012) Neurotoxicity of engineered nanoparticles from metals. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 11(1):65–80
Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870 PubMed DOI
Sheline CT, Behrens MM, Choi DW (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. J Neurosci 20(9):3139–3146 PubMed DOI PMC
Sheline CT, Cai AL, Zhu J, Shi C (2010) Serum or target deprivation-induced neuronal death causes oxidative neuronal accumulation of Zn2+ and loss of NAD+. Eur J Neurosci 32(6):894–904 PubMed DOI PMC
Smart TG, Xie X, Krishek BJ (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42(3):393–441 PubMed DOI
Spencer WA, Jeyabalan J, Kichambre S, Gupta RC (2011) Oxidatively generated DNA damage after Cu (II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: role of reactive oxygen species. Free Radic Biol Med 50(1):139–147 PubMed DOI
Suh SW, Aoyama K, Alano CC, Anderson CM, Hamby AM, Swanson RA (2007) Zinc inhibits astrocyte glutamate uptake by activation of poly (ADP-ribose) polymerase-1. Mol Med 13(7–8):344–349 PubMed DOI PMC
Takeda A, Minami A, Seki Y, Oku N (2004) Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus. J Neurosci Res 75(2):225–229 PubMed DOI
Taneja S, Mandal R, Girhotra S (2006) Long term excessive Zn–supplementation promotes metabolic syndrome-X in Wistar rats fed sucrose and fat rich semisynthetic diet. Indian J Exp Biol 44:705–718 PubMed
Taskozhina G, Batyrova G, Umarova G, Issanguzhina Z, Kereyeva N (2024) The manganese–bone connection: investigating the role of manganese in bone health. J Clin Med 13(16):4679 PubMed DOI PMC
Telianidis J, Hung YH, Materia S, Fontaine SL (2013) Role of the P-type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 5:44 PubMed DOI PMC
Thirumoorthy N, Shyam Sunder A, Manisenthil Kumar K, Ganesh G, Chatterjee M (2011) A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol 9(1):1–7 DOI
Tian L, Lin B, Wu L, Li K, Liu H, Yan J, Liu X, Xi Z (2015) Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Sci Rep 5(1):16117 PubMed DOI PMC
Tomat AL, Veiras LC, Aguirre S, Fasoli H, Elesgaray R, Caniffi C, Costa MÁ, Arranz CT (2013) Mild zinc deficiency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology. Nutrition 29(3):568–573 PubMed DOI
Ullah H, Ullah I, Rehman G, Hamayun M, Ali S, Rahman A, Lee I-J (2022) Magnesium and zinc oxide nanoparticles from datura alba improve cognitive impairment and blood brain barrier leakage. Molecules 27(15):4753 PubMed DOI PMC
Umrani RD, Paknikar KM (2014) Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced type 1 and 2 diabetic rats. Nanomedicine 9(1):89–104 PubMed DOI
Valdiglesias V, Costa C, Kiliç G, Costa S, Pásaro E, Laffon B, Teixeira JP (2013) Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 55:92–100 PubMed DOI
Vianna AS, Matos EP, Jesus IM, Asmus CIRF, Câmara VM (2019) Human exposure to mercury and its hematological effects: a systematic review. Cad Saude Publica 35:e00091618 PubMed DOI
von Bülow V, Dubben S, Engelhardt G, Hebel S, Plümäkers B, Heine H, Rink L, Haase H (2007) Zinc-dependent suppression of TNF-α production is mediated by protein kinase A-induced inhibition of Raf-1, IκB kinase β, and NF-κB. J Immunol 179(6):4180–4186 DOI
Weishaupt A-K, Ruecker L, Meiners T, Schwerdtle T, Silva Avila D, Aschner M, Bornhorst J (2024) Copper-mediated neurotoxicity and genetic vulnerability in the background of neurodegenerative diseases in C. elegans. Toxicol Sci 201(2):254–262 PubMed DOI PMC
