The role of cellular senescence in neurodegenerative diseases
Language English Country Germany Media print-electronic
Document type Journal Article, Review
Grant support
GA23-05857S
Grantová Agentura České Republiky
University of Granada
Universidad de Granada
Scientific Grant Agency (VEGA Project 1/0542/24)
Universidad de Granada
32373073
National Natural Science Foundation of China
MH CZ - DRO (UHHK
Ministerstvo Zdravotnictví Ceské Republiky
00179906)
Ministerstvo Zdravotnictví Ceské Republiky
VEGA Project 1/0542/24)
Scientific Grant Agency
PubMed
38744709
PubMed Central
PMC11272704
DOI
10.1007/s00204-024-03768-5
PII: 10.1007/s00204-024-03768-5
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, Amyloid β · tau protein, Cellular senescence, Neurodegenerative diseases, Telomere shortening,
- MeSH
- Alzheimer Disease MeSH
- Amyloid beta-Peptides metabolism MeSH
- Humans MeSH
- Neurodegenerative Diseases * MeSH
- Parkinson Disease metabolism MeSH
- Senescence-Associated Secretory Phenotype MeSH
- Signal Transduction MeSH
- Cellular Senescence * drug effects MeSH
- Telomere Shortening drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Amyloid beta-Peptides MeSH
Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated β-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of β-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate β-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1β secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.
Biomedical Research Center University Hospital Hradec Kralove 500 05 Hradec Kralove Czech Republic
College of Life Science Yangtze University Jingzhou 434025 China
Department of Chemistry and Biochemistry Mendel University in Brno 613 00 Brno Czech Republic
Faculty of Chemical and Food Technology Slovak University of Technology 812 37 Bratislava Slovakia
See more in PubMed
Acklin S, Zhang M, Du W et al (2020) Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice. Sci Rep 10:14170. 10.1038/s41598-020-71042-6 10.1038/s41598-020-71042-6 PubMed DOI PMC
Akay LA, Effenberger AH, Tsai LH (2021) Cell of all trades: oligodendrocyte precursor cells in synaptic, vascular, and immune function. Genes Dev 35:180–198. 10.1101/gad.344218.120 10.1101/gad.344218.120 PubMed DOI PMC
Alsuraih M, O’Hara SP, Woodrum JE, Pirius NE, LaRusso NF (2021) Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and fibrosis in the Mdr2 (-/-) mouse. JHEP Rep Innov Hepatol 3:100250. 10.1016/j.jhepr.2021.10025010.1016/j.jhepr.2021.100250 PubMed DOI PMC
Angom RS, Wang Y, Wang EF et al (2019) VEGF receptor-1 modulates amyloid 1–42 oligomer-induced senescence in brain endothelial cells. FASEB J 33:4626–4637. 10.1096/fj.201802003R 10.1096/fj.201802003R PubMed DOI PMC
Bae E-J, Choi M, Kim JT et al (2022) TNF-alpha promotes alpha-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Exp Mol Med 54:788–800. 10.1038/s12276-022-00789-x 10.1038/s12276-022-00789-x PubMed DOI PMC
Bao W-D, Pang P, Zhou X-T et al (2021) Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ 28:1548–1562. 10.1038/s41418-020-00685-9 10.1038/s41418-020-00685-9 PubMed DOI PMC
Basri R, Awan FM, Yang BB et al (2022) Brain-protective mechanisms of autophagy associated circRNAs: kick starting self-cleaning mode in brain cells via circRNAs as a potential therapeutic approach for neurodegenerative diseases. Front Mol Neurosci 15:1078441. 10.3389/fnmol.2022.1078441 10.3389/fnmol.2022.1078441 PubMed DOI PMC
Bhat R, Crowe EP, Bitto A et al (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7:e45069. 10.1371/journal.pone.0045069 10.1371/journal.pone.0045069 PubMed DOI PMC
Bigbee JW (2023) Cells of the central nervous system: an overview of their structure and function. Adv Neurobiol 29:41–64. 10.1007/978-3-031-12390-0_2 10.1007/978-3-031-12390-0_2 PubMed DOI
Birch J, Gil J (2020) Senescence and the SASP: many therapeutic avenues. Genes Dev 34:1565–1576. 10.1101/gad.343129.120 10.1101/gad.343129.120 PubMed DOI PMC
Boda E, Lorenzati M, Parolisi R et al (2022) Molecular and functional heterogeneity in dorsal and ventral oligodendrocyte progenitor cells of the mouse forebrain in response to DNA damage. Nat Commun 13:2331. 10.1038/s41467-022-30010-6 10.1038/s41467-022-30010-6 PubMed DOI PMC
Boehme M, Guzzetta KE, Bastiaanssen TFS et al (2021) Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat Aging 1:666–676. 10.1038/s43587-021-00093-9 10.1038/s43587-021-00093-9 PubMed DOI
Borgonetti V, Galeotti N (2022) Rosmarinic acid reduces microglia senescence: a novel therapeutic approach for the management of neuropathic pain symptoms. Biomedicines. 10.3390/biomedicines10071468 10.3390/biomedicines10071468 PubMed DOI PMC
Brelstaff JH, Mason M, Katsinelos T et al (2021) Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. Sci Adv 7:eabg4980. 10.1126/sciadv.abg4980 10.1126/sciadv.abg4980 PubMed DOI PMC
Buoso E, Attanzio A, Biundo F (2022) Cellular senescence in age-related diseases: molecular bases and therapeutic interventions. Cells 11:2