The role of redox-active iron, copper, manganese, and redox-inactive zinc in toxicity, oxidative stress, and human diseases

. 2025 ; 24 () : 880-954. [epub] 20250725

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40933952

Given the key importance played by the redox-active metals iron (Fe), copper (Cu), and manganese (Mn) in vital cellular processes, such as DNA synthesis, oxidative phosphorylation, the detoxification of reactive oxygen species (ROS), and angiogenesis, it is not surprising that their dysregulation plays a causative role in many human diseases. The same applies to redox-inactive zinc (Zn), which is involved in numerous biological functions, and serves as a structural element, a catalyst, and a participant in both intracellular and intercellular signaling and in maintaining immune system function. An imbalance in redox active (Fe, Cu, Mn) or redox inactive (Zn) metal ions, whether in excess or deficiency, is harmful and may disrupt the structural, regulatory, and catalytic roles of various antioxidant enzymes (superoxide dismutases (SODs), catalase (CAT), glutathione peroxidases (GPxs)), proteins, receptors, transporters, alter sulfhydryl homeostasis, generate high levels of ROS (e.g., hydroxyl radicals by the Fenton reaction), initiate lipid peroxidation, cause DNA damage, and lead to cell death via mechanisms such as ferroptosis, cuproptosis, cellular senescence, or inflammation. Maintaining redox homeostasis is essential for regulating numerous cellular signaling pathways. Redox-sensitive signaling pathways, such as the nuclear factor kappa B (NF-κB), mitogen-activated protein kinase kinase (MAPK), and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, form an intricate network that governs cellular responses to redox metal-induced oxidative stress and inflammation. The Nrf2 pathway is primarily responsible for mediating antioxidant defenses, whereas the NF-κB and MAPK pathways play roles in proinflammatory and stress-related responses. Dysregulation of redox-active Fe, Cu, Mn, and redox-inactive Zn can alter epigenetic regulatory mechanisms such as DNA methylation, histone modification, and non-coding RNA expression. The dyshomeostasis of metal ions is closely related to the pathogenesis of lung, renal, and gastrointestinal diseases, neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease), psychiatric conditions (schizophrenia), and various cancers. This review summarizes recent findings on the role of iron, copper, manganese, and zinc in maintaining physiological functions, redox homeostasis, and human diseases. See also the graphical abstract(Fig. 1).

Zobrazit více v PubMed

Abdo AI, Tran HB, Hodge S, Beltrame JF, Zalewski PD. Zinc Homeostasis Alters Zinc Transporter Protein Expression in Vascular Endothelial and Smooth Muscle Cells. Biol Trace Elem Res. 2021;199(6):2158–2171. doi: 10.1007/s12011-020-02328-z. Available from: http://dx.doi.org/10.1007/s12011-020-02328-z. PubMed DOI

Abelein A, Ciofi-Baffoni S, Mörman C, Kumar R, Giachetti A, Piccioli M, et al. Molecular Structure of Cu(II)-Bound Amyloid-β Monomer Implicated in Inhibition of Peptide Self-Assembly in Alzheimer’s Disease. JACS Au. 2022;2(11):2571–84. doi: 10.1021/jacsau.2c00438. Available from: http://dx.doi.org/10.1021/jacsau.2c00438. PubMed DOI PMC

Adeoti ML, Oguntola AS, Akanni EO, Agodirin OS, Oyeyemi GM. Trace elements;copper, zinc and selenium, in breast cancer afflicted female patients in LAUTECH Osogbo, Nigeria. Indian J Cancer. 2015;52(1):106–109. doi: 10.4103/0019-509X.175573. Available from: http://dx.doi.org/10.4103/0019-509X.175573. PubMed DOI

Aguirre JD, Culotta VC. Battles with iron: manganese in oxidative stress protection. J Biol Chem. 2012;287(17):13541–13548. doi: 10.1074/jbc.R111.312181. Available from: http://dx.doi.org/10.1074/jbc.R111.312181. PubMed DOI PMC

Akatsuka S, Yamashita Y, Ohara H, Liu Y-T, Izumiya M, Abe K, et al. Fenton Reaction Induced Cancer in Wild Type Rats Recapitulates Genomic Alterations Observed in Human Cancer. PLoS ONE. 2012;7:e43403. doi: 10.1371/journal.pone.0043403. Available from: http://dx.doi.org/10.1371/journal.pone.0043403. PubMed DOI PMC

Ali SF, Duhart HM, Newport GD, Lipe GW, Slikker W , Jr Manganese-induced reactive oxygen species: comparison between Mn+2 and Mn+3. Neurodegeneration. 1995;4:329–334. doi: 10.1016/1055-8330(95)90023-3. Available from: http://dx.doi.org/10.1016/1055-8330(95)90023-3. PubMed DOI

An WL, Bjorkdahl C, Liu R, Cowburn RF, Winblad B, Pei JJ. Mechanism of zinc-induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3beta in SH-SY5Y neuroblastoma cells. J Neurochem. 2005;92(5):1104–1115. doi: 10.1111/j.1471-4159.2004.02948.x. Available from: http://dx.doi.org/10.1111/j.1471-4159.2004.02948.x. PubMed DOI

Anderson CT, Radford RJ, Zastrow ML, Zhang DY, Apfel UP, Lippard SJ, Tzounopoulos T. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc Natl Acad Sci U S A. 2015;112(20):E2705–E2714. doi: 10.1073/pnas.1503348112. Available from: http://dx.doi.org/10.1073/pnas.1503348112. PubMed DOI PMC

Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol. 2000;59(1):95–104. doi: 10.1016/s0006-2952(99)00301-9. Available from: http://dx.doi.org/10.1016/s0006-2952(99)00301-9. PubMed DOI

Archibald FS, Fridovich I. The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys. 1982;214(2):452–463. doi: 10.1016/0003-9861(82)90049-2. Available from: http://dx.doi.org/10.1016/0003-9861(82)90049-2. PubMed DOI

Archibald FS, Tyree C. Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys. 1987;256:638–650. doi: 10.1016/0003-9861(87)90621-7. Available from: http://dx.doi.org/10.1016/0003-9861(87)90621-7. PubMed DOI

Armstrong C, Leong W, Lees GJ. Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (Cu+2), iron (Fe+3) and zinc in the hippocampus. Brain Res. 2001;892:51–62. doi: 10.1016/s0006-8993(00)03195-4. Available from: http://dx.doi.org/10.1016/s0006-8993(00)03195-4. PubMed DOI

Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Mol Aspects Med. 2005;26(4-5):353–362. doi: 10.1016/j.mam.2005.07.003. Available from: http://dx.doi.org/10.1016/j.mam.2005.07.003. PubMed DOI PMC

Aschner M, Dorman DC. Review of Manganese Toxicokinetics. Health Canada, Air Quality and Health Division. Ottawa, ON, Canada; 2002.

Aschner M, Erikson KM, Dorman DC. Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol. 2005;35(1):1–32. doi: 10.1080/10408440590905920. Available from: http://dx.doi.org/10.1080/10408440590905920. PubMed DOI

Aschner M, Guilarte TR, Schneider JS, Zheng W. Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol. 2007;221(2):131–147. doi: 10.1016/j.taap.2007.03.001. Available from: http://dx.doi.org/10.1016/j.taap.2007.03.001. PubMed DOI PMC

Ayton S, Finkelstein DI, Cherny RA, Bush AI, Adlard PA. Zinc in Alzheimer’s and Parkinson’s Diseases. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., editors. Encyclopedia of Metalloproteins. New York, NY: Springer; 2013. Available from: http://dx.doi.org/10.1007/978-1-4614-1533-6_214. DOI

Bae JH, Jang BC, Suh SI, Ha E, Baik HH, Kim SS, Lee MY, Shin DH. Manganese induces inducible nitric oxide synthase (iNOS) expression via activation of both MAP kinase and PI3K/Akt pathways in BV2 microglial cells. Neurosci Lett. 2006;398(1-2):151–154. doi: 10.1016/j.neulet.2005.12.067. Available from: http://dx.doi.org/10.1016/j.neulet.2005.12.067. PubMed DOI

Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA. Role of Copper in the Onset of Alzheimer’s Disease Compared to Other Metals. Front Aging Neurosci. 2018;9:446. doi: 10.3389/fnagi.2017.00446. Available from: http://dx.doi.org/10.3389/fnagi.2017.00446. PubMed DOI PMC

Bahar E, Kim JY, Yoon H. Quercetin Attenuates Manganese-Induced Neuroinflammation by Alleviating Oxidative Stress through Regulation of Apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways. Int J Mol Sci. 2017;18(9):1989. doi: 10.3390/ijms18091989. Available from: http://dx.doi.org/10.3390/ijms18091989. PubMed DOI PMC

Bai Y, Wang G, Fu W, et al. Circulating essential metals and lung cancer: risk assessment and potential molecular effects. Environ Int. 2019;127:685–693. doi: 10.1016/j.envint.2019.04.021. Available from: PubMed DOI

Bai Y, Wang G, Fu W, Lu Y, et al. Circulating essential metals and lung cancer: Risk assessment and potential molecular effects. Environ Int. 2019;127:685–693. doi: 10.1016/j.envint.2019.04.021. Available from: http://dx.doi.org/10.1016/j.envint.2019.04.021. PubMed DOI

Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, et al. Consequences of Disturbing Manganese Homeostasis. International Journal of Molecular Sciences. 2023;24(19):14959. doi: 10.3390/ijms241914959. Available from: http://dx.doi.org/10.3390/ijms241914959. PubMed DOI PMC

Bajpai AK, Gu Q, Orgil B-O, Xu F, Torres-Rojas C, Zhao W, et al. Cardiac copper content and its relationship with heart physiology: Insights based on quantitative genetic and functional analyses using BXD family mice. Front Cardiovasc Med. 2023;10:1089963. doi: 10.3389/fcvm.2023.1089963. Available from: http://dx.doi.org/10.3389/fcvm.2023.1089963. PubMed DOI PMC

Baltaci AK, Yuce K. Zinc transporter proteins. Neurochem Res. 2018;43(3):517–530. doi: 10.1007/s11064-017-2454-y. Available from: PubMed DOI

Ban X, Wan H, Wan X, Tan Y, Hu X, Ban H, et al. Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Curr Med Sci. 2024;44:28–50. doi: 10.1007/s11596-024-2832-z. Available from: http://dx.doi.org/10.1007/s11596-024-2832-z. PubMed DOI

Barbariga M, Curnis F, Spitaleri A, Andolfo A, Zucchelli C, Lazzaro M, et al. Oxidation-induced Structural Changes of Ceruloplasmin Foster NGR Motif Deamidation That Promotes Integrin Binding and Signaling. J Biol Chem. 2014;289(6):3736–48. doi: 10.1074/jbc.M113.520981. Available from: http://dx.doi.org/10.1074/jbc.M113.520981. PubMed DOI PMC

Barceloux DG. Manganese. J Toxicol Clin Toxicol. 1999;37(2):293–307. doi: 10.1081/clt-100102427. Available from: http://dx.doi.org/10.1081/clt-100102427. PubMed DOI

Barros ANAB, Dourado MET, Pedrosa L de FC, Leite-Lais L. Association of Copper Status with Lipid Profile and Functional Status in Patients with Amyotrophic Lateral Sclerosis. J Nutr Metab. 2018:5678698. doi: 10.1155/2018/5678698. Available from: http://dx.doi.org/10.1155/2018/5678698. PubMed DOI PMC

Bassey-Archibong B. I., Kwiecien J.M., Milosavljevic S.B., Hallett R.M. et al. Kaiso depletion attenuates transforming growth factor-β signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208. doi: 10.1038/oncsis.2016.17. Available from: http://dx.doi.org/10.1038/oncsis.2016.17. PubMed DOI PMC

Behrend L, Mohr A, Dick T, Zwacka RM. Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol. 2005;25(17):7758–7769. doi: 10.1128/MCB.25.17.7758-7769.2005. Available from: http://dx.doi.org/10.1128/MCB.25.17.7758-7769.2005. PubMed DOI PMC

Bendellaa M, Lelièvre P, Coll JL, Sancey L, Deniaud A, Busser B. Roles of zinc in cancers: From altered metabolism to therapeutic applications. Int J Cancer. 2024;154(1):7–20. doi: 10.1002/ijc.34679. Available from: http://dx.doi.org/10.1002/ijc.34679. PubMed DOI

Benters J, Flögel U, Schäfer T, Leibfritz D, Hechtenberg S, Beyersmann D. Study of the interactions of cadmium and zinc ions with cellular calcium homoeostasis using 19F-NMR spectroscopy. Biochem J. 1997;322:793–799. doi: 10.1042/bj3220793. Available from: http://dx.doi.org/10.1042/bj3220793. PubMed DOI PMC

Bentley-DeSousa A, Clegg D, Ferguson SM. LRRK2, lysosome damage, and Parkinson's disease. Curr Opin Cell Biol. 2025;93:102482. doi: 10.1016/j.ceb.2025.102482. Available from: http://dx.doi.org/10.1016/j.ceb.2025.102482. PubMed DOI

Bi M, Du X, Jiao Q, Liu Z, Jiang H. α-Synuclein Regulates Iron Homeostasis via Preventing Parkin-Mediated DMT1 Ubiquitylation in Parkinson’s Disease Models. ACS Chem Neurosci. 2020;11:1682–91. doi: 10.1021/acschemneuro.0c00196. Available from: http://dx.doi.org/10.1021/acschemneuro.0c00196. PubMed DOI

Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, et al. Interaction of α-Synuclein with Divalent Metal Ions Reveals Key Differences:  A Link between Structure, Binding Specificity and Fibrillation Enhancement. J Am Chem Soc. 2006;128:9893–901. doi: 10.1021/ja0618649. Available from: http://dx.doi.org/10.1021/ja0618649. PubMed DOI

Bisaglia M, Bubacco L. Copper Ions and Parkinson’s Disease: Why Is Homeostasis So Relevant? Biomolecules. 2020;10(2):195. doi: 10.3390/biom10020195. Available from: http://dx.doi.org/10.3390/biom10020195. PubMed DOI PMC

Bitirim CV. The role of zinc transporter proteins as predictive and prognostic biomarkers of hepatocellular cancer. PeerJ. 2021;9:e12314. doi: 10.7717/peerj.12314. Available from: http://dx.doi.org/10.7717/peerj.12314. PubMed DOI PMC

Bjorklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J. Metals and Parkinson’s Disease: Mechanisms and Biochemical Processes. Curr Med Chem. 2018;25(19):2198–214. doi: 10.2174/0929867325666171129124616. Available from: http://dx.doi.org/10.2174/0929867325666171129124616. PubMed DOI

Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277–285. doi: 10.1016/j.autrev.2014.11.008. Available from: http://dx.doi.org/10.1016/j.autrev.2014.11.008. PubMed DOI

Bonda DJ, Wang X, Lee H-G, Smith MA, Perry G, Zhu X. Neuronal failure in Alzheimer’s disease: a view through the oxidative stress looking-glass. Neurosci Bull. 2014;30:243–52. doi: 10.1007/s12264-013-1424-x. Available from: http://dx.doi.org/10.1007/s12264-013-1424-x. PubMed DOI PMC

Bourassa MW, Leskovjan AC, Tappero RV, Farquhar ER, Colton CA, Van Nostrand WE, et al. Elevated copper in the amyloid plaques and iron in the cortex are observed in mouse models of Alzheimer’s disease that exhibit neurodegeneration. Biomed Spectrosc Imaging. 2013;2(2):129–139. doi: 10.3233/BSI-130041. Available from: http://dx.doi.org/10.3233/BSI-130041. PubMed DOI PMC

Bozack AK, Rifas-Shiman SL, Coull BA, Baccarelli AA, Wright RO, Amarasiriwardena C, Gold DR, Oken E, Hivert MF, Cardenas A. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals. Clin Epigenetics. 2021;13(1):208. doi: 10.1186/s13148-021-01198-z. Available from: http://dx.doi.org/10.1186/s13148-021-01198-z. PubMed DOI PMC

Bozym RA, Chimienti F, Giblin LJ, Gross GW, Korichneva I, Li Y, Libert S, Maret W, Parviz M, Frederickson CJ, Thompson RB. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp Biol Med (Maywood) 2010;235(6):741–750. doi: 10.1258/ebm.2010.009258. Available from: http://dx.doi.org/10.1258/ebm.2010.009258. PubMed DOI PMC

Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45:466–472. doi: 10.1016/j.exger.2010.01.003. Available from: http://dx.doi.org/10.1016/j.exger.2010.01.003. PubMed DOI PMC

Bray TM, Bettger WJ. The physiological role of zinc as an antioxidant. Free Radic Biol Med. 1990;8(3):281–291. doi: 10.1016/0891-5849(90)90076-u. Available from: http://dx.doi.org/10.1016/0891-5849(90)90076-u. PubMed DOI

Bredow S, Falgout MM, March TH, Yingling CM, et al. Subchronic inhalation of soluble manganese induces expression of hypoxia-associated angiogenic genes in adult mouse lungs. Toxicol Appl Pharmacol. 2007;221(2):148–157. doi: 10.1016/j.taap.2007.03.010. Available from: http://dx.doi.org/10.1016/j.taap.2007.03.010. PubMed DOI PMC

Brem A. Angiogenesis and cancer control: from concept to therapeutic trial. Cancer Control. 1999;6(5):436–458. PubMed

Bremner I. Manifestations of copper excess. Am J Clin Nutr. 1998;67:1069S–1073S. doi: 10.1093/ajcn/67.5.1069S. Available from: http://dx.doi.org/10.1093/ajcn/67.5.1069S. PubMed DOI

Breuer W, Hershko C, Cabantchik ZI. The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci. 2000;23(3):185–192. doi: 10.1016/s0955-3886(00)00087-4. Available from: http://dx.doi.org/10.1016/s0955-3886(00)00087-4. PubMed DOI

Breuer W, Shvartsman M, Cabantchik ZI. Intracellular labile iron. Int J Biochem Cell Biol. 2008;40(3):350–354. doi: 10.1016/j.biocel.2007.03.010. Available from: http://dx.doi.org/10.1016/j.biocel.2007.03.010. PubMed DOI

Brewer GJ. Copper excess, zinc deficiency, and cognition loss in Alzheimer's disease. Biofactors. 2012;38(2):107–113. doi: 10.1002/biof.1005. Available from: http://dx.doi.org/10.1002/biof.1005. PubMed DOI

Brewer GJ. Divalent Copper as a Major Triggering Agent in Alzheimer’s Disease. J Alzheimers Dis. 2015;46(3):593–604. doi: 10.3233/JAD-143123. Available from: http://dx.doi.org/10.3233/JAD-143123. PubMed DOI

Brown K. H., Peerson J.M., Rivera J., Allen L.H. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2002;75:1062–1071. doi: 10.1093/ajcn/75.6.1062. Available from: http://dx.doi.org/10.1093/ajcn/75.6.1062. PubMed DOI

Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys. 1993;300(2):535–543. doi: 10.1006/abbi.1993.1074. Available from: http://dx.doi.org/10.1006/abbi.1993.1074. PubMed DOI

Bull PC, Cox DW. Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet. 1994;10:246–52. doi: 10.1016/0168-9525(94)90172-4. Available from: http://dx.doi.org/10.1016/0168-9525(94)90172-4. PubMed DOI

Burbee B. Chapter 26- Manganese, In: Dobbs Michael R., editor. Clinical Neurotoxicology Elsevier, Ed. Elsevier; pp. 293–301.