Weiss JH, Sensi SL, Koh JY (2000) Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21(10):395–401 PubMed DOI
Weng S, Zheng Y, Zhao C, Zhou J, Lin L, Zheng Z, Lin X (2013) CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications. Microchim Acta 180:371–378 DOI
Winter JO (2007) Nanoparticles and nanowires for cellular engineering. Nanotechnologies for the Life Sciences: Online
Xie Y, Wang Y, Zhang T, Ren G, Yang Z (2012) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19:1–11 DOI
Xu Y, Li A, Li X, Deng X, Gao X-j (2023) Zinc deficiency induces inflammation and apoptosis via oxidative stress in the kidneys of mice. Biol Trace Elem Res 201(2):739–750 PubMed DOI
Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78 PubMed DOI
Yang S, Li X, Yan J, Jiang F, Fan X, Jin J, Zhang W, Zhong D, Li G (2024) Disulfiram downregulates ferredoxin 1 to maintain copper homeostasis and inhibit inflammation in cerebral ischemia/reperfusion injury. Sci Rep 14(1):15175 PubMed DOI PMC
Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IM, Qari HA, Umar K, Mohamad Ibrahim MN (2020) Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8:341 PubMed DOI PMC
Yin Y, Lin Q, Sun H, Chen D, Wu Q, Chen X, Li S (2012) Cytotoxic effects of ZnO hierarchical architectures on RSC96 Schwann cells. Nanoscale Res Lett 7:1–8 DOI
Yoshimura N, Kida K, Usutani S, Nishimura M (1995) Histochemical localization of copper in various organs of brindled mice after copper therapy. Pathol Int 45(1):10–18 PubMed DOI
Yousef MI, Roychoudhury S, Jafaar KS, Slama P, Kesari KK, Kamel MAE-N (2022) Aluminum oxide and zinc oxide induced nanotoxicity in rat brain, heart, and lung. Physiol Res 71(5):677 PubMed DOI PMC
Yuan R, Li H, Yin X, Zhang L, Lu J (2018) Stable controlled growth of 3D CuO/Cu nanoflowers by surfactant-free method for non-enzymatic hydrogen peroxide detection. J Mater Sci Technol 34(9):1692–1698 DOI
Yurkova IL, Arnhold J, Fitzl G, Huster D (2011) Fragmentation of mitochondrial cardiolipin by copper ions in the Atp7b−/− mouse model of Wilson’s disease. Chem Phys Lipids 164(5):393–400 PubMed DOI
Yurkova IL, Stuckert F, Kisel MA, Shadyro OI, Arnhold J, Huster D (2008) Formation of phosphatidic acid in stressed mitochondria. Arch Biochem Biophys 480(1):17–26 PubMed DOI
Zeng H, Cao JJ, Combs GF Jr (2013) Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients 5(1):97–110 PubMed DOI PMC
Zhang F, Li X, Wei Y (2023) Selenium and selenoproteins in health. Biomolecules 13(5):799 PubMed DOI PMC
Zheng W, Monnot AD (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 133(2):177–188 PubMed DOI
Zhong Y, Li Y, Li S, Feng S, Zhang Y (2014) Nonenzymatic hydrogen peroxide biosensor based on four different morphologies of cuprous oxide nanocrystals. RSC Adv 4(76):40638–40642 DOI
Zhou H, Yao L, Jiang X, Sumayyah G, Tu B, Cheng S, Qin X, Zhang J, Zou Z, Chen C (2021a) Pulmonary exposure to copper oxide nanoparticles leads to neurotoxicity via oxidative damage and mitochondrial dysfunction. Neurotox Res 39(4):1160–1170 PubMed DOI
Zhou H, Yao L, Jiang X, Sumayyah G, Tu B, Cheng S, Qin X, Zhang J, Zou Z, Chen C (2021b) Pulmonary exposure to copper oxide nanoparticles leads to neurotoxicity via oxidative damage and mitochondrial dysfunction. Neurotox Res 39:1160–1170 PubMed DOI
Zischka H, Lichtmannegger J, Schmitt S, Jägemann N, Schulz S, Wartini D, Jennen L, Rust C, Larochette N, Galluzzi L (2011) Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest 121(4):1508–1518 PubMed DOI PMC
Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 13(6):064031 PubMed DOI