Burke JP, Fenton MR. Effect of a Zinc-Deficient Diet on Lipid Peroxidation in Liver and Tumor Subcellular Membranes. Proc Soc Exp Biol Med. 1985;179:187–191. doi: 10.3181/00379727-179-42083. Available from: http://dx.doi.org/10.3181/00379727-179-42083. PubMed DOI

Burkitt MJ. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Arch Biochem Biophys. 2001;394(1):117–135. doi: 10.1006/abbi.2001.2509. Available from: http://dx.doi.org/10.1006/abbi.2001.2509. PubMed DOI

Bush AI, Masters CL, Tanzi RE. Copper, β-amyloid, and Alzheimer’s disease: Tapping a sensitive connection. Proc Natl Acad Sci USA. 2003;100:11193–4. doi: 10.1073/pnas.2135061100. Available from: http://dx.doi.org/10.1073/pnas.2135061100. PubMed DOI PMC

Butterfield DA, Swomley AM, Sultana R. Amyloidβ-Peptide (1–42)-Induced Oxidative Stress in Alzheimer Disease: Importance in Disease Pathogenesis and Progression. Antioxid Redox Signal. 2013;19:823–35. doi: 10.1089/ars.2012.5027. Available from: http://dx.doi.org/10.1089/ars.2012.5027. PubMed DOI PMC

Buzard GS, Kasprzak KS. Possible roles of nitric oxide and redox cell signaling in metal-induced toxicity and carcinogenesis: a review. J Environ Pathol Toxicol Oncol. 2000;19(3):179–199. PubMed

Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2006;48:1688–1697. doi: 10.1016/j.jacc.2006.07.022. Available from: http://dx.doi.org/10.1016/j.jacc.2006.07.022. PubMed DOI

Cai T, Yao T, Zheng G, et al. Manganese induces the overexpression of α-synuclein in PC12cells via ERK activation. Brain Research. Brain Research Bulletin. 2010;1359:201–210. doi: 10.1016/j.brainres.2010.08.055. Available from: http://dx.doi.org/10.1016/j.brainres.2010.08.055. PubMed DOI

Camarena V, Huff TC, Wang G. Epigenomic regulation by labile iron. Free Radic Biol Med. 2021;170:44–9. doi: 10.1016/j.freeradbiomed.2021.01.026. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.026. PubMed DOI PMC

Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 2020;105:260–72. doi: 10.3324/haematol.2019.232124. Available from: http://dx.doi.org/10.3324/haematol.2019.232124. PubMed DOI PMC

Cao M, Luo X, Wu K, He X. Targeting lysosomes in human disease: from basic research to clinical applications. Sig Transduct Target Ther. 2021;6:379. doi: 10.1038/s41392-021-00778-y. Available from: http://dx.doi.org/10.1038/s41392-021-00778-y. PubMed DOI PMC

Carpentieri U, Myers J, Thorpe L, Daeschner CW, Haggard ME. Copper, zinc and iron in normal and leukemic lymphocytes from children. Cancer Res. 1986;46(2):981–984. PubMed

Carver CM, Chuang SH, Reddy DS. Zinc Selectively Blocks Neurosteroid-Sensitive Extrasynaptic δGABAA Receptors in the Hippocampus. J Neurosci. 2016;36(31):8070–8077. doi: 10.1523/JNEUROSCI.3393-15.2016. Available from: http://dx.doi.org/10.1523/JNEUROSCI.3393-15.2016. PubMed DOI PMC

Cassandri M, Smirnov A, Novelli F, et al. Zinc-finger proteins in health and disease. Cell Death Discov. 2011;3:17071. doi: 10.1038/cddiscovery.2017.71. Available from: http://dx.doi.org/10.1038/cddiscovery.2017.71. PubMed DOI PMC

Cavaleri F. Paradigm shift redefining molecular, metabolic and structural events in Alzheimer’s disease involves a proposed contribution by transition metals. Defined lengthy preclinical stage provides new hope to circumvent advancement of disease- and age-related neurodegeneration. Med Hypotheses. 2015;84(5):460–469. doi: 10.1016/j.mehy.2015.01.044. Available from: http://dx.doi.org/10.1016/j.mehy.2015.01.044. PubMed DOI

Cawte J, Kilburn C, Florence M. Motor neurone disease of the western Pacific: do the foci extend to Australia? Neurotoxicology. 1989;10(2):263–270. PubMed

Cen Y, Yang J, Su L, Wang F, Zhu D, Zhao L, Li Y. Manganese induces neuronal apoptosis by activating mTOR signaling pathway in vitro and in vivo. Food Chem Toxicol. 2024;185:114508. doi: 10.1016/j.fct.2024.114508. Available from: http://dx.doi.org/10.1016/j.fct.2024.114508. PubMed DOI

Chang H, Wu R, Shang M, Sato T, Chen C, Shapiro JS, et al. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med. 2016;8:247–67. doi: 10.15252/emmm.201505748. Available from: http://dx.doi.org/10.15252/emmm.201505748. PubMed DOI PMC

Charbaji A, Heidari-Bafroui H, Anagnostopoulos C, Faghri M. Literature Review of the Use of Zinc and Zinc Compounds in Paper-Based Microfluidic Devices. Journal of Minerals and Materials Characterization and Engineering. 2021;9:257–270. doi: 10.4236/jmmce.2021.93018. Available from: http://dx.doi.org/10.4236/jmmce.2021.93018. DOI

Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther. 2024;9(1):6. doi: 10.1038/s41392-023-01679-y. Available from: http://dx.doi.org/10.1038/s41392-023-01679-y. PubMed DOI PMC

Chen HC, Lee JK, Yip T, Sernia C, Lavidis NA, Spiers JG. Sub-acute restraint stress progressively increases oxidative/nitrosative stress and inflammatory markers while transiently upregulating antioxidant gene expression in the rat hippocampus. Free Radic Biol Med. 2019;130:446–457. doi: 10.1016/j.freeradbiomed.2018.11.007. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2018.11.007. PubMed DOI

Chen J, Chloupkova M. Abnormal iron uptake and liver cancer. Cancer Biol Ther. 2009;8:1699–708. doi: 10.4161/cbt.8.18.9146. Available from: http://dx.doi.org/10.4161/cbt.8.18.9146. PubMed DOI

Chen J, Jiang Y, Shi H, Peng Y, Fan X, Li C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. 2020;472(10):1415–1429. doi: 10.1007/s00424-020-02412-2. Available from: http://dx.doi.org/10.1007/s00424-020-02412-2. PubMed DOI

Chen JX, Yan SS. Role of mitochondrial amyloid-beta in Alzheimer's disease. J Alzheimers Dis. 2010;20 Suppl 2:S569–S578. doi: 10.3233/JAD-2010-100357. Available from: http://dx.doi.org/10.3233/JAD-2010-100357. PubMed DOI

Chen JY, Tsao GC, Zhao Q, Zheng W. Differential cytotoxicity of Mn(II) and Mn(III): special reference to mitochondrial [Fe-S] containing enzymes. Toxicol Appl Pharmacol. 2001;175:160–168. doi: 10.1006/taap.2001.9245. Available from: http://dx.doi.org/10.1006/taap.2001.9245. PubMed DOI PMC

Chen L, Shen Q, Liu Y, et al. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Sig Transduct Target Ther. 2025;10:31. doi: 10.1038/s41392-024-02071-0. Available from: http://dx.doi.org/10.1038/s41392-024-02071-0. PubMed DOI PMC

Chen P. -H., Wu J., Xu Y., Ding C.-K.C., Mestre A.A., Lin C.-C., Yang W.-H., Chi J.-T. Zinc transporter ZIP7 is a novel determinant of ferroptosis. Cell Death Dis. 2021;12:198. doi: 10.1038/s41419-021-03482-5. Available from: http://dx.doi.org/10.1038/s41419-021-03482-5. PubMed DOI PMC

Chen P, Bornhorst J, Aschner M. Manganese metabolism in humans. Front Biosci (Landmark Ed) 2018;23(9):1655–1679. doi: 10.2741/4665. Available from: http://dx.doi.org/10.2741/4665. PubMed DOI

Chen X, Zhong Z, Xu Z, Chen L, Wang Y. 2',7'-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radic Res. 2010;44(6):587–604. doi: 10.3109/10715761003709802. Available from: http://dx.doi.org/10.3109/10715761003709802. PubMed DOI

Chen X., Kang R., Kroemer G., Tang D. Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–296. doi: 10.1038/s41571-020-00462-0. Available from: http://dx.doi.org/10.1038/s41571-020-00462-0. PubMed DOI

Cheng H, Xia B, Su C, Chen K, Chen X, Chen P, Zou Y, Yang X. PI3K/Akt signaling pathway and Hsp70 activate in hippocampus of rats with chronic manganese sulfate exposure. J Trace Elem Med Biol. 2018;50:332–338. doi: 10.1016/j.jtemb.2018.07.019. Available from: http://dx.doi.org/10.1016/j.jtemb.2018.07.019. PubMed DOI

Cheng T, Choudhuri S, Muldoon‐Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol. 2012;32:643–53. doi: 10.1002/jat.2717. Available from: http://dx.doi.org/10.1002/jat.2717. PubMed DOI

Cho JM, Yang HR. Hair Mineral and Trace Element Contents as Reliable Markers of Nutritional Status Compared to Serum Levels of These Elements in Children Newly Diagnosed with Inflammatory Bowel Disease. Biol Trace Elem Res. 2018;185(1):20–29. doi: 10.1007/s12011-017-1225-6. Available from: http://dx.doi.org/10.1007/s12011-017-1225-6. PubMed DOI

Choi EK, Rajendiran TM, Soni T, et al. The manganese transporter SLC39A8 links alkaline ceramidase 1 to inflammatory bowel disease. Nat Commun. 2024;15:4775. doi: 10.1038/s41467-024-49049-8. Available from: PubMed DOI PMC

Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7):1120–1132. doi: 10.1038/aps.2018.25. Available from: http://dx.doi.org/10.1038/aps.2018.25. PubMed DOI PMC

Chow CK. Vitamin E and oxidative stress. Free Radic Biol Med. 1991;11(2):215–232. doi: 10.1016/0891-5849(91)90174-2. Available from: http://dx.doi.org/10.1016/0891-5849(91)90174-2. PubMed DOI

Colvin RA, Holmes WR, Fontaine CP, Maret W. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics. 2010;2:306–317. doi: 10.1039/b926662c. Available from: http://dx.doi.org/10.1039/b926662c. PubMed DOI

Cooper GJS. Selective Divalent Copper Chelation for the Treatment of Diabetes Mellitus. Curr Med Chem. 2012;19(17):2828–2860. doi: 10.2174/092986712800609715. Available from: http://dx.doi.org/10.2174/092986712800609715. PubMed DOI

Corry GN, Tanasijevic B, Barry ER, Krueger W, Rasmussen TP. Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res C Embryo Today. 2009;87(4):297–313. doi: 10.1002/bdrc.20165. Available from: http://dx.doi.org/10.1002/bdrc.20165. PubMed DOI

Costello LC, Franklin RB. A comprehensive review of the role of zinc in normal prostate function and metabolism;and its implications in prostate cancer. Arch Biochem Biophys. 2016;611:100–112. doi: 10.1016/j.abb.2016.04.014. Available from: PubMed DOI PMC

Costello LC, Franklin RB. The clinical relevance of the metabolism of prostate cancer;zinc and tumor suppression: connecting the dots. Mol Cancer. 2006;5:17. doi: 10.1186/1476-4598-5-17. Available from: PubMed DOI PMC

Costello LC, Zou J, Franklin RB. In situ clinical evidence that zinc levels are decreased in breast invasive ductal carcinoma. Cancer Causes Control. 2016;27(6):729–735. doi: 10.1007/s10552-016-0746-1. Available from: http://dx.doi.org/10.1007/s10552-016-0746-1. PubMed DOI PMC

Coudray C, Feillet-Coudray C, Rambeau M, Tressol JC, Gueux E, Mazur A, Rayssiguier Y. The effect of aging on intestinal absorption and status of calcium, magnesium, zinc, and copper in rats: a stable isotope study. J Trace Elem Med Biol. 2006;20(2):73–81. doi: 10.1016/j.jtemb.2005.10.007. Available from: http://dx.doi.org/10.1016/j.jtemb.2005.10.007. PubMed DOI

Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH, Park Y, et al. A Large Prospective Study of Meat Consumption and Colorectal Cancer Risk: An Investigation of Potential Mechanisms Underlying this Association. Cancer Res. 2010;70:2406–14. doi: 10.1158/0008-5472.CAN-09-3929-z. Available from: http://dx.doi.org/10.1158/0008-5472.CAN-09-3929-z. PubMed DOI PMC

Crossgrove JS, Allen DD, Bukaveckas BL, Rhineheimer SS, Yokel RA. Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of managanese citrate as well as manganese and manganese transferrin. Neurotoxicology. 2003;24(1):3–13. doi: 10.1016/s0161-813x(02)00089-x. Available from: http://dx.doi.org/10.1016/s0161-813x(02)00089-x. PubMed DOI

Cuajungco MP, Fagét KY. Zinc takes the center stage: its paradoxical role in Alzheimer's disease. Brain Res Brain Res Rev. 2003;41(1):44–56. doi: 10.1016/s0165-0173(02)00219-9. Available from: http://dx.doi.org/10.1016/s0165-0173(02)00219-9. PubMed DOI

Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, Huang X, Farrag YW, Perry G, Bush AI. Evidence that the beta-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem. 2000;275(26):19439–19442. doi: 10.1074/jbc.C000165200. Available from: http://dx.doi.org/10.1074/jbc.C000165200. PubMed DOI

Cuajungco MP, Lees GJ. Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya. Brain Res. 1998;799(1):118–129. doi: 10.1016/s0006-8993(98)00463-6. Available from: http://dx.doi.org/10.1016/s0006-8993(98)00463-6. PubMed DOI

Cunha-Oliveira T, Montezinho L, Mendes C, Firuzi O, Saso L, Oliveira PJ, et al. Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. Oxid Med Cell Longev. 2020:5021694. doi: 10.1155/2020/5021694. Available from: http://dx.doi.org/10.1155/2020/5021694. PubMed DOI PMC

Davies KM, Hare DJ, Cottam V, Chen N, Hilgers L, Halliday G, et al. Localization of copper and copper transporters in the human brain. Metallomics. 2013;5:43–51. doi: 10.1039/c2mt20151h. Available from: http://dx.doi.org/10.1039/c2mt20151h. PubMed DOI

Davis CD, Greger JL. Longitudinal changes of manganese-dependent superoxide dismutase and other indexes of manganese and iron status in women. Am J Clin Nutr. 1992;55(3):747–752. doi: 10.1093/ajcn/55.3.747. Available from: http://dx.doi.org/10.1093/ajcn/55.3.747. PubMed DOI

Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood) 2004;229(10):988–995. doi: 10.1177/153537020422901002. Available from: http://dx.doi.org/10.1177/153537020422901002. PubMed DOI

Deas E, Cremades N, Angelova PR, Ludtmann MHR, Yao Z, Chen S, et al. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson’s Disease. Antiox Redox Signal. 2016;24:376–91. doi: 10.1089/ars.2015.6343. Available from: http://dx.doi.org/10.1089/ars.2015.6343. PubMed DOI PMC

Deibel MA, Ehmann WD, Markesbery WR. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress. J Neurol Sci. 1996;143(1-2):137–142. doi: 10.1016/s0022-510x(96)00203-1. Available from: http://dx.doi.org/10.1016/s0022-510x(96)00203-1. PubMed DOI

DePasquale-Jardieu P, Fraker PJ. Interference in the development of a secondary immune response in mice by zinc deprivation: persistence of effects. J Nutr. 1984;114(10):1762–1769. doi: 10.1093/jn/114.10.1762. Available from: http://dx.doi.org/10.1093/jn/114.10.1762. PubMed DOI

Desplats P, Spencer B, Coffee E, et al. α-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. Journal of Biological Chemistry. 2011;286(11):9031–9037. doi: 10.1074/jbc.c110.212589. Available from: http://dx.doi.org/10.1074/jbc.c110.212589. PubMed DOI PMC

Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, et al. Targeting Chelatable Iron as a Therapeutic Modality in Parkinson’s Disease. Antioxid Redox Signal. 2014;21:195–210. doi: 10.1089/ars.2013.5593. Available from: http://dx.doi.org/10.1089/ars.2013.5593. PubMed DOI PMC

Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J Neurochem. 1989;52(6):1830–1836. doi: 10.1111/j.1471-4159.1989.tb07264.x. Available from: http://dx.doi.org/10.1111/j.1471-4159.1989.tb07264.x. PubMed DOI

Dias V, Junn E, Mouradian MM. The Role of Oxidative Stress in Parkinson’s Disease. J Parkinson’s Dis. 2013;3:461–91. doi: 10.3233/JPD-130230. Available from: http://dx.doi.org/10.3233/JPD-130230. PubMed DOI PMC

DiSilvestro RA, Blostein-Fujii A. Moderate zinc deficiency in rats enhances lipoprotein oxidation in vitro. Free Radic Biol Med. 1997;22(4):739–742. doi: 10.1016/s0891-5849(96)00344-9. Available from: http://dx.doi.org/10.1016/s0891-5849(96)00344-9. PubMed DOI

Dixon SJ. Ferroptosis: bug or feature? Immunol Rev. 2017;277(1):150–157. doi: 10.1111/imr.12533. Available from: http://dx.doi.org/10.1111/imr.12533. PubMed DOI

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell. 2012;149:1060–72. doi: 10.1016/j.cell.2012.03.042. Available from: http://dx.doi.org/10.1016/j.cell.2012.03.042. PubMed DOI PMC

Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32:1102–15. doi: 10.1016/s0891-5849(02)00826-2. Available from: http://dx.doi.org/10.1016/s0891-5849(02)00826-2. PubMed DOI

Doble PA, Miklos GLG. Distributions of manganese in diverse human cancers provide insights into tumour radioresistance. Metallomics. 2018;10:1191–1210. doi: 10.1039/C8MT00110C. Available from: http://dx.doi.org/10.1039/C8MT00110C. PubMed DOI

Doboszewska U, Szewczyk B, Sowa-Kućma M, Noworyta-Sokołowska K, et al. Alterations of Bio-elements, Oxidative, and Inflammatory Status in the Zinc Deficiency Model in Rats. Neurotox Res. 2016;29(1):143–154. doi: 10.1007/s12640-015-9571-7. Available from: http://dx.doi.org/10.1007/s12640-015-9571-7. PubMed DOI PMC

Domann FE, Hitchler MJ. Aberrant redox biology and epigenetic reprogramming: Co-conspirators across multiple human diseases. Free Radic Biol Med. 2021;170:2–5. doi: 10.1016/j.freeradbiomed.2021.04.020. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2021.04.020. PubMed DOI PMC

Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403:776–81. doi: 10.1038/35001596. Available from: http://dx.doi.org/10.1038/35001596. PubMed DOI

Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1:191–200. doi: 10.1016/j.cmet.2005.01.003. Available from: http://dx.doi.org/10.1016/j.cmet.2005.01.003. PubMed DOI

Dore-Duffy P, Peterson M, Catalanotto F, Marlow S, Ho SY, Ostrom M, Weinstein A. Zinc profiles in rheumatoid arthritis. Clin Exp Rheumatol. 1990;8(6):541–546. PubMed

Dorman DC. The Role of Oxidative Stress in Manganese Neurotoxicity: A Literature Review Focused on Contributions Made by Professor Michael Aschner. Biomolecules. 2023;13(8):1176. doi: 10.3390/biom13081176. Available from: http://dx.doi.org/10.3390/biom13081176. PubMed DOI PMC

Du K, Liu M, Pan Y, Zhong X, Wei M. Association of Serum Manganese Levels with Alzheimer's Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Nutrients. 2017;9(3):231. doi: 10.3390/nu9030231. Available from: http://dx.doi.org/10.3390/nu9030231. PubMed DOI PMC

Dusek P, Hofer T, Alexander J, Roos PM, Aaseth JO. Cerebral Iron Deposition in Neurodegeneration. Biomolecules. 2022;12:714. doi: 10.3390/biom12050714. Available from: http://dx.doi.org/10.3390/biom12050714. PubMed DOI PMC

El-Hajjar L, Hindieh J, Andraos R, El-Sabban M, Daher J. Myeloperoxidase-Oxidized LDL Activates Human Aortic Endothelial Cells through the LOX-1 Scavenger Receptor. Int J Mol Sci. 2022;23(5):2837. doi: 10.3390/ijms23052837. Available from: http://dx.doi.org/10.3390/ijms23052837. PubMed DOI PMC

Everett J, Collingwood JF, Tjendana-Tjhin V, Brooks J, Lermyte F, Plascencia-Villa G, et al. Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer’s disease subjects. Nanoscale. 2018;10:11782–96. doi: 10.1039/c7nr06794a. Available from: http://dx.doi.org/10.1039/c7nr06794a. PubMed DOI PMC

Fang CL, Wu WH, Liu Q, Sun X, Ma Y, Zhao YF, et al. Dual functions of β-amyloid oligomer and fibril in Cu(II)-induced H2O2 production. Regul Pept. 2010;163:1–6. doi: 10.1016/j.regpep.2010.05.001. Available from: http://dx.doi.org/10.1016/j.regpep.2010.05.001. PubMed DOI

Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2022;20:7–23. doi: 10.1038/s41569-022-00735-4. Available from: http://dx.doi.org/10.1038/s41569-022-00735-4. PubMed DOI PMC

Farida B, Ibrahim KG, Abubakar B, Malami I, Bello MB, Abubakar MB, et al. Iron deficiency and its epigenetic effects on iron homeostasis. J Trace Elem Med Biol. 2023;78:127203. doi: 10.1016/j.jtemb.2023.127203. Available from: http://dx.doi.org/10.1016/j.jtemb.2023.127203. PubMed DOI

Feng Y, Zeng JW, Ma Q, Zhang S, Tang J, Feng JF. Serum copper and zinc levels in breast cancer: A meta-analysis. J Trace Elem Med Biol. 2020;62:126629. doi: 10.1016/j.jtemb.2020.126629. Available from: http://dx.doi.org/10.1016/j.jtemb.2020.126629. PubMed DOI

Fischbacher A, von Sonntag C, Schmidt TC. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Chemosphere. 2017;182:738–44. doi: 10.1016/j.chemosphere.2017.05.039. Available from: http://dx.doi.org/10.1016/j.chemosphere.2017.05.039. PubMed DOI

Flemming A. Copper boosts pro-inflammatory state of macrophages. Nat Rev Immunol. 2023 Jun;23(6):344. doi: 10.1038/s41577-023-00889-3. Available from: http://dx.doi.org/10.1038/s41577-023-00889-3. PubMed DOI PMC

Fong LY, Jing R, Smalley KJ, Taccioli C, Fahrmann J, Barupal DK, Alder H, Farber JL, Fiehn O, Croce CM. Integration of metabolomics, transcriptomics, and microRNA expression profiling reveals a miR-143-HK2-glucose network underlying zinc-deficiency-associated esophageal neoplasia. Oncotarget. 2017;8(47):81910–81925. doi: 10.18632/oncotarget.18434. Available from: http://dx.doi.org/10.18632/oncotarget.18434. PubMed DOI PMC

Ford ES. Serum Copper Concentration and Coronary Heart Disease among US Adults. Am J Epidemiol. 2000;151(12):1182–1188. doi: 10.1093/oxfordjournals.aje.a010168. Available from: http://dx.doi.org/10.1093/oxfordjournals.aje.a010168. PubMed DOI

Forejtnikova H, Vieillevoye M, Zermati Y, Lambert M, Pellegrino RM, Guihard S, et al. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood. 2010;116:5357–67. doi: 10.1182/blood-2010-04-281360. Available from: http://dx.doi.org/10.1182/blood-2010-04-281360. PubMed DOI

Foulds P, Mann DMA, Mitchell JD, Allsop D. Parkinson disease: progress towards a molecular biomarker for Parkinson disease. Nature Reviews Neurology. 2010;6(7):359–361. doi: 10.1038/nrneurol.2010.78. Available from: http://dx.doi.org/10.1038/nrneurol.2010.78. PubMed DOI

Frederickson CJ, Bush AI. Synaptically released zinc: physiological functions and pathological effects. Biometals. 2001;14(3-4):353–366. doi: 10.1023/a:1012934207456. Available from: http://dx.doi.org/10.1023/a:1012934207456. PubMed DOI

Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005;6(6):449–462. doi: 10.1038/nrn1671. Available from: http://dx.doi.org/10.1038/nrn1671. PubMed DOI

Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr. 2000;130(5S Suppl):1471S–1483S. doi: 10.1093/jn/130.5.1471S. Available from: http://dx.doi.org/10.1093/jn/130.5.1471S. PubMed DOI

Friedman A, Galazka-Friedman J. The history of the research of iron in parkinsonian substantia nigra. J Neural Transm. 2012;119:1507–10. doi: 10.1007/s00702-012-0894-8. Available from: http://dx.doi.org/10.1007/s00702-012-0894-8. PubMed DOI PMC

Frieling H, Gozner A, Römer KD, et al. Global DNA hypomethylation and DNA hypermethylation of the alpha synuclein promoter in females with anorexia nervosa. Molecular Psychiatry. 2007;12(3):229–230. doi: 10.1038/sj.mp.4001931. Available from: http://dx.doi.org/10.1038/sj.mp.4001931. PubMed DOI

Fu HW, Moomaw JF, Moomaw CR, Casey PJ. Identification of a Cysteine Residue Essential for Activity of Protein Farnesyltransferase. J Biol Chem. 1996;271:28541–28548. doi: 10.1074/jbc.271.45.28541. Available from: http://dx.doi.org/10.1074/jbc.271.45.28541. PubMed DOI

Fujita N, Miyachi H, Tanaka H, Takeo M, Nakagawa N, Kobayashi Y, et al. Iron Overload Is Associated with Hepatic Oxidative Damage to DNA in Nonalcoholic Steatohepatitis. Cancer Epidemiol Biomarkers Prev. 2009;18:424–32. doi: 10.1158/1055-9965.EPI-08-0725. Available from: http://dx.doi.org/10.1158/1055-9965.EPI-08-0725. PubMed DOI

Gaetke L. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003;189:147–63. doi: 10.1016/s0300-483x(03)00159-8. Available from: http://dx.doi.org/10.1016/s0300-483x(03)00159-8. PubMed DOI

Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Arch Toxicol. 2014;88:1929–38. doi: 10.1007/s00204-014-1355-y. Available from: http://dx.doi.org/10.1007/s00204-014-1355-y. PubMed DOI PMC

Galy B, Conrad M, Muckenthaler M. Author Correction: Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2024;25:671. doi: 10.1038/s41580-024-00760-w. Available from: http://dx.doi.org/10.1038/s41580-024-00760-w. PubMed DOI

Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 2023;25:133–55. doi: 10.1038/s41580-023-00648-1. Available from: http://dx.doi.org/10.1038/s41580-023-00648-1. PubMed DOI

Ganz T, Nemeth E. Hepcidin and iron homeostasis. BBA-Mol Cell Res. 2012;1823:1434–43. doi: 10.1016/j.bbamcr.2012.01.014. Available from: http://dx.doi.org/10.1016/j.bbamcr.2012.01.014. PubMed DOI PMC

Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K, Adam V. Role of hypoxia in cellular senescence. Pharmacol Res. 2023;194:106841. doi: 10.1016/j.phrs.2023.106841. Available from: http://dx.doi.org/10.1016/j.phrs.2023.106841. PubMed DOI

Gao J, Chen J, Kramer M, Tsukamoto H, Zhang A-S, Enns CA. Interaction of the Hereditary Hemochromatosis Protein HFE with Transferrin Receptor 2 Is Required for Transferrin-Induced Hepcidin Expression. Cell Metab. 2009;9:217–27. doi: 10.1016/j.cmet.2009.01.010. Available from: http://dx.doi.org/10.1016/j.cmet.2009.01.010. PubMed DOI PMC

García-Giménez J-L, Garcés C, Romá-Mateo C, Pallardó FV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radic Biol Med. 2021;170:6–18. doi: 10.1016/j.freeradbiomed.2021.02.027. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2021.02.027. PubMed DOI

Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, Moore EG, Hainsworth LN, Umbreit JN, Conrad ME, Feng L, Lis A, Roth JA, Singleton S, Garrick LM. DMT1: a mammalian transporter for multiple metals. Biometals. 2003;16(1):41–54. doi: 10.1023/a:1020702213099. Available from: http://dx.doi.org/10.1023/a:1020702213099. PubMed DOI

Gavin CE, Gunter KK, Gunter TE. Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J. 1990;266:329–334. doi: 10.1042/bj2660329. Available from: http://dx.doi.org/10.1042/bj2660329. PubMed DOI PMC

Geraki K, Farquharson MJ, Bradley DA. Concentrations of Fe, Cu and Zn in breast tissue: a synchrotron XRF study. Phys Med Biol. 2002;47(13):2327–39. doi: 10.1088/0031-9155/47/13/310. Available from: http://dx.doi.org/10.1088/0031-9155/47/13/310. PubMed DOI

Gibbs PN, Gore MG, Jordan PM. Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolaevulinate dehydratase. Biochem J. 1985;225(3):573–580. doi: 10.1042/bj2250573. Available from: http://dx.doi.org/10.1042/bj2250573. PubMed DOI PMC

Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One. 2012;7(2):e32404. doi: 10.1371/journal.pone.0032404. Available from: http://dx.doi.org/10.1371/journal.pone.0032404. PubMed DOI PMC

Girotti AW, Thomas JP, Jordan JE. Inhibitory effect of zinc(II) on free radical lipid peroxidation in erythrocyte membranes. J Free Radic Biol Med. 1985;1(5-6):395–401. doi: 10.1016/0748-5514(85)90152-7. Available from: http://dx.doi.org/10.1016/0748-5514(85)90152-7. PubMed DOI

Girouard MP, Chang AJ, Liang Y, Hamilton SA, Bhatt AS, Svetlichnaya J, et al. Clinical and research applications of natural language processing for heart failure. Heart Fail Rev. 2024;30(2):407–415. doi: 10.1007/s10741-024-10472-0. Available from: http://dx.doi.org/10.1007/s10741-024-10472-0. PubMed DOI

Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol. 1995;268:C1362–C1368. doi: 10.1152/ajpcell.1995.268.6.C1362. Available from: http://dx.doi.org/10.1152/ajpcell.1995.268.6.C1362. PubMed DOI

Goldstein S, Meyerstein D, Czapski G. The Fenton reagents. Free Radic Biol Med. 1993;15(4):435–445. doi: 10.1016/0891-5849(93)90043-t. Available from: http://dx.doi.org/10.1016/0891-5849(93)90043-t. PubMed DOI

Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s Disease With the Alpha-Synuclein Protein. Front Pharmacol. 2020;11:356. doi: 10.3389/fphar.2020.00356. Available from: http://dx.doi.org/10.3389/fphar.2020.00356. PubMed DOI PMC

Gonzalez-Reyes RE, Gutierrez-Alvarez AM, Moreno CB. Manganese and epilepsy: a systematic review of the literature. Brain Res Rev. 2007;53(2):332–336. doi: 10.1016/j.brainresrev.2006.10.002. Available from: http://dx.doi.org/10.1016/j.brainresrev.2006.10.002. PubMed DOI

Gordan R, Wongjaikam S, Gwathmey JK, Chattipakorn N, Chattipakorn SC, Xie L-H. Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Fail Rev. 2018;23:801–16. doi: 10.1007/s10741-018-9700-5. Available from: http://dx.doi.org/10.1007/s10741-018-9700-5. PubMed DOI PMC

Gräsbeck R, Kouvonen I, Lundberg M, Tenhunen R. An Intestinal Receptor for Heme. Scand J Haematol. 1979;23:5–9. doi: 10.1111/j.1600-0609.1979.tb02845.x. Available from: http://dx.doi.org/10.1111/j.1600-0609.1979.tb02845.x. PubMed DOI

Gruber K, Maywald M, Rosenkranz E, Haase H, Plumakers B, Rink L. Zinc deficiency adversely influences interleukin-4 and interleukin-6 signaling. J Biol Regul Homeost Agents. 2013;27(3):661–671. PubMed

Gu HF, Zhang X. Zinc Deficiency and Epigenetics. In: Preedy, V., Patel, V, editors. Handbook of Famine, Starvation, and Nutrient Deprivation. Cham: Springer; 2019. Available from: http://dx.doi.org/10.1007/978-3-319-55387-0_80. DOI

Guilarte TR. Manganese and Parkinson's disease: a critical review and new findings. Environ Health Perspect. 2010;118(8):1071–1080. doi: 10.1289/ehp.0901748. Available from: http://dx.doi.org/10.1289/ehp.0901748. PubMed DOI PMC

Gullino PM. Considerations on the mechanism of the angiogenic response. Anticancer Res. 1986;6(2):153–158. PubMed

Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388:482–8. doi: 10.1038/41343. Available from: http://dx.doi.org/10.1038/41343. PubMed DOI

Gunshin H, Starr CN, DiRenzo C, Fleming MD, Jin J, Greer EL, et al. Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood. 2005;106:2879–83. doi: 10.1182/blood-2005-02-0716. Available from: http://dx.doi.org/10.1182/blood-2005-02-0716. PubMed DOI PMC

Gunter RE, Puskin JS, Russell PR. Quantitative magnetic resonance studies of manganese uptake by mitochondria. Biophys J. 1975;15(4):319–333. doi: 10.1016/S0006-3495(75)85822-X. Available from: http://dx.doi.org/10.1016/S0006-3495(75)85822-X. PubMed DOI PMC

Gunter TE, Gavin CE, Gunter KK. The Role of Mitochondrial Oxidative Stress and ATP Depletion in the Pathology of Manganese Toxicity. In: Li, Y., Zhang, J., editors. Metal Ion in Stroke. New York, NY: Springer; 2012. (Springer Series in Translational Stroke Research). Available from: DOI

Gunter TE, Puskin JS. Manganous ion as a spin label in studies of mitochondrial uptake of manganese. Biophys J. 1972;12:625–635. doi: 10.1016/S0006-3495(72)86108-3. Available from: http://dx.doi.org/10.1016/S0006-3495(72)86108-3. PubMed DOI PMC

Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS Lett. 2004;567:96–102. doi: 10.1016/j.febslet.2004.03.071. Available from: http://dx.doi.org/10.1016/j.febslet.2004.03.071. PubMed DOI

Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev. 2009;35:32–46. doi: 10.1016/j.ctrv.2008.07.004. Available from: http://dx.doi.org/10.1016/j.ctrv.2008.07.004. PubMed DOI

Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1–14. doi: 10.1042/bj2190001. Available from: http://dx.doi.org/10.1042/bj2190001. PubMed DOI PMC

Hamulakova S, Poprac P, Jomova K, Brezova V, Lauro P, Drostinova L, et al. Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer’s disease using multifunctional tacrine-coumarin hybrid molecules. J Inorg Biochem. 2016;161:52–62. doi: 10.1016/j.jinorgbio.2016.05.001. Available from: http://dx.doi.org/10.1016/j.jinorgbio.2016.05.001. PubMed DOI

Hara T, Yoshigai E, Ohashi T, Fukada T. Zinc in Cardiovascular Functions and Diseases: Epidemiology and Molecular Mechanisms for Therapeutic Development. Int J Mol Sci. 2023;24(8):7152. doi: 10.3390/ijms24087152. Available from: http://dx.doi.org/10.3390/ijms24087152. PubMed DOI PMC

Harel R, Chevion M. Zinc(II) protects against metal-mediated free radical induced damage: studies on single and double-strand DNA breakage. Free Radic Res Commun. 1991;12-13:509–515. doi: 10.3109/10715769109145824. Available from: http://dx.doi.org/10.3109/10715769109145824. PubMed DOI

Harris ED. Copper Transport: An Overview. Exp. Biol. Med. 1991;196:130–40. doi: 10.3181/00379727-196-43171b. Available from: http://dx.doi.org/10.3181/00379727-196-43171b. PubMed DOI

Hart PC, Mao M, de Abreu AL, Ansenberger-Fricano K, Ekoue DN, Ganini D, Kajdacsy-Balla A, Diamond AM, Minshall RD, Consolaro ME, Santos JH, Bonini MG. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun. 2015;6:6053. doi: 10.1038/ncomms7053. Available from: http://dx.doi.org/10.1038/ncomms7053. PubMed DOI PMC

Hasegawa H, Suzuki K, Suzuki K, Nakaji S, Sugawara K. Effects of zinc on the reactive oxygen species generating capacity of human neutrophils and on the serum opsonic activity in vitro. Luminescence. 2000;15(5):321–327. doi: 10.1002/1522-7243(200009/10)15:5<321::AID-BIO605>3.0.CO;2-O. Available from: http://dx.doi.org/10.1002/1522-7243(200009/10)15:5<321::AID-BIO605>3.0.CO;2-O. PubMed DOI

Hayashi M, Kuge T, Endoh D, Nakayama K, Arikawa J, Takazawa A, Okui T. Hepatic copper accumulation induces DNA strand breaks in the liver cells of Long-Evans Cinnamon strain rats. Biochem Biophys Res Commun. 2000;276(1):174–178. doi: 10.1006/bbrc.2000.3454. Available from: http://dx.doi.org/10.1006/bbrc.2000.3454. PubMed DOI

Higashi Y, Aratake T, Shimizu S, Shimizu T, Nakamura K, Tsuda M, Yawata T, Ueba T, Saito M. Influence of extracellular zinc on M1 microglial activation. Sci Rep. 2017;7:43778. doi: 10.1038/srep43778. Available from: http://dx.doi.org/10.1038/srep43778. PubMed DOI PMC

Higdon J, Drake VJ, Aschner M. Micronutrient information center, Linus Pauling Institute, Oregon State University; 2025. [March 20, 2025]. Manganese. Available from: https://lpi.oregonstate.edu/mic/minerals/manganese#reference10.

Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T. Roles of zinc and zinc signaling in immunity: Zinc as an intracellular signaling molecule. Adv Immunol. 2008;97:149–176. doi: 10.1016/S0065-2776(08)00003-5. Available from: http://dx.doi.org/10.1016/S0065-2776(08)00003-5. PubMed DOI

Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y. Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease: an X-ray microanalysis. J Neurochem. 1991;56(2):446–451. doi: 10.1111/j.1471-4159.1991.tb08170.x. Available from: http://dx.doi.org/10.1111/j.1471-4159.1991.tb08170.x. PubMed DOI

Hoadley JE, Leinart AS, Cousins RJ. Relationship of 65Zn absorption kinetics to intestinal metallothionein in rats: effects of zinc depletion and fasting. J Nutr. 1988;118(4):497–502. doi: 10.1093/jn/118.4.497. Available from: http://dx.doi.org/10.1093/jn/118.4.497. PubMed DOI

Hoffman DL, Brookes PS. Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem. 2009;284:16236–16245. doi: 10.1074/jbc.M809512200. Available from: http://dx.doi.org/10.1074/jbc.M809512200. PubMed DOI PMC

Hoffman DL, Salter JD, Brookes PS. Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol. 2007;292:H101–108. doi: 10.1152/ajpheart.00699.2006. Available from: http://dx.doi.org/10.1152/ajpheart.00699.2006. PubMed DOI

Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008;19(2):73–82. doi: 10.1016/j.copbio.2008.03.003. Available from: http://dx.doi.org/10.1016/j.copbio.2008.03.003. PubMed DOI

Holtzman DM, Morris JC, Goate AM. Alzheimer's disease: the challenge of the second century. Sci Transl Med. 2011;3(77):77sr1. doi: 10.1126/scitranslmed.3002369. Available from: http://dx.doi.org/10.1126/scitranslmed.3002369. PubMed DOI PMC

Horniblow RD, Pathak P, Balacco DL, Acharjee A, Lles E, Gkoutos G, et al. Iron-mediated epigenetic activation of NRF2 targets. J Nutr Biochem. 2022;101:108929. doi: 10.1016/j.jnutbio.2021.108929. Available from: http://dx.doi.org/10.1016/j.jnutbio.2021.108929. PubMed DOI

Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M. Manganese Is Essential for Neuronal Health. Annu Rev Nutr. 2015;35:71–108. doi: 10.1146/annurev-nutr-071714-034419. Available from: http://dx.doi.org/10.1146/annurev-nutr-071714-034419. PubMed DOI PMC

Houtman JP. Trace elements and cardiovascular diseases. J Cardiovasc Risk. 1996;3(1):18–25. PubMed

Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y, Hashimoto K, Yamada M, Koumura A, Sakurai T, Kimura A, Tanaka Y, Satoh M, Inuzuka T. Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci. 2011;303(1-2):95–99. doi: 10.1016/j.jns.2011.01.003. Available from: http://dx.doi.org/10.1016/j.jns.2011.01.003. PubMed DOI

Hu N, Han X, Lane EK, Gao F, Zhang Y, Ren J. Cardiac-specific overexpression of metallothionein rescues against cigarette smoking exposure-induced myocardial contractile and mitochondrial damage. PLoS ONE. 2013;8:e57151. doi: 10.1371/journal.pone.0057151. Available from: http://dx.doi.org/10.1371/journal.pone.0057151. PubMed DOI PMC

Huang C, Cui X, Sun X, Yang J, Li M. Zinc transporters are differentially expressed in human non-small cell lung cancer. Oncotarget. 2016;7(41):66935–66943. doi: 10.18632/oncotarget.11884. Available from: PubMed DOI PMC

Huang L, Tepaamorndech S. The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med. 2013;34(2-3):548–560. doi: 10.1016/j.mam.2012.05.008. Available from: http://dx.doi.org/10.1016/j.mam.2012.05.008. PubMed DOI

Huang X. Does iron have a role in breast cancer? Lancet Oncol. 2008;9:803–7. doi: 10.1016/S1470-2045(08)70200-6. Available from: http://dx.doi.org/10.1016/S1470-2045(08)70200-6. PubMed DOI PMC

Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JDA, Hanson GR, et al. Cu(II) Potentiation of Alzheimer Aβ Neurotoxicity. J Biol Chem. 1999;274(52):37111–37116. doi: 10.1074/jbc.274.52.37111. Available from: http://dx.doi.org/10.1074/jbc.274.52.37111. PubMed DOI

Hwang H. -W., Baxter L. L., Loftus S. K., et al. Distinct microRNA expression signatures are associated with melanoma subtypes and are regulated by HIF1A. Pigment Cell and Melanoma Research. 2014;27(5):777–787. doi: 10.1111/pcmr.12255. Available from: http://dx.doi.org/10.1111/pcmr.12255. PubMed DOI PMC

Ibs KH, Rink L. Zinc-altered immune function. J Nutr. 2003;133(5 Suppl 1):1452S–1456S. doi: 10.1093/jn/133.5.1452S. Available from: http://dx.doi.org/10.1093/jn/133.5.1452S. PubMed DOI

Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L, Mutharasan RK, et al. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci USA. 2012;109:4152–7. doi: 10.1073/pnas.1119338109. Available from: http://dx.doi.org/10.1073/pnas.1119338109. PubMed DOI PMC

Iftode A, Drăghici GA, Macașoi I, Marcovici I, Coricovac DE, Dragoi R, Tischer A, Kovatsi L, Tsatsakis AM, Cretu O, Dehelean C. Exposure to cadmium and copper triggers cytotoxic effects and epigenetic changes in human colorectal carcinoma HT-29 cells. Exp Ther Med. 2021;21(1):100. doi: 10.3892/etm.2020.9532. Available from: http://dx.doi.org/10.3892/etm.2020.9532. PubMed DOI PMC

Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, et al. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signaling. 2024;22(1):7. doi: 10.1186/s12964-023-01398-5. Available from: http://dx.doi.org/10.1186/s12964-023-01398-5. PubMed DOI PMC

Jackson MJ. Physiology of zinc: General aspects. In: Mills, CF, editors. Zinc in Human Biology. London, UK: Springer; 1989. pp. 1–14.

James SA, Churches QI, de Jonge MD, Birchall IE, Streltsov V, McColl G, et al. Iron, Copper, and Zinc Concentration in Aβ Plaques in the APP/PS1 Mouse Model of Alzheimer’s Disease Correlates with Metal Levels in the Surrounding Neuropil. ACS Chem Neurosci. 2016;8(3):629–637. doi: 10.1021/acschemneuro.6b00362. Available from: http://dx.doi.org/10.1021/acschemneuro.6b00362. PubMed DOI

Jian J, Yang Q, Dai J, Eckard J, Axelrod D, Smith J, et al. Effects of iron deficiency and iron overload on angiogenesis and oxidative stress—a potential dual role for iron in breast cancer. Free Radic Biol Med. 2011;50:841–847. doi: 10.1016/j.freeradbiomed.2010.12.028. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.028. PubMed DOI PMC

Jiang H , Wei H., Wang H., Wang Z., Li J., Ou Y., Xiao X., Wang W., Chang A., Sun W., et al. Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer. Cell Death Dis. 2022;13:206. doi: 10.1038/s41419-022-04632-z. Available from: http://dx.doi.org/10.1038/s41419-022-04632-z. PubMed DOI PMC

Jiang H, Wang J, Rogers J, Xie J. Brain Iron Metabolism Dysfunction in Parkinson’s Disease. Mol Neurobiol. 2016;54:3078–101. doi: 10.1007/s12035-016-9879-1. Available from: http://dx.doi.org/10.1007/s12035-016-9879-1. PubMed DOI

Jiang LJ, Maret W, Vallee BL. The ATP–metallothionein complex. Proc Natl Acad Sci USA. 1998;95:9146–9149. doi: 10.1073/pnas.95.16.9146. Available from: http://dx.doi.org/10.1073/pnas.95.16.9146. PubMed DOI PMC

Jiang Y, Zhan H, Zhang Y, Yang J, Liu M, Xu C, Fan X, Zhang J, Zhou Z, Shi X, Ramesh R, Li M. ZIP4 promotes non-small cell lung cancer metastasis by activating snail-N-cadherin signaling axis. Cancer Lett. 2021;521:71–81. doi: 10.1016/j.canlet.2021.08.025. Available from: http://dx.doi.org/10.1016/j.canlet.2021.08.025. PubMed DOI

Jiang Y, Zheng W. Cardiovascular toxicities upon manganese exposure. Cardiovasc Toxicol. 2005;5(4):345–354. doi: 10.1385/ct:5:4:345. Available from: http://dx.doi.org/10.1385/ct:5:4:345. PubMed DOI PMC

Jin, X , Tang, J., Qiu, X. et al. Ferroptosis: Emerging mechanisms, biological function, and therapeutic potential in cancer and inflammation. Cell Death Discov. 2024;10:45. doi: 10.1038/s41420-024-01825-7. Available from: http://dx.doi.org/10.1038/s41420-024-01825-7. PubMed DOI PMC

Joe P, Petrilli M, Malaspina D, Weissman J. Zinc in schizophrenia: A meta-analysis. Gen Hosp Psychiatry. 2018;53:19–24. doi: 10.1016/j.genhosppsych.2018.04.004. Available from: http://dx.doi.org/10.1016/j.genhosppsych.2018.04.004. PubMed DOI

Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol. 2024;98:1323–67. doi: 10.1007/s00204-024-03696-4. Available from: http://dx.doi.org/10.1007/s00204-024-03696-4. PubMed DOI PMC

Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Arch Toxicol. 2025;99(1):153–209. doi: 10.1007/s00204-024-03903-2. Available from: http://dx.doi.org/10.1007/s00204-024-03903-2. PubMed DOI PMC

Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact. 2025;413:111489. doi: 10.1016/j.cbi.2025.111489. Available from: http://dx.doi.org/10.1016/j.cbi.2025.111489. PubMed DOI

Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ, Valko M. Essential metals in health and disease. Chem Biol Interact. 2022;367:110173. doi: 10.1016/j.cbi.2022.110173. Available from: http://dx.doi.org/10.1016/j.cbi.2022.110173. PubMed DOI

Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97:2499–574. doi: 10.1007/s00204-023-03562-9. Available from: http://dx.doi.org/10.1007/s00204-023-03562-9. PubMed DOI PMC

Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65–87. doi: 10.1016/j.tox.2011.03.001. Available from: http://dx.doi.org/10.1016/j.tox.2011.03.001. PubMed DOI

Jomova K, Valko M. Importance of Iron Chelation in Free Radical-Induced Oxidative Stress and Human Disease. Curr Pharm Des. 2011;17:3460–73. doi: 10.2174/138161211798072463. Available from: http://dx.doi.org/10.2174/138161211798072463. PubMed DOI

Jones PL, Veenstra GJC, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics. 1998;19(2):187–191. doi: 10.1038/561. Available from: http://dx.doi.org/10.1038/561. PubMed DOI

Jou MY, Philipps AF, Kelleher SL, Lönnerdal B. Effects of zinc exposure on zinc transporter expression in human intestinal cells of varying maturity. J Pediatr Gastroenterol Nutr. 2010;50(6):587–595. doi: 10.1097/MPG.0b013e3181d98e85. Available from: http://dx.doi.org/10.1097/MPG.0b013e3181d98e85. PubMed DOI

Jouybari L, Kiani F, Akbari A, Sanagoo A, Sayehmiri F, Aaseth J, Chartrand MS, Sayehmiri K, Chirumbolo S, Bjørklund G. A meta-analysis of zinc levels in breast cancer. J Trace Elem Med Biol. 2019;56:90–99. doi: 10.1016/j.jtemb.2019.06.017. Available from: http://dx.doi.org/10.1016/j.jtemb.2019.06.017. PubMed DOI

Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med. 2002;33:1037–46. doi: 10.1016/s0891-5849(02)01006-7. Available from: http://dx.doi.org/10.1016/s0891-5849(02)01006-7. PubMed DOI

Kamaliyan Z, Clarke TL. Zinc finger proteins: guardians of genome stability. Front Cell Dev Biol. 2024;12:1448789. doi: 10.3389/fcell.2024.1448789. Available from: http://dx.doi.org/10.3389/fcell.2024.1448789. PubMed DOI PMC

Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev. 2015;95(3):749–784. doi: 10.1152/physrev.00035.2014. Available from: http://dx.doi.org/10.1152/physrev.00035.2014. PubMed DOI

Kang J, Lin C, Chen J, Liu Q. Copper induces histone hypoacetylation through directly inhibiting histone acetyltransferase activity. Chem Biol Interact. 2004;148:115–23. doi: 10.1016/j.cbi.2004.05.003. Available from: http://dx.doi.org/10.1016/j.cbi.2004.05.003. PubMed DOI

Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA. Zinc triggers microglial activation. J Neurosci. 2008;28(22):5827–5835. doi: 10.1523/JNEUROSCI.1236-08.2008. Available from: http://dx.doi.org/10.1523/JNEUROSCI.1236-08.2008. PubMed DOI PMC

Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA. Zinc triggers microglial activation. J Neurosci. 2008;28(22):5827–5835. doi: 10.1523/JNEUROSCI.1236-08.2008. Available from: http://dx.doi.org/10.1523/JNEUROSCI.1236-08.2008. PubMed DOI PMC

Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Author Correction: Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2020;52:463–463. doi: 10.1038/s41588-019-0548-y. Available from: http://dx.doi.org/10.1038/s41588-019-0548-y. PubMed DOI

Kawabata H, Fleming RE, Gui D, Moon SY, Saitoh T, O’Kelly J, et al. Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood. 2005;105:376–81. doi: 10.1182/blood-2004-04-1416. Available from: http://dx.doi.org/10.1182/blood-2004-04-1416. PubMed DOI

Kawabata T. Iron-Induced Oxidative Stress in Human Diseases. Cells. 2022;11:2152. doi: 10.3390/cells11142152. Available from: http://dx.doi.org/10.3390/cells11142152. PubMed DOI PMC

Kawanishi S, Yamamoto K, Inoue S. Site-specific DNA damage induced by sulfite in the presence of cobalt(II) ion. Role of sulfate radical. Biochem Pharmacol. 1989;38(20):3491–3496. doi: 10.1016/0006-2952(89)90119-6. Available from: http://dx.doi.org/10.1016/0006-2952(89)90119-6. PubMed DOI

Keen CL, Zidenberg-Cherr S. Manganese. In: Ziegler EE, Filer LJ, editors. Present Knowledge in Nutrition. 7th ed. Washington D.C.: ILSI Press; 1996. pp. 334–343.

Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6:748–73. doi: 10.1039/c3mt00347g. Available from: http://dx.doi.org/10.1039/c3mt00347g. PubMed DOI

Kelly RE, Mally MI, Evans DR. The dihydroorotase domain of the multifunctional protein CAD. Subunit structure, zinc content, and kinetics. J Biol Chem. 1986;261(13):6073–6083. PubMed

Kepp KP. Alzheimer’s disease due to loss of function: A new synthesis of the available data. Prog Neurobiol. 2016;143:36–60. doi: 10.1016/j.pneurobio.2016.06.004. Available from: http://dx.doi.org/10.1016/j.pneurobio.2016.06.004. PubMed DOI

Kim J, Pajarillo E, Rizor A, Son DS, Lee J, Aschner M, Lee E. LRRK2 kinase plays a critical role in manganese-induced inflammation and apoptosis in microglia. PLoS One. 2019;14(1):e0210248. doi: 10.1371/journal.pone.0210248. Available from: http://dx.doi.org/10.1371/journal.pone.0210248. PubMed DOI PMC

Kim JE, Lee HS, Jang W. Serum zinc deficiency is a potential risk factor for the occurrence of levodopa-induced dyskinesia in drug-naïve Parkinson's disease. Front Aging Neurosci. 2023;15:1282367. doi: 10.3389/fnagi.2023.1282367. Available from: http://dx.doi.org/10.3389/fnagi.2023.1282367. PubMed DOI PMC

King LE, Frentzel JW, Mann JJ, Fraker PJ. Chronic zinc deficiency in mice disrupted T cell lymphopoiesis and erythropoiesis while B cell lymphopoiesis and myelopoiesis were maintained. J Am Coll Nutr. 2005;24(6):494–502. doi: 10.1080/07315724.2005.10719495. Available from: http://dx.doi.org/10.1080/07315724.2005.10719495. PubMed DOI

Kiouri DP, Tsoupra E, Peana M, Perlepes SP, Stefanidou ME, Chasapis CT. Multifunctional role of zinc in human health: an update. EXCLI J. 2023;22:809–827. doi: 10.17179/excli2023-6335. Available from: http://dx.doi.org/10.17179/excli2023-6335. PubMed DOI PMC

Kippler M, Oskarsson A. Manganese - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res. 2024;68 doi: 10.29219/fnr.v68.10367. Available from: http://dx.doi.org/10.29219/fnr.v68.10367. PubMed DOI PMC

Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Front Physiol. 2020;11:755. doi: 10.3389/fphys.2020.00755. Available from: http://dx.doi.org/10.3389/fphys.2020.00755. PubMed DOI PMC

Klug A, Rhodes D. ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem. Sci. 1987;12:464–469. doi: 10.1042/bj2250573. Available from: http://dx.doi.org/10.1042/bj2250573. PubMed DOI

Koh JY, Lee SJ. Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases. Mol Brain. 2020;13:116. doi: 10.1186/s13041-020-00654-w. Available from: http://dx.doi.org/10.1186/s13041-020-00654-w. PubMed DOI PMC

Kontoghiorghes G, Kontoghiorghe C. Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells. 2020;9:1456. doi: 10.3390/cells9061456. Available from: http://dx.doi.org/10.3390/cells9061456. PubMed DOI PMC

Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med. 2013;65:1174–94. doi: 10.1016/j.freeradbiomed.2013.09.001. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2013.09.001. PubMed DOI

Krebs NF. Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr. 2000;130:1374S–1377S. doi: 10.1093/jn/130.5.1374S. Available from: http://dx.doi.org/10.1093/jn/130.5.1374S. PubMed DOI

Krijt M, Jirkovska A, Kabickova T, Melenovsky V, Petrak J, Vyoral D. Detection and quantitation of iron in ferritin, transferrin and labile iron pool (LIP) in cardiomyocytes using 55Fe and storage phosphorimaging. Biochim Biophys Acta Gen Subj. 2018;1862(12):2895–2901. doi: 10.1016/j.bbagen.2018.09.005. Available from: http://dx.doi.org/10.1016/j.bbagen.2018.09.005. PubMed DOI

Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol. 2011;43:1686–97. doi: 10.1016/j.biocel.2011.08.016. Available from: http://dx.doi.org/10.1016/j.biocel.2011.08.016. PubMed DOI

La Rocca R, Tsvetkov PO, Golovin AV, Allegro D, Barbier P, Malesinski S, Guerlesquin F, Devred F. Identification of the three zinc-binding sites on tau protein. Int J Biol Macromol. 2022;209(Pt A):779–784. doi: 10.1016/j.ijbiomac.2022.04.058. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2022.04.058. PubMed DOI

Lakhal-Littleton S, Crosby A, Frise MC, Mohammad G, Carr CA, Loick PAM, et al. Intracellular iron deficiency in pulmonary arterial smooth muscle cells induces pulmonary arterial hypertension in mice. Proc Natl Acad Sci USA. 2019;116:13122–13130. doi: 10.1073/pnas.1822010116. Available from: http://dx.doi.org/10.1073/pnas.1822010116. PubMed DOI PMC

Lambert AJ, Brand MD. Reactive oxygen species production by mitochondria. Methods Mol Biol. 2009;554:165–181. doi: 10.1007/978-1-59745-521-3_11. Available from: http://dx.doi.org/10.1007/978-1-59745-521-3_11. PubMed DOI

Landro JA, Schimmel P. Zinc-dependent cell growth conferred by mutant tRNA synthetase. J Biol Chem. 1994;269(32):20217–20220. PubMed

Lawson MK, Valko M, Cronin MTD, Jomová K. Chelators in Iron and Copper Toxicity. Curr Pharmacol Rep. 2016;2:271–80. doi: 10.1007/s40495-016-0068-8. Available from: http://dx.doi.org/10.1007/s40495-016-0068-8. DOI

Lee FS. At the crossroads of oxygen and iron sensing: hepcidin control of HIF-2α. J Clin Invest. 2018;129:72–4. doi: 10.1172/JCI125509. Available from: http://dx.doi.org/10.1172/JCI125509. PubMed DOI PMC

Lee HH, Prasad AS, Brewer GJ, Owyang C. Zinc absorption in human small intestine. Am J Physiol. 1989;256(1 Pt 1):G87–G91. doi: 10.1152/ajpgi.1989.256.1.G87. Available from: http://dx.doi.org/10.1152/ajpgi.1989.256.1.G87. PubMed DOI

Lee JY, Son HJ, Choi JH, Cho E, Kim J, Chung SJ, Hwang O, Koh JY. Cytosolic labile zinc accumulation in degenerating dopaminergic neurons of mouse brain after MPTP treatment. Brain Res. 2009;1286:208–214. doi: 10.1016/j.brainres.2009.06.046. Available from: http://dx.doi.org/10.1016/j.brainres.2009.06.046. PubMed DOI

Leissring MA. The AbetaCs of Abeta-cleaving proteases. J Biol Chem. 2008;283(44):29645–29649. doi: 10.1074/jbc.R800022200. Available from: http://dx.doi.org/10.1074/jbc.R800022200. PubMed DOI PMC

Leskovjan AC, Lanzirotti A, Miller LM. Amyloid plaques in PSAPP mice bind less metal than plaques in human Alzheimer’s disease. Neuroimage. 2009;47(4):1215–1220. doi: 10.1016/j.neuroimage.2009.05.063. Available from: http://dx.doi.org/10.1016/j.neuroimage.2009.05.063. PubMed DOI PMC

Levi S, Santambrogio P, Cozzi A, Rovida E, Corsi B, Tamborini E, et al. The Role of the L-Chain in Ferritin Iron Incorporation. J Mol Biol. 1994;238:649–54. doi: 10.1006/jmbi.1994.1325. Available from: http://dx.doi.org/10.1006/jmbi.1994.1325. PubMed DOI

Li D, Guo B, Wu H, Tan L, Lu Q. TET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms. Cytogenet Genome Res. 2015;146:171–80. doi: 10.1159/000438853. Available from: http://dx.doi.org/10.1159/000438853. PubMed DOI

Li X, Le L, Shi Q, Xu H, Wang C, Xiong Y, Wang X, Wu G, Liu Q, Du X. Zinc exacerbates tau-induced Alzheimer-like pathology in C57BL/6J mice. Int J Biol Macromol. 2023;242(Pt 2):124652. doi: 10.1016/j.ijbiomac.2023.124652. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2023.124652. PubMed DOI

Li X, Zeng X, Yang W, Ren P, Zhai H, Yin H. Impacts of Copper Deficiency on Oxidative Stress and Immune Function in Mouse Spleen. Nutrients. 2025;17(1):117. doi: 10.3390/nu17010117. Available from: http://dx.doi.org/10.3390/nu17010117. PubMed DOI PMC

Lim KH, Riddell LJ, Nowson CA, Booth AO, Szymlek-Gay EA. Iron and zinc nutrition in the economically-developed world: a review. Nutrients. 2013;5(8):3184–3211. doi: 10.3390/nu5083184. Available from: http://dx.doi.org/10.3390/nu5083184. PubMed DOI PMC

Lin RS, Rodriguez C, Veillette A, Lodish HF. Zinc is essential for binding of p56(lck) to CD4 and CD8alpha. J Biol Chem. 1998;273(49):32878–32882. doi: 10.1074/jbc.273.49.32878. Available from: http://dx.doi.org/10.1074/jbc.273.49.32878. PubMed DOI

Lindner S, Lucchini R, Broberg K. Genetics and Epigenetics of Manganese Toxicity. Curr Environ Health Rep. 2022;9(4):697–713. doi: 10.1007/s40572-022-00384-2. Available from: http://dx.doi.org/10.1007/s40572-022-00384-2. PubMed DOI PMC

Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44:479–96. doi: 10.3109/10715761003667554. Available from: http://dx.doi.org/10.3109/10715761003667554. PubMed DOI PMC

Liu C, Ju R. Manganese-induced neuronal apoptosis: new insights into the role of endoplasmic reticulum stress in regulating autophagy-related proteins. Toxicol Sci. 2023;191(2):193–200. doi: 10.1093/toxsci/kfac130. Available from: http://dx.doi.org/10.1093/toxsci/kfac130. PubMed DOI

Liu L, Zhao E, Li C, et al. TRIM28, a new molecular marker predicting metastasis and survival in early-stage non-small cell lung cancer. Cancer Epidemiol. 2013;37(1):71–78. doi: 10.1016/j.canep.2012.08.005. Available from: PubMed DOI

Liu Y, Miao J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients. 2022;14(3):700. doi: 10.3390/nu14030700. Available from: http://dx.doi.org/10.3390/nu14030700. PubMed DOI PMC

Lloyd RV, Hanna PM, Mason RP. The Origin of the Hydroxyl Radical Oxygen in the Fenton Reaction. Free Radic Biol Med. 1997;22:885–8. doi: 10.1016/s0891-5849(96)00432-7. Available from: http://dx.doi.org/10.1016/s0891-5849(96)00432-7. PubMed DOI

Lovejoy D, Richardson D. Iron Chelators as Anti-Neoplastic Agents: Current Developments and Promise of the PIH Class of Chelators. Curr Med Chem. 2003;10:1035–49. doi: 10.2174/0929867033457557. Available from: http://dx.doi.org/10.2174/0929867033457557. PubMed DOI

Lu H, Cai L, Mu LN, Lu QY, Zhao J, Cui Y, Sul JH, Zhou XF, Ding BG, Elashoff RM, Marshall J, Yu SZ, Jiang QW, Zhang ZF. Dietary mineral and trace element intake and squamous cell carcinoma of the esophagus in a Chinese population. Nutr Cancer. 2006;55(1):63–70. doi: 10.1207/s15327914nc5501_8. Available from: http://dx.doi.org/10.1207/s15327914nc5501_8. PubMed DOI

Lynch SM, Frei B, Morrow JD, Roberts LJ, II, Xu A, Jackson T, et al. Vascular Superoxide Dismutase Deficiency Impairs Endothelial Vasodilator Function Through Direct Inactivation of Nitric Oxide and Increased Lipid Peroxidation. Arterioscler Thromb Vasc Biol. 1997;17:2975–81. doi: 10.1161/01.atv.17.11.2975. Available from: http://dx.doi.org/10.1161/01.atv.17.11.2975. PubMed DOI

Maares M, Haase H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients. 2020;12(3):762. doi: 10.3390/nu12030762. Available from: http://dx.doi.org/10.3390/nu12030762. PubMed DOI PMC

Madejczyk MS, Ballatori N. The iron transporter ferroportin can also function as a manganese exporter. Biochim Biophys Acta. 2012;1818(3):651–657. doi: 10.1016/j.bbamem.2011.12.002. Available from: http://dx.doi.org/10.1016/j.bbamem.2011.12.002. PubMed DOI PMC

Magenta A, Greco S, Capogrossi MC, Gaetano C, Martelli F. Nitric oxide, oxidative stress, and p66Shc interplay in diabetic endothelial dysfunction. Biomed Res Int. 2014:193095. doi: 10.1155/2014/193095. Available from: http://dx.doi.org/10.1155/2014/193095. PubMed DOI PMC

Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105–9. doi: 10.1038/nature13148. Available from: http://dx.doi.org/10.1038/nature13148. PubMed DOI PMC

Marcus DL, Strafaci JA, Freedman ML. Differential neuronal expression of manganese superoxide dismutase in Alzheimer's disease. Med Sci Monit. 2006;12(1):BR8–B14. PubMed

Maret W. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics. 2015;7(2):202–211. doi: 10.1039/c4mt00230j. Available from: http://dx.doi.org/10.1039/c4mt00230j. PubMed DOI

Maret W. Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals. 2009;22(1):149–157. doi: 10.1007/s10534-008-9186-z. Available from: http://dx.doi.org/10.1007/s10534-008-9186-z. PubMed DOI

Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20(1):3–18. doi: 10.1016/j.jtemb.2006.01.006. Available from: http://dx.doi.org/10.1016/j.jtemb.2006.01.006. PubMed DOI

Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants. 2017;6(2):24. doi: 10.3390/antiox6020024. Available from: http://dx.doi.org/10.3390/antiox6020024. PubMed DOI PMC

Marreiro DDN, Cruz KJC, Morais JBS, Beserra JB, Severo JS, De Oliveira ARS. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants. 2017;6(2):24. doi: 10.3390/antiox6020024. Available from: http://dx.doi.org/10.3390/antiox6020024. PubMed DOI PMC

Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med. 2013;62:65–75. doi: 10.1016/j.freeradbiomed.2013.01.032. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.032. PubMed DOI PMC

Martins AC, Oliveira-Paula GH, Tinkov AA, Skalny AV, Tizabi Y, Bowman AB, Aschner M. Role of manganese in brain health and disease: Focus on oxidative stress. Free Radic Biol Med. 2025;232:306–318. doi: 10.1016/j.freeradbiomed.2025.03.013. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2025.03.013. PubMed DOI PMC

Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 2019;133:221–33. doi: 10.1016/j.freeradbiomed.2018.09.033. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.033. PubMed DOI

Mastrogiannaki M, Matak P, Peyssonnaux C. The gut in iron homeostasis: role of HIF-2 under normal and pathological conditions. Blood. 2013;122:885–92. doi: 10.1182/blood-2012-11-427765. Available from: http://dx.doi.org/10.1182/blood-2012-11-427765. PubMed DOI PMC

Mattie MD, McElwee MK, Freedman JH. Mechanism of Copper-Activated Transcription: Activation of AP-1, and the JNK/SAPK and p38 Signal Transduction Pathways. J Mol Biol. 2008;383:1008–18. doi: 10.1016/j.jmb.2008.08.080. Available from: http://dx.doi.org/10.1016/j.jmb.2008.08.080. PubMed DOI PMC

Mayes J, Tinker-Mill C, Kolosov O, Zhang H, Tabner BJ, Allsop D. β-Amyloid Fibrils in Alzheimer Disease Are Not Inert When Bound to Copper Ions but Can Degrade Hydrogen Peroxide and Generate Reactive Oxygen Species. J Biol Chem. 2014;289:12052–12062. doi: 10.1074/jbc.M113.525212. Available from: http://dx.doi.org/10.1074/jbc.M113.525212. PubMed DOI PMC

Mayle KM, Le AM, Kamei DT. The intracellular trafficking pathway of transferrin. Biochim Biophys Acta. 2012;1820:264–81. doi: 10.1016/j.bbagen.2011.09.009. Available from: http://dx.doi.org/10.1016/j.bbagen.2011.09.009. PubMed DOI PMC

McCarthy RC, Sosa JC, Gardeck AM, Baez AS, Lee C-H, Wessling-Resnick M. Inflammation-induced iron transport and metabolism by brain microglia. J Biol Chem. 2018;293:7853–63. doi: 10.1074/jbc.RA118.001949. Available from: http://dx.doi.org/10.1074/jbc.RA118.001949. PubMed DOI PMC

McDowall JS, Brown DR. Alpha-synuclein: relating metals to structure, function and inhibition. Metallomics. 2016;8(4):385–97. doi: 10.1039/c6mt00026f. Available from: http://dx.doi.org/10.1039/c6mt00026f. PubMed DOI

McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, et al. A Novel Duodenal Iron-Regulated Transporter, IREG1, Implicated in the Basolateral Transfer of Iron to the Circulation. Mol Cell. 2000;5:299–309. doi: 10.1016/s1097-2765(00)80425-6. Available from: http://dx.doi.org/10.1016/s1097-2765(00)80425-6. PubMed DOI

Medeiros DM. Perspectives on the Role and Relevance of Copper in Cardiac Disease. Biol Trace Elem Res. 2017;176(1):10–9. doi: 10.1007/s12011-016-0807-z. Available from: http://dx.doi.org/10.1007/s12011-016-0807-z. PubMed DOI

Medeiros MS, Schumacher-Schuh A, Cardoso AM, Bochi GV, Baldissarelli J, Kegler A, et al. Iron and Oxidative Stress in Parkinson’s Disease: An Observational Study of Injury Biomarkers. PLoS ONE. 2016;11:e0146129. doi: 10.1371/journal.pone.0146129. Available from: http://dx.doi.org/10.1371/journal.pone.0146129. PubMed DOI PMC

Medici V, LaSalle JM. Genetics and epigenetic factors of Wilson disease. Ann Transl Med. 2019:S58. doi: 10.21037/atm.2019.01.67. Available from: http://dx.doi.org/10.21037/atm.2019.01.67. PubMed DOI PMC

Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology. 2019;74:230–241. doi: 10.1016/j.neuro.2019.07.007. Available from: http://dx.doi.org/10.1016/j.neuro.2019.07.007. PubMed DOI

Miah MR, Ijomone OM, Okoh COA, Ijomone OK, Akingbade GT, Ke T, Krum B, da Cunha Martins A Jr, Akinyemi A, Aranoff N, Antunes Soares FA, Bowman AB, Aschner M. The effects of manganese overexposure on brain health. Neurochem Int. 2020;135:104688. doi: 10.1016/j.neuint.2020.104688. Available from: http://dx.doi.org/10.1016/j.neuint.2020.104688. PubMed DOI PMC

Michelotti FC, Bowden G, Küppers A, Joosten L, Maczewsky J, Nischwitz V, Drews G, Maurer A, Gotthardt M, Schmid AM, Pichler BJ. PET/MRI enables simultaneous in vivo quantification of β-cell mass and function. Theranostics. 2020;10(1):398–410. doi: 10.7150/thno.33410. Available from: http://dx.doi.org/10.7150/thno.33410. PubMed DOI PMC

Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K, Iqbal K. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch Biochem Biophys. 1993;301(1):41–52. doi: 10.1006/abbi.1993.1112. Available from: http://dx.doi.org/10.1006/abbi.1993.1112. PubMed DOI

Millward DJ. Nutrition, infection and stunting: the roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr Res Rev. 2017;30(1):50–72. doi: 10.1017/S0954422416000238. Available from: http://dx.doi.org/10.1017/S0954422416000238. PubMed DOI

Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M. Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol. 2005;75(6):367–390. doi: 10.1016/j.pneurobio.2005.04.005. Available from: http://dx.doi.org/10.1016/j.pneurobio.2005.04.005. PubMed DOI

Molina JA, Jiménez-Jiménez FJ, Aguilar MV, Meseguer I, Mateos-Vega CJ, González-Muñoz MJ, de Bustos F, Porta J, Ortí-Pareja M, Zurdo M, Barrios E, Martínez-Para MC. Cerebrospinal fluid levels of transition metals in patients with Alzheimer's disease. J Neural Transm (Vienna) 1998;105(4-5):479–488. doi: 10.1007/s007020050071. Available from: http://dx.doi.org/10.1007/s007020050071. PubMed DOI

Monda E, Lioncino M, Rubino M, Passantino S, Verrillo F, Caiazza M, et al. Diagnosis and Management of Cardiovascular Involvement in Friedreich Ataxia. Heart Fail Clin. 2022;18:31–7. doi: 10.1016/j.hfc.2021.07.001. Available from: http://dx.doi.org/10.1016/j.hfc.2021.07.001. PubMed DOI

Monzani E, Nicolis S, Dell’Acqua S, Capucciati A, Bacchella C, Zucca FA, et al. Dopamine, Oxidative Stress and Protein–Quinone Modifications in Parkinson’s and Other Neurodegenerative Diseases. Angew Chem Int Ed Engl. 2019;58:6512–27. doi: 10.1002/anie.201811122. Available from: http://dx.doi.org/10.1002/anie.201811122. PubMed DOI

Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, et al. The Amyloid Precursor Protein of Alzheimer’s Disease in the Reduction of Copper(II) to Copper(I) Science. 1996;271:5254:1406–9. doi: 10.1126/science.271.5254.1406. Available from: http://dx.doi.org/10.1126/science.271.5254.1406. PubMed DOI

Murray AJ, Rogers JC, Katshu MZUH, Liddle PF, Upthegrove R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front Psychiatry. 2021;12:703452. doi: 10.3389/fpsyt.2021.703452. Available from: http://dx.doi.org/10.3389/fpsyt.2021.703452. PubMed DOI PMC

Nai A, Pellegrino RM, Rausa M, Pagani A, Boero M, Silvestri L, et al. The erythroid function of transferrin receptor 2 revealed by Tmprss6 inactivation in different models of transferrin receptor 2 knockout mice. Haematologica. 2014;99:1016–21. doi: 10.3324/haematol.2013.103143. Available from: http://dx.doi.org/10.3324/haematol.2013.103143. PubMed DOI PMC

Nakamura M, Shishido N, Nunomura A, Smith MA, Perry G, Hayashi Y, et al. Three Histidine Residues of Amyloid-β Peptide Control the Redox Activity of Copper and Iron. Biochemistry. 2007;46:12737–43. doi: 10.1021/bi701079z. Available from: http://dx.doi.org/10.1021/bi701079z. PubMed DOI

Nakayama M, Bennett CJ, Hicks JL, et al. Hypermethylation of the human glutathione S-transferase-π gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. The American Journal of Pathology. 2003;163(3):923–933. doi: 10.1016/s0002-9440(10)63452-9. Available from: http://dx.doi.org/10.1016/s0002-9440(10)63452-9. PubMed DOI PMC

Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–389. doi: 10.1038/30764. Available from: http://dx.doi.org/10.1038/30764. PubMed DOI

Nandal A, Ruiz JC, Subramanian P, Ghimire-Rijal S, Sinnamon RA, Stemmler TL, et al. Activation of the HIF Prolyl Hydroxylase by the Iron Chaperones PCBP1 and PCBP2. Cell Metab. 2011;14:647–57. doi: 10.1016/j.cmet.2011.08.015. Available from: http://dx.doi.org/10.1016/j.cmet.2011.08.015. PubMed DOI PMC

Nazari M, Ashtary-Larky D, Nikbaf-Shandiz M, Goudarzi K, Bagheri R, Dolatshahi S, Omran HS, Amirani N, Ghanavati M, Asbaghi O. Zinc supplementation and cardiovascular disease risk factors: A GRADE-assessed systematic review and dose-response meta-analysis. J Trace Elem Med Biol. 2023;79:127244. doi: 10.1016/j.jtemb.2023.12724. Available from: http://dx.doi.org/10.1016/j.jtemb.2023.12724. PubMed DOI

Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization. Science. 2004;306:2090–3. doi: 10.1126/science.1104742. Available from: http://dx.doi.org/10.1126/science.1104742. PubMed DOI

Nepravishta R, Bellomaria A, Polizio F, Paci M, Melino S. Reticulon RTN1-CCT Peptide: A Potential Nuclease and Inhibitor of Histone Deacetylase Enzymes. Biochemistry. 2009;49:252–8. doi: 10.1021/bi9012676. Available from: http://dx.doi.org/10.1021/bi9012676. PubMed DOI

Neşelioğlu S, Fırat Oğuz E, Erel Ö. Development of a New Colorimetric, Kinetic and Automated Ceruloplasmin Ferroxidase Activity Measurement Method. Antioxidants. 2022;11(11):2187. doi: 10.3390/antiox11112187. Available from: http://dx.doi.org/10.3390/antiox11112187. PubMed DOI PMC

Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110:1037–44. doi: 10.1172/JCI200215686. Available from: http://dx.doi.org/10.1172/JCI200215686. PubMed DOI PMC

Noseworthy MD, Bray TM. Zinc deficiency exacerbates loss in blood-brain barrier integrity induced by hyperoxia measured by dynamic MRI. Proc Soc Exp Biol Med. 2000;223(2):175–182. doi: 10.1046/j.1525-1373.2000.22324.x. Available from: http://dx.doi.org/10.1046/j.1525-1373.2000.22324.x. PubMed DOI

Nowicki GJ, Ślusarska B, Prystupa A, Blicharska E, Adamczuk A, Czernecki T, Jankowski KJ. Assessment of Concentrations of Heavy Metals in Postmyocardial Infarction Patients and Patients Free from Cardiovascular Event. Cardiol Res Pract. 2021;2021:9546358. doi: 10.1155/2021/9546358. Available from: http://dx.doi.org/10.1155/2021/9546358. PubMed DOI PMC

Nwanaji-Enwerem JC, Colicino E, Specht AJ, Gao X, Wang C, Vokonas P, Weisskopf MG, Boyer EW, Baccarelli AA, Schwartz J. Individual species and cumulative mixture relationships of 24-hour urine metal concentrations with DNA methylation age variables in older men. Environ Res. 2020;186:109573. doi: 10.1016/j.envres.2020.109573. Available from: http://dx.doi.org/10.1016/j.envres.2020.109573. PubMed DOI PMC

Ongey EL, Banerjee A. In vitro reconstitution of transition metal transporters. J Biol Chem. 2024;300:107589. doi: 10.1016/j.jbc.2024.107589. Available from: http://dx.doi.org/10.1016/j.jbc.2024.107589. PubMed DOI PMC

Oteiza PI, Olin KL, Fraga CG, Keen CL. Zinc Deficiency Causes Oxidative Damage to Proteins, Lipids and DNA in Rat Testes. J Nutr. 1995;125:823–829. doi: 10.1093/jn/125.4.823. Available from: http://dx.doi.org/10.1093/jn/125.4.823. PubMed DOI

Outten CE, O'Halloran TV. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science. 2001;292(5526):2488–2492. doi: 10.1126/science.1060331. Available from: http://dx.doi.org/10.1126/science.1060331. PubMed DOI

Padgette SR, Huynh QK, Aykent S, Sammons RD, Sikorski JA, Kishore GM. Identification of the Reactive Cysteines of Escherichia coli 5-Enolpyruvylshikimate-3-phosphate Synthase and Their Nonessentiality for Enzymatic Catalysis. J Biol Chem. 1988;263:1798–1802. doi: 10.1016/S0021-9258(19)77947-2. Available from: http://dx.doi.org/10.1016/S0021-9258(19)77947-2. PubMed DOI

Pal A, Kumar A, Prasad R. Predictive association of copper metabolism proteins with Alzheimer’s disease and Parkinson’s disease: a preliminary perspective. Biometals. 2014;27:25–31. doi: 10.1007/s10534-013-9702-7. Available from: http://dx.doi.org/10.1007/s10534-013-9702-7. PubMed DOI

Palmiter RD, Cole TB, Findley SD. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 1996;15(8):1784–1791. PubMed PMC

Papaioannou AI, Kostikas K, Kollia P, Gourgoulianis KI. Clinical implications for vascular endothelial growth factor in the lung: friend and for? Respir Res. 2006;7:128–140. doi: 10.1186/1465-9921-7-128. Available from: http://dx.doi.org/10.1186/1465-9921-7-128. PubMed DOI PMC

Park JT, Choi DS, Park CH, Heo GY, Kim HW, Han SH, Yoo TH, Kang SW. Dietary manganese intake and risk of chronic kidney disease: insights from the UK Biobank Study. Nephrology Dialysis Transplantation. 2024;39:gfae069–0502–1054. doi: 10.1093/ndt/gfae069.502. Available from: DOI

Parson SE, DiSilvestro RA. Effects of mild zinc deficiency, plus or minus an acute-phase response, on galactosamine-induced hepatitis in rats. Brit J Nutr. 1994;72:611–618. doi: 10.1079/BJN19940063. Available from: http://dx.doi.org/10.1079/BJN19940063. PubMed DOI

Parthasarathy S, Yoo B, McElheny D, Tay W, Ishii Y. Capturing a Reactive State of Amyloid Aggregates. J Biol Chem. 2014;289:9998–10010. doi: 10.1074/jbc.M113.511345. Available from: http://dx.doi.org/10.1074/jbc.M113.511345. PubMed DOI PMC

Pascal LE, Tessier DM. Cytotoxicity of chromium and manganese to lung epithelial cells in vitro. Toxicol Lett. 2004;147:143–151. doi: 10.1016/j.toxlet.2003.11.004. Available from: http://dx.doi.org/10.1016/j.toxlet.2003.11.004. PubMed DOI

Perkal O, Qasem Z, Turgeman M, Schwartz R, Gevorkyan-Airapetov L, Pavlin M, et al. Cu(I) Controls Conformational States in Human Atox1 Metallochaperone: An EPR and Multiscale Simulation Study. J Phys Chem B. 2020;124:4399–411. doi: 10.1021/acs.jpcb.0c01744. Available from: http://dx.doi.org/10.1021/acs.jpcb.0c01744. PubMed DOI PMC

Petit F, Drecourt A, Dussiot M, Zangarelli C, Hermine O, Munnich A, et al. Defective palmitoylation of transferrin receptor triggers iron overload in Friedreich ataxia fibroblasts. Blood. 2021;137:2090–102. doi: 10.1182/blood.2020006987. Available from: http://dx.doi.org/10.1182/blood.2020006987. PubMed DOI

Petrilli MA, Kranz TM, Kleinhaus K, Joe P, Getz M, Johnson P, Chao MV, Malaspina D. The Emerging Role for Zinc in Depression and Psychosis. Front Pharmacol. 2017;8:414. doi: 10.3389/fphar.2017.00414. Available from: http://dx.doi.org/10.3389/fphar.2017.00414. PubMed DOI PMC

Philpott CC, Protchenko O, Wang Y, Novoa-Aponte L, Leon-Torres A, Grounds S, et al. Iron-tracking strategies: Chaperones capture iron in the cytosolic labile iron pool. Front Mol Biosci. 2023;10 doi: 10.3389/fmolb.2023.1127690. Available from: http://dx.doi.org/10.3389/fmolb.2023.1127690. PubMed DOI PMC

Piloni NE, Perazzo JC, Fernandez V, Videla LA, Puntarulo S. Sub-chronic iron overload triggers oxidative stress development in rat brain: implications for cell protection. Biometals. 2016;29(1):119–130. doi: 10.1007/s10534-015-9902-4. Available from: http://dx.doi.org/10.1007/s10534-015-9902-4. PubMed DOI

Pluth MD, Tomat E, Lippard SJ. Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. Annu Rev Biochem. 2011;80:333–355. doi: 10.1146/annurev-biochem-061009-091643. Available from: http://dx.doi.org/10.1146/annurev-biochem-061009-091643. PubMed DOI PMC

Polytarchou C, Pfau R, Hatziapostolou M, Tsichlis PN. The JmjC Domain Histone Demethylase Ndy1 Regulates Redox Homeostasis and Protects Cells from Oxidative Stress. Mol Cell Biol. 2008;28:7451–64. doi: 10.1128/mcb.00688-08. Available from: http://dx.doi.org/10.1128/mcb.00688-08. PubMed DOI PMC

Pompano L. M., Boy E. Effects of Dose and Duration of Zinc Interventions on Risk Factors for Type 2 Diabetes and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021;12:141–160. doi: 10.1093/advances/nmaa087. Available from: http://dx.doi.org/10.1093/advances/nmaa087. PubMed DOI PMC

Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol Sci. 2017;38(7):592–607. doi: 10.1016/j.tips.2017.04.005. Available from: http://dx.doi.org/10.1016/j.tips.2017.04.005. PubMed DOI

Powell SR. The antioxidant properties of zinc. J Nutr. 2000;130(5S Suppl):1447S–1454S. doi: 10.1093/jn/130.5.1447S. Available from: http://dx.doi.org/10.1093/jn/130.5.1447S. PubMed DOI

Qu W, Pi J, Waalkes MP. Metallothionein blocks oxidative DNA damage in vitro. Arch Toxicol. 2013;87:311–321. doi: 10.1007/s00204-012-0927-y. Available from: http://dx.doi.org/10.1007/s00204-012-0927-y. PubMed DOI PMC

Qu Z, Liu Q, Kong X, Wang X, Wang Z, Wang J, Fang Y. A Systematic Study on Zinc-Related Metabolism in Breast Cancer. Nutrients. 2023;15(7):1703. doi: 10.3390/nu15071703. Available from: http://dx.doi.org/10.3390/nu15071703. PubMed DOI PMC

Quatredeniers M, Mendes-Ferreira P, Santos-Ribeiro D, Nakhleh MK, Ghigna M-R, Cohen-Kaminsky S, et al. Iron Deficiency in Pulmonary Arterial Hypertension: A Deep Dive into the Mechanisms. Cells. 2021;10:477. doi: 10.3390/cells10020477. Available from: http://dx.doi.org/10.3390/cells10020477. PubMed DOI PMC

Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, V O’Halloran T. Undetectable Intracellular Free Copper: The Requirement of a Copper Chaperone for Superoxide Dismutase. Science. 1999;284:805–8. doi: 10.1126/science.284.5415.805. Available from: http://dx.doi.org/10.1126/science.284.5415.805. PubMed DOI

Rajendran R, Minqin R, Ynsa MD, Casadesus G, Smith MA, Perry G, et al. A novel approach to the identification and quantitative elemental analysis of amyloid deposits—Insights into the pathology of Alzheimer’s disease. Biochem Biophys Res Commun. 2009;382:91–5. doi: 10.1016/j.bbrc.2009.02.136. Available from: http://dx.doi.org/10.1016/j.bbrc.2009.02.136. PubMed DOI

Ramakrishnan L, Pedersen SL, Toe QK, Quinlan GJ, Wort SJ. Pulmonary Arterial Hypertension: Iron Matters. Front Physiol. 2018;9 doi: 10.3389/fphys.2018.00641. Available from: http://dx.doi.org/10.3389/fphys.2018.00641. PubMed DOI PMC

Ratner MH, Rutchik JS. A rare case of early onset lewy body dementia with parkinsonism associated with chronic exposure to copper contaminated drinking water. Front Toxicol. 2024;6:1451235. doi: 10.3389/ftox.2024.1451235. Available from: http://dx.doi.org/10.3389/ftox.2024.1451235. PubMed DOI PMC

Recalcati S, Gammella E, Buratti P, Cairo G. Molecular regulation of cellular iron balance. IUBMB Life. 2017;69:389–98. doi: 10.1002/iub.1628. Available from: http://dx.doi.org/10.1002/iub.1628. PubMed DOI

Religa D, Strozyk D, Cherny RA, Volitakis I, Haroutunian V, Winblad B, Naslund J, Bush AI. Elevated cortical zinc in Alzheimer disease. Neurology. 2006;67(1):69–75. doi: 10.1212/01.wnl.0000223644.08653.b5. Available from: http://dx.doi.org/10.1212/01.wnl.0000223644.08653.b5. PubMed DOI

Ren L, Oleinick A, Svir I, Amatore C, Ewing AG. Amperometric Measurements and Dynamic Models Reveal a Mechanism for How Zinc Alters Neurotransmitter Release. Angew Chem Int Ed Engl. 2020;59(8):3083–3087. doi: 10.1002/anie.201913184. Available from: http://dx.doi.org/10.1002/anie.201913184. PubMed DOI

Richardson KJ, McNamee AP, Simmonds MJ. Haemochromatosis: Pathophysiology and the red blood cell1. Clin Hemorheol Microcir. 2018;69:295–304. doi: 10.3233/ch-189128. Available from: http://dx.doi.org/10.3233/ch-189128. PubMed DOI

Roth JA, Horbinski C, Higgins D, Lein P, Garrick MD. Mechanisms of manganese-induced rat pheochromocytoma (PC12) cell death and cell differentiation. Neurotoxicology. 2002;23(2):147–157. doi: 10.1016/s0161-813x(01)00077-8. Available from: http://dx.doi.org/10.1016/s0161-813x(01)00077-8. PubMed DOI

Roth JA, Horbinski C, Higgins D, Lein P, Garrick MD. Mechanisms of manganese-induced rat pheochromocytoma (PC12) cell death and cell differentiation. Neurotoxicology. 2002;23:147–157. doi: 10.1016/s0161-813x(01)00077-8. Available from: http://dx.doi.org/10.1016/s0161-813x(01)00077-8. PubMed DOI

Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol. 2006;2:406–14. doi: 10.1038/nchembio807. Available from: http://dx.doi.org/10.1038/nchembio807. PubMed DOI

Rowsell S, Hawtin P, Minshull CA, Jepson H, Brockbank SM, Barratt DG, Slater AM, McPheat WL, Waterson D, Henney AM, Pauptit RA. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol. 2002;319(1):173–181. doi: 10.1016/S0022-2836(02)00262-0. Available from: http://dx.doi.org/10.1016/S0022-2836(02)00262-0. PubMed DOI

Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Gudkov A, Buzdin A, Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines. 2022;10(5):1072. doi: 10.3390/biomedicines10051072. Available from: PubMed DOI PMC

Sangkhae V, Fisher AL, Chua KJ, Ruchala P, Ganz T, Nemeth E. Maternal hepcidin determines embryo iron homeostasis in mice. Blood. 2020;136:2206–16. doi: 10.1182/blood.2020005745. Available from: http://dx.doi.org/10.1182/blood.2020005745. PubMed DOI PMC

Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, Rokad D, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology. 2018;64:204–218. doi: 10.1016/j.neuro.2017.05.009. Available from: http://dx.doi.org/10.1016/j.neuro.2017.05.009. PubMed DOI PMC

Sawicki KT, De Jesus A, Ardehali H. Iron Metabolism in Cardiovascular Disease: Physiology, Mechanisms, and Therapeutic Targets. Circ Res. 2023;132:379–96. doi: 10.1161/CIRCRESAHA.122.321667. Available from: http://dx.doi.org/10.1161/CIRCRESAHA.122.321667. PubMed DOI PMC

Sawicki KT, Shang M, Wu R, Chang H, Khechaduri A, Sato T, et al. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury. J Am Heart Assoc. 2015;4:e002272. doi: 10.1161/JAHA.115.002272. Available from: http://dx.doi.org/10.1161/JAHA.115.002272. PubMed DOI PMC

Scanni A, Licciardello L, Trovato M, Tomirotti M, Biraghi M. Serum copper and ceruloplasmin levels in patients with neoplasias localized in the stomach, large intestine or lung. Tumori. 1977;63(2):175–180. doi: 10.1177/030089167706300208. Available from: http://dx.doi.org/10.1177/030089167706300208. PubMed DOI

Schaafsma T, Wakefield J, Hanisch R, Bray F, Schüz J, Joy EJ, Watts MJ, McCormack V. Africa's Oesophageal Cancer Corridor: Geographic Variations in Incidence Correlate with Certain Micronutrient Deficiencies. PLoS One. 2015;10(10):e0140107. doi: 10.1371/journal.pone.0140107. Available from: http://dx.doi.org/10.1371/journal.pone.0140107. PubMed DOI PMC

Scheiber IF, Wu Y, Morgan SE, Zhao N. The intestinal metal transporter ZIP14 maintains systemic manganese homeostasis. J Biol Chem. 2019;294(23):9147–9160. doi: 10.1074/jbc.RA119.008762. Available from: http://dx.doi.org/10.1074/jbc.RA119.008762. PubMed DOI PMC

Scheuhammer AM, Cherian MG. Effects of heavy metal cations, sulfhydryl reagents and other chemical agents on striatal D2 dopamine receptors. Biochem Pharm. 1985;34:3405–13. doi: 10.1016/0006-2952(85)90710-5. Available from: http://dx.doi.org/10.1016/0006-2952(85)90710-5. PubMed DOI

Schimanski LM, Drakesmith H, Merryweather-Clarke AT, Viprakasit V, Edwards JP, Sweetland E, et al. In vitro functional analysis of human ferroportin (FPN) and hemochromatosis-associated FPN mutations. Blood. 2005;105:4096–102. doi: 10.1182/blood-2004-11-4502. Available from: http://dx.doi.org/10.1182/blood-2004-11-4502. PubMed DOI

Schwartz AJ, Das NK, Ramakrishnan SK, Jain C, Jurkovic MT, Wu J, et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J Clin Invest. 2019;129:336–48. doi: 10.1172/JCI122359. Available from: http://dx.doi.org/10.1172/JCI122359. PubMed DOI PMC

Scott BJ, Bradwell AR. Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem. 1983;29(4):629–633. PubMed

Searle AJF, Tomasi AJ. Hydroxyl free radical production in iron-cysteine solutions and protection by zinc. Inorg. Biochem. 1982;17:161–166. doi: 10.1016/S0162-0134(00)80085-9. Available from: http://dx.doi.org/10.1016/S0162-0134(00)80085-9. DOI

Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 1998;8(11):447–453. doi: 10.1016/s0962-8924(98)01363-4. Available from: http://dx.doi.org/10.1016/s0962-8924(98)01363-4. PubMed DOI

Seval GC, Beksac M. The safety of bortezomib for the treatment of multiple myeloma. Expert Opin Drug Saf. 2018;17(9):953–62. doi: 10.1080/14740338.2018.1513487. Available from: http://dx.doi.org/10.1080/14740338.2018.1513487. PubMed DOI

Shah YM, Matsubara T, Ito S, Yim S-H, Gonzalez FJ. Intestinal Hypoxia-Inducible Transcription Factors Are Essential for Iron Absorption following Iron Deficiency. Cell Metab. 2009;9:152–64. doi: 10.1016/j.cmet.2008.12.012. Available from: http://dx.doi.org/10.1016/j.cmet.2008.12.012. PubMed DOI PMC

Shang Y, Shu N, Zhang Z, Yang P, Xu J. Comment on “Realization of the Zn3+ oxidation state” by H. Fang, H. Banjade, Deepika and P. Jena. Nanoscale. 2022;14:8875–8880. doi: 10.1039/D1NR07031B. Available from: http://dx.doi.org/10.1039/D1NR07031B. PubMed DOI

Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68(2 Suppl):447S–463S. doi: 10.1093/ajcn/68.2.447S. Available from: http://dx.doi.org/10.1093/ajcn/68.2.447S. PubMed DOI

Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol. 2022;16:101312. doi: 10.1016/j.tranon.2021.101312. Available from: http://dx.doi.org/10.1016/j.tranon.2021.101312. PubMed DOI PMC

Sharp P, Srai SK. Molecular mechanisms involved in intestinal iron absorption. World J Gastroenterol. 2007;13:4716–4724. doi: 10.3748/wjg.v13.i35.4716. Available from: http://dx.doi.org/10.3748/wjg.v13.i35.4716. PubMed DOI PMC

Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an Intestinal Heme Transporter. Cell. 2005;122:789–801. doi: 10.1016/j.cell.2005.06.025. Available from: http://dx.doi.org/10.1016/j.cell.2005.06.025. PubMed DOI

Sheikh A, Shamsuzzaman S, Ahmad SM, Nasrin D, et al. Zinc influences innate immune responses in children with enterotoxigenic Escherichia coli-induced diarrhea. J Nutr. 2010;140(5):1049–1056. doi: 10.3945/jn.109.111492. Available from: http://dx.doi.org/10.3945/jn.109.111492. PubMed DOI

Shen J, Wang L, Bi J. Bioinformatics analysis and experimental validation of cuproptosis-related lncRNA LINC02154 in clear cell renal cell carcinoma. BMC Cancer. 2023;23(1):160. doi: 10.1186/s12885-023-10639-2. Available from: http://dx.doi.org/10.1186/s12885-023-10639-2. PubMed DOI PMC

Shi H, Bencze KZ, Stemmler TL, Philpott CC. A Cytosolic Iron Chaperone That Delivers Iron to Ferritin. Science. 2008;320:1207–10. doi: 10.1126/science.1157643. Available from: http://dx.doi.org/10.1126/science.1157643. PubMed DOI PMC

Shim H, Harris ZL. Genetic Defects in Copper Metabolism. J Nutr. 2003;133:1527S–1531S. doi: 10.1093/jn/133.5.1527S. Available from: http://dx.doi.org/10.1093/jn/133.5.1527S. PubMed DOI

Shinar E, Rachmilewitz EA, Shifter A, Rahamim E, Saltman P. Oxidative damage to human red cells induced by copper and iron complexes in the presence of ascorbate. Biochim Biophys Acta. 1989;1014(1):66–72. doi: 10.1016/0167-4889(89)90241-3. Available from: http://dx.doi.org/10.1016/0167-4889(89)90241-3. PubMed DOI

Shippy DC, Oliai SF, Ulland TK. Zinc utilization by microglia in Alzheimer's disease. J Biol Chem. 2024;300(5):107306. doi: 10.1016/j.jbc.2024.107306. Available from: http://dx.doi.org/10.1016/j.jbc.2024.107306. PubMed DOI PMC

Sikora J, Ouagazzal AM. Synaptic Zinc: An Emerging Player in Parkinson's Disease. Int J Mol Sci. 2021;22(9):4724. doi: 10.3390/ijms22094724. Available from: http://dx.doi.org/10.3390/ijms22094724. PubMed DOI PMC

Silva A, Daiana LP, Aschner, M . Chapter 7. Manganese in Health and Disease. In: Sigel Astrid, Sigel Helmut, Roland KO., editors. Interrelations between Essential Metal Ions and Human Diseases. Springer; 2007. p. 199–227. (Metal Ions in Life Sciences, vol. 13). Available from: DOI

Silvestri L, Nai A, Dulja A, Pagani A. Hepcidin and the BMP-SMAD pathway: An unexpected liaison. Vitam Horm. 2019:71–99. doi: 10.1016/bs.vh.2019.01.004. Available from: http://dx.doi.org/10.1016/bs.vh.2019.01.004. PubMed DOI

Silvestri L, Nai A, Pagani A, Camaschella C. The extrahepatic role of TFR2 in iron homeostasis. Front Pharmacol. 2014;5:93. doi: 10.3389/fphar.2014.00093. Available from: http://dx.doi.org/10.3389/fphar.2014.00093. PubMed DOI PMC

Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, Valko M. Management of oxidative stress and other pathologies in Alzheimer's disease. Arch Toxicol. 2019;93(9):2491–2513. doi: 10.1007/s00204-019-02538-y. Available from: http://dx.doi.org/10.1007/s00204-019-02538-y. PubMed DOI

Siri-Angkul N, Xie L-H, Chattipakorn SC, Chattipakorn N. Cellular Electrophysiology of Iron-Overloaded Cardiomyocytes. Front Physiol. 2018;9:1615. doi: 10.3389/fphys.2018.01615. Available from: http://dx.doi.org/10.3389/fphys.2018.01615. PubMed DOI PMC

Stadtman ER. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med. 1990;9(4):315–325. doi: 10.1016/0891-5849(90)90006-5. Available from: http://dx.doi.org/10.1016/0891-5849(90)90006-5. PubMed DOI

Sugimoto R, Lee L, Tanaka Y, Morita Y, Hijioka M, Hisano T, Furukawa M. Zinc Deficiency as a General Feature of Cancer: a Review of the Literature. Biol Trace Elem Res. 2024;202(5):1937–1947. doi: 10.1007/s12011-023-03818-6. Available from: http://dx.doi.org/10.1007/s12011-023-03818-6. PubMed DOI PMC

Sullivan JF, Jetton MM, Hahn HK, Burch RE. Enhanced lipid peroxidation in liver microsomes of zinc-deficient rats. Am J Clin Nutr. 1980;33(1):51–56. doi: 10.1093/ajcn/33.1.51. Available from: http://dx.doi.org/10.1093/ajcn/33.1.51. PubMed DOI

Sun J, Sun J, Ming GL, Song H. Epigenetic regulation of neurogenesis in the adult mammalian brain. European Journal of Neuroscience. 2011;33(6):1087–1093. doi: 10.1111/j.1460-9568.2011.07607.x. Available from: http://dx.doi.org/10.1111/j.1460-9568.2011.07607.x. PubMed DOI PMC

Sun Y, Liu C, Liu Y, Hosokawa T, Saito T, Kurasaki M. Changes in the expression of epigenetic factors during copper-induced apoptosis in PC12 cells. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014;49(9):1023–1028. doi: 10.1080/10934529.2014.894847. Available from: http://dx.doi.org/10.1080/10934529.2014.894847. PubMed DOI

Sung MK, Bae YJ. Iron, Oxidative Stress, and Cancer. Cancer. 2014:139–49. doi: 10.1016/B978-0-12-405205-5.00013-1. Available from: http://dx.doi.org/10.1016/B978-0-12-405205-5.00013-1. DOI

Supasai S, Aimo L, Adamo AM, Mackenzie GG, Oteiza PI. Zinc deficiency affects the STAT1/3 signaling pathways in part through redox-mediated mechanisms. Redox Biol. 2017;11:469–481. doi: 10.1016/j.redox.2016.12.027. Available from: http://dx.doi.org/10.1016/j.redox.2016.12.027. PubMed DOI PMC

Swain JA, Darley-Usmar V, Gutteridge JMC. Peroxynitrite releases copper from caeruloplasmin: implications for atherosclerosis. FEBS Lett. 1994;342:49–52. doi: 10.1016/0014-5793(94)80582-2. Available from: http://dx.doi.org/10.1016/0014-5793(94)80582-2. PubMed DOI

Tabata K, Miyashita M, Yamasaki S, et al. Hair zinc levels and psychosis risk among adolescents. Schizophr. 2022;8:107. doi: 10.1038/s41537-022-00307-y. Available from: http://dx.doi.org/10.1038/s41537-022-00307-y. PubMed DOI PMC

Takatani-Nakase T. Zinc transporters and the progression of breast cancers. Biol Pharm Bull. 2018;41(10):1517–1522. doi: 10.1248/bpb.b18-00086. Available from: PubMed DOI

Tandara L, Salamunic I. Iron metabolism: current facts and future decisions. Biochem Med. 2012:311–328. doi: 10.11613/bm.2012.034. Available from: http://dx.doi.org/10.11613/bm.2012.034. PubMed DOI PMC

Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. England. 2022;32:417–418. doi: 10.1038/s41422-022-00653-7. Available from: http://dx.doi.org/10.1038/s41422-022-00653-7. PubMed DOI PMC

Tang, Jie Zhu, Li-Qun; Chen, Xiao-Feng; Jin, Ke; Shu, Yong-Qian. The association of serum manganese concentrations with all-cause, cardiovascular disease and cancer mortality: A cohort study based on the 2011–2014 National Health and Nutrition Examination Survey (NHANES) Journal of Nutritional Oncology. 2024;9(3):90–97. doi: 10.1097/JN9.0000000000000041. Available from: http://dx.doi.org/10.1097/JN9.0000000000000041. DOI

Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(10):a006296. doi: 10.1101/cshperspect.a006296. Available from: http://dx.doi.org/10.1101/cshperspect.a006296. PubMed DOI PMC

Tarale P, Chakrabarti T, Sivanesan S, Naoghare P, Bafana A, Krishnamurthi K. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity. Biomed Res Int. 2016;2016:2548792. doi: 10.1155/2016/2548792. Available from: http://dx.doi.org/10.1155/2016/2548792. PubMed DOI PMC

Tarohda T, Ishida Y, Kawai K, Yamamoto M, Amano R. Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats. Anal Bioanal Chem. 2005;383(2):224–234. doi: 10.1007/s00216-005-3423-x. Available from: http://dx.doi.org/10.1007/s00216-005-3423-x. PubMed DOI

Taylor CG, Bettger WJ, Bray TM. Effect of dietary zinc or copper deficiency on the primary free radical defense system in rats. J Nutr. 1988;118(5):613–621. doi: 10.1093/jn/118.5.613. Available from: http://dx.doi.org/10.1093/jn/118.5.613. PubMed DOI

Taylor KM. A distinct role in breast cancer for two LIV-1 family zinc transporters. Biochem Soc Trans. 2008;36(6):1247–1251. doi: 10.1042/BST0361247. Available from: PubMed DOI

Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal. 2012;5(210):ra11. doi: 10.1126/scisignal.2002585. Available from: PubMed DOI PMC

Taylor M, Qu A, Anderson ER, Matsubara T, Martin A, Gonzalez FJ, et al. Hypoxia-Inducible Factor-2α Mediates the Adaptive Increase of Intestinal Ferroportin During Iron Deficiency in Mice. Gastroenterology. 2011;140:2044–55. doi: 10.1053/j.gastro.2011.03.007. Available from: http://dx.doi.org/10.1053/j.gastro.2011.03.007. PubMed DOI PMC

Theil EC. Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry. Curr Opin Chem Biol. 2011;15:304–11. doi: 10.1016/j.cbpa.2011.01.004. Available from: http://dx.doi.org/10.1016/j.cbpa.2011.01.004. PubMed DOI PMC

Tian X, Diaz FJ. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol. 2013;376(1):51–61. PubMed PMC

To PK, Do MH, Cho JH, Jung C. Growth modulatory role of zinc in prostate cancer and application to cancer therapeutics. Int J Mol Sci. 2020;21(8):2991. doi: 10.3390/ijms21082991. Available from: PubMed DOI PMC

Truman-Rosentsvit M, Berenbaum D, Spektor L, Cohen LA, Belizowsky-Moshe S, Lifshitz L, et al. Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood. 2018;131:342–52. doi: 10.1182/blood-2017-02-768580. Available from: http://dx.doi.org/10.1182/blood-2017-02-768580. PubMed DOI PMC

Tse-Dinh YC, Beran-Steed RK. Escherichia coli DNA topoisomerase I is a zinc metalloprotein with three repetitive zinc-binding domains. J Biol Chem. 1988;263(31):15857–15859. PubMed

Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439:811–816. doi: 10.1038/nature04433. Available from: http://dx.doi.org/10.1038/nature04433. PubMed DOI

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61. doi: 10.1126/science.abf0529. Available from: http://dx.doi.org/10.1126/science.abf0529. PubMed DOI PMC

Udani K, Chris-Olaiya A, Ohadugha C, Malik A, Sansbury J, Paari D. Cardiovascular manifestations in hospitalized patients with hemochromatosis in the United States. Int J Cardiol. 2021;342:117–24. doi: 10.1016/j.ijcard.2021.07.060. Available from: http://dx.doi.org/10.1016/j.ijcard.2021.07.060. PubMed DOI

Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human health. Mol Aspects Med. 2005;26(4-5):268–298. doi: 10.1016/j.mam.2005.07.015. Available from: http://dx.doi.org/10.1016/j.mam.2005.07.015. PubMed DOI

Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem. 2013;126:541–9. doi: 10.1111/jnc.12244. Available from: http://dx.doi.org/10.1111/jnc.12244. PubMed DOI

Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90(1):1–37. doi: 10.1007/s00204-015-1579-5. Available from: http://dx.doi.org/10.1007/s00204-015-1579-5. PubMed DOI

Valko M, Morris H, Cronin M. Metals, Toxicity and Oxidative Stress. Curr Med Chem. 2005;12:1161–1208. doi: 10.2174/092986705376463. Available from: http://dx.doi.org/10.2174/092986705376463. PubMed DOI

Valko M, Morris H, Mazúr M, Rapta P, Bilton RF. Oxygen free radical generating mechanisms in the colon: do the semiquinones of vitamin K play a role in the aetiology of colon cancer? Biochim Biophys Acta. 2001;1527:161–166. doi: 10.1016/s0304-4165(01)00163-5. Available from: http://dx.doi.org/10.1016/s0304-4165(01)00163-5. PubMed DOI

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. 2006;160(1):1–40. doi: 10.1016/j.cbi.2005.12.009. Available from: http://dx.doi.org/10.1016/j.cbi.2005.12.009. PubMed DOI

Verma S, Fedak PWM, Weisel RD, Butany J, Rao V, Maitland A, et al. Fundamentals of Reperfusion Injury for the Clinical Cardiologist. Circulation. 2002;105:2332–6. doi: 10.1161/01.cir.0000016602.96363.36. Available from: http://dx.doi.org/10.1161/01.cir.0000016602.96363.36. PubMed DOI

Vinchi F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid Redox Signal. 2021;35:387–414. doi: 10.1089/ars.2020.8167. Available from: http://dx.doi.org/10.1089/ars.2020.8167. PubMed DOI PMC

Vo TTT, Peng T-Y, Nguyen TH, Bui TNH, Wang C-S, Lee W-J, et al. The crosstalk between copper-induced oxidative stress and cuproptosis: a novel potential anticancer paradigm. Cell Commun Signal. 2024;22(1):353. doi: 10.1186/s12964-024-01726-3. Available from: http://dx.doi.org/10.1186/s12964-024-01726-3. PubMed DOI PMC

Vulpe CD, Kuo Y-M, Murphy TL, Cowley L, Askwith C, Libina N, et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet. 1999;21:195–9. doi: 10.1038/5979. Available from: http://dx.doi.org/10.1038/5979. PubMed DOI

Walker CL, Black RE. Zinc for the treatment of diarrhoea: effect on diarrhoea morbidity, mortality and incidence of future episodes. Int J Epidemiol. 2010;39:i63–i69. doi: 10.1093/ije/dyq023. Available from: http://dx.doi.org/10.1093/ije/dyq023. PubMed DOI PMC

Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li Y, et al. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Arch Toxicol. 2023;97:1439–51. doi: 10.1007/s00204-023-03476-6. Available from: http://dx.doi.org/10.1007/s00204-023-03476-6. PubMed DOI

Wang D, Tian Z, Zhang P, Zhen L, Meng Q, Sun B, et al. The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease. Biomed Pharmacother. 2023;163:114830. doi: 10.1016/j.biopha.2023.114830. Available from: http://dx.doi.org/10.1016/j.biopha.2023.114830. PubMed DOI

Wang F, Kim BE, Petris MJ, Eide DJ. The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells. J Biol Chem. 2004;279(49):51433–51441. doi: 10.1074/jbc.M408361200. Available from: http://dx.doi.org/10.1074/jbc.M408361200. PubMed DOI

Wang L, Shiraki A, Itahashi M, Akane H, Abe H, Mitsumori K, et al. Aberration in epigenetic gene regulation in hippocampal neurogenesis by developmental exposure to manganese chloride in mice. Toxicol Sci. 2013;136(1):154–165. doi: 10.1093/toxsci/kft183. Available from: http://dx.doi.org/10.1093/toxsci/kft183. PubMed DOI

Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ. Current understanding of metal ions in the pathogenesis of Alzheimer's disease. Transl Neurodegener. 2020;9:10. doi: 10.1186/s40035-020-00189-z. Available from: http://dx.doi.org/10.1186/s40035-020-00189-z. PubMed DOI PMC

Wang M, Zheng L, Ma S, Lin R, Li J, Yang S. Cuproptosis: emerging biomarkers and potential therapeutics in cancers. Front Oncol. 2023;13:1288504. doi: 10.3389/fonc.2023.1288504. Available from: http://dx.doi.org/10.3389/fonc.2023.1288504. PubMed DOI PMC

Wang R, Sweeney D, Gandy SE, Sisodia SS. The profile of soluble amyloid beta protein in cultured cell media. Detection and quantification of amyloid beta protein and variants by immunoprecipitation-mass spectrometry. J Biol Chem. 1996;271(50):31894–31902. doi: 10.1074/jbc.271.50.31894. Available from: http://dx.doi.org/10.1074/jbc.271.50.31894. PubMed DOI

Wang S, He X, Wu Q, Jiang L, Chen L, Yu Y, et al. Transferrin receptor 1-mediated iron uptake plays an essential role in hematopoiesis. Haematologica. 2019;105:2071–82. doi: 10.3324/haematol.2019.224899. Available from: http://dx.doi.org/10.3324/haematol.2019.224899. PubMed DOI PMC

Wang Y, Kuca K, You L, Nepovimova E, Heger Z, Valko M, Adam V, Wu Q, Jomova K. The role of cellular senescence in neurodegenerative diseases. Arch Toxicol. 2024;98(8):2393–2408. doi: 10.1007/s00204-024-03768-5. Available from: http://dx.doi.org/10.1007/s00204-024-03768-5. PubMed DOI PMC

Wang Y, Sun Z, Li A, Zhang Y. Association between serum zinc levels and lung cancer: a meta-analysis of observational studies. World J Surg Oncol. 2019;17(1):78. doi: 10.1186/s12957-019-1617-5. Available from: http://dx.doi.org/10.1186/s12957-019-1617-5. PubMed DOI PMC

Wang Z-L, Yuan L, Li W, Li J-Y. Ferroptosis in Parkinson’s disease: glia-neuron crosstalk. Trends Mol Med. 2022;28:258–269. doi: 10.1016/j.molmed.2022.02.003. Available from: http://dx.doi.org/10.1016/j.molmed.2022.02.003. PubMed DOI

Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045–60. doi: 10.1016/S1474-4422(14)70117-6. Available from: http://dx.doi.org/10.1016/S1474-4422(14)70117-6. PubMed DOI PMC

Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC. Inappropriate expression of hepcidin is associated with iron refractory anemia: implicatsions for the anemia of chronic disease. Blood. 2002;100:3776–81. doi: 10.1182/blood-2002-04-1260. Available from: http://dx.doi.org/10.1182/blood-2002-04-1260. PubMed DOI

Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients. 2017;9(12):1286. doi: 10.3390/nu9121286. Available from: http://dx.doi.org/10.3390/nu9121286. PubMed DOI PMC

Wiesman AI, Madge V, Fon EA, Dagher A, Collins DL, Baillet S PREVENT-AD Research Group; Quebec Parkinson Network. Associations between neuromelanin depletion and cortical rhythmic activity in Parkinson's disease. medRxiv [Preprint] 2024;18:2024.02.16. doi: 10.1101/2024.02.16.24302958. Available from: http://dx.doi.org/10.1101/2024.02.16.24302958. DOI

Wolff B, Völzke H, Lüdemann J, Robinson D, Vogelgesang D, Staudt A, et al. Association Between High Serum Ferritin Levels and Carotid Atherosclerosis in the Study of Health in Pomerania (SHIP) Stroke. 2004;35:453–7. doi: 10.1161/01.STR.0000114875.31599.1C. Available from: http://dx.doi.org/10.1161/01.STR.0000114875.31599.1C. PubMed DOI

Wong CP, Rinaldi NA, Ho E. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol Nutr Food Res. 2015;59(5):991–999. doi: 10.1002/mnfr.201400761. Available from: http://dx.doi.org/10.1002/mnfr.201400761. PubMed DOI PMC

Wrighting DM, Andrews NC. Interleukin-6 induces hepcidin expression through STAT3. Blood. 2006;108:3204–9. doi: 10.1182/blood-2006-06-027631. Available from: http://dx.doi.org/10.1182/blood-2006-06-027631. PubMed DOI PMC

Wu MX, Filley SJ, Xiong J, Lee JJ, Hill KAW. A cysteine in the C-terminal region of alanyl-tRNA synthetase is important for aminoacylation activity. Biochemistry. 1994;33:12260–12266. doi: 10.1021/bi00206a032. Available from: http://dx.doi.org/10.1021/bi00206a032. PubMed DOI

Wypijewska A, Galazka-Friedman J, Bauminger ER, Wszolek ZK, Schweitzer KJ, Dickson DW, et al. Iron and reactive oxygen species activity in parkinsonian substantia nigra. Parkinsonism Relat Disord. 2010;16:329–33. doi: 10.1016/j.parkreldis.2010.02.007. Available from: http://dx.doi.org/10.1016/j.parkreldis.2010.02.007. PubMed DOI

Xiao S, Zhou Y, Liu T, Hu Y, et al. The association between manganese exposure with cardiovascular disease in older adults: NHANES 2011–2018. Journal of Environmental Science and Health Part A. 2021;56(11):1221–1227. doi: 10.1080/10934529.2021.1973823. Available from: PubMed DOI

Xie X, Liu L. Global status and research trends of cuprotosis research: A bibliometrics study via CiteSpace. Medicine. 2023;102(24):e34020. doi: 10.1097/MD.0000000000034020. Available from: http://dx.doi.org/10.1097/MD.0000000000034020. PubMed DOI PMC

Xu L, Liu K, Wang F, Su Y. Cuproptosis and its application in different cancers: an overview. Mol Cell Biochem. 2023;478:2683–2693. doi: 10.1007/s11010-023-04693-4. Available from: http://dx.doi.org/10.1007/s11010-023-04693-4. PubMed DOI

Xu S, Jiang B, Maitland KA, Bayat H, Gu J, Nadler JL, et al. The thromboxane receptor antagonist S18886 attenuates renal oxidant stress and proteinuria in diabetic apolipoprotein E-deficient mice. Diabetes Metab Res Rev. 2006;55:110–119. doi: 10.2337/diabetes.55.01.06.db05-0831. Available from: http://dx.doi.org/10.2337/diabetes.55.01.06.db05-0831. PubMed DOI

Yamasaki S, Sakata-Sogawa K, Hasegawa A, Suzuki T, Kabu K, Sato E, Kurosaki T, Yamashita S, Tokunaga M, Nishida K, Hirano T. Zinc is a novel intracellular second messenger. J Cell Biol. 2007;177:637–645. doi: 10.1083/jcb.200702081. Available from: http://dx.doi.org/10.1083/jcb.200702081. PubMed DOI PMC

Yanatori I, Richardson DR, Imada K, Kishi F. Iron Export through the Transporter Ferroportin 1 Is Modulated by the Iron Chaperone PCBP2. J Biol Chem. 2016;291:17303–18. doi: 10.1074/jbc.M116.721936. Available from: http://dx.doi.org/10.1074/jbc.M116.721936. PubMed DOI PMC

Yanatori I, Richardson DR, Toyokuni S, Kishi F. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J Biol Chem. 2017;292:13205–29. doi: 10.1074/jbc.M117.776021. Available from: http://dx.doi.org/10.1074/jbc.M117.776021. PubMed DOI PMC

Yang X, Yang H, Wu F, Qi Z, Li J, Xu B, Liu W, Xu Z, Deng Y. Mn Inhibits GSH Synthesis via Downregulation of Neuronal EAAC1 and Astrocytic xCT to Cause Oxidative Damage in the Striatum of Mice. Oxid Med Cell Longev. 2018;2018:4235695. doi: 10.1155/2018/4235695. Available from: http://dx.doi.org/10.1155/2018/4235695. PubMed DOI PMC

Yara S, Lavoie J-C, Beaulieu J-F, Delvin E, Amre D, Marcil V, et al. Iron-Ascorbate-Mediated Lipid Peroxidation Causes Epigenetic Changes in the Antioxidant Defense in Intestinal Epithelial Cells: Impact on Inflammation. Tsuji Y, ed. PLoS ONE. 2013;8:e63456. doi: 10.1371/journal.pone.0063456. Available from: http://dx.doi.org/10.1371/journal.pone.0063456. PubMed DOI PMC

Yasuno T, Okamoto H, Nagai M, Kimura S, Yamamoto T, et al. In vitro study on the transport of zinc across intestinal epithelial cells using caco-2 monolayers and isolated rat intestinal membranes. Biol. Pharm. Bull. 2012;35:588–593. doi: 10.1248/bpb.35.588. Available from: http://dx.doi.org/10.1248/bpb.35.588. PubMed DOI

Ye Q, Park JE, Gugnani K, Betharia S, Pino-Figueroa A, Kim J. Influence of iron metabolism on manganese transport and toxicity. Metallomics. 2017;9(8):1028–1046. doi: 10.1039/c7mt00079k. Available from: http://dx.doi.org/10.1039/c7mt00079k. PubMed DOI PMC

You Y, Guo Z, Wolter T, Hu Q. Intracellular metal ion-based chemistry for programmed cell death. Chem Soc Rev. 2025;54:1552–82. doi: 10.1039/d4cs00930d. Available from: http://dx.doi.org/10.1039/d4cs00930d. PubMed DOI

Yu S, Zhao N. The Regulation of ZIP8 by Dietary Manganese in Mice. Int J Mol Sci. 2023;24(6):5962. doi: 10.3390/ijms24065962. Available from: http://dx.doi.org/10.3390/ijms24065962. PubMed DOI PMC

Zanello G, Kevans D, Goethel A, Silverberg M, Tyler A, Croitoru K. Genetics and innate and adaptive immunity in IBD. Nestle Nutr Inst Workshop Ser. 2014;79:41–55. doi: 10.1159/000360676. Available from: http://dx.doi.org/10.1159/000360676. PubMed DOI

Zeller J, Bogner B, McFadyen JD, Kiefer J, Braig D, Pietersz G, et al. Transitional changes in the structure of C-reactive protein create highly pro-inflammatory molecules: Therapeutic implications for cardiovascular diseases. Pharmacol Ther. 2022;235:108165. doi: 10.1016/j.pharmthera.2022.108165. Available from: http://dx.doi.org/10.1016/j.pharmthera.2022.108165. PubMed DOI

Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson’s Disease: A Mini-Review. Cell Mol Neurobiol. 2024;44 doi: 10.1007/s10571-024-01459-4. Available from: http://dx.doi.org/10.1007/s10571-024-01459-4. PubMed DOI PMC

Zhang D, Yao J, Sun J, Wang J, Chen L, He H, et al. Iron accumulation in the ventral tegmental area in Parkinson’s disease. Front Aging Neurosci. 2023;15 doi: 10.3389/fnagi.2023.1187684. Available from: http://dx.doi.org/10.3389/fnagi.2023.1187684. PubMed DOI PMC

Zhang H, Li X, Wang X, Xu J, Elefant F, Wang J. Cellular response to β-amyloid neurotoxicity in Alzheimer's disease and implications in new therapeutics. Animal Model Exp Med. 2023;6(1):3–9. doi: 10.1002/ame2.12313. Available from: http://dx.doi.org/10.1002/ame2.12313. PubMed DOI PMC

Zhang L, Shao J, Tan SW, Ye HP, Shan XY. Association between serum copper/zinc ratio and lung cancer: A systematic review with meta-analysis. J Trace Elem Med Biol. 2022;74:127061. doi: 10.1016/j.jtemb.2022.127061. Available from: http://dx.doi.org/10.1016/j.jtemb.2022.127061. PubMed DOI

Zhang N, Yu X, Xie J, Xu H. New Insights into the Role of Ferritin in Iron Homeostasis and Neurodegenerative Diseases. Mol Neurobiol. 2021;58:2812–23. doi: 10.1007/s12035-020-02277-7. Available from: http://dx.doi.org/10.1007/s12035-020-02277-7. PubMed DOI

Zhang Y, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain. 2011;4:3. doi: 10.1186/1756-6606-4-3. Available from: http://dx.doi.org/10.1186/1756-6606-4-3. PubMed DOI PMC

Zhang Z-J, Zheng Z-J, Kan H, Song Y, Cui W, Zhao G, et al. Reduced Risk of Colorectal Cancer With Metformin Therapy in Patients With Type 2 Diabetes. Diabetes Care. 2011;34:2323–8. doi: 10.2337/dc11-0512. Available from: http://dx.doi.org/10.2337/dc11-0512. PubMed DOI PMC

Zhao Z. Iron and oxidizing species in oxidative stress and Alzheimer’s disease. Aging Med. 2019;2:82–7. doi: 10.1002/agm2.12074. Available from: http://dx.doi.org/10.1002/agm2.12074. PubMed DOI PMC

Zheng K, Lyu Z, Chen J, Chen G. 5-Hydroxymethylcytosine: Far Beyond the Intermediate of DNA Demethylation. Int J Mol Sci. 2024;25(21):11780. doi: 10.3390/ijms252111780. Available from: http://dx.doi.org/10.3390/ijms252111780. PubMed DOI PMC

Zhou B, Gitschier J. hCTR1: A human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA. 1997;94:7481–6. doi: 10.1073/pnas.94.14.7481. Available from: http://dx.doi.org/10.1073/pnas.94.14.7481. PubMed DOI PMC

Ziliotto S, Ogle O, Taylor KM. Targeting zinc(II) signalling to prevent cancer. In: A Sigel, H Sigel, E Freisinger, RKO Sigel., editors. Metallo-drugs: Development and action of anticancer agents. De Gruyter; 2018. pp. 507–530. Available from: DOI

Zucca FA, Segura-Aguilar J, Ferrari E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2017;155:96–119. doi: 10.1016/j.pneurobio.2015.09.012. Available from: http://dx.doi.org/10.1016/j.pneurobio.2015.09.012. PubMed DOI PMC

Zuo XL, Chen JM, Zhou X, Li XZ, Mei GY. Levels of Selenium, Zinc, Copper, and Antioxidant Enzyme Activity in Patients with Leukemia. Biol Trace Elem Res. 2006;114:41–54. doi: 10.1385/BTER:114:1:41. Available from: http://dx.doi.org/10.1385/BTER:114:1:41. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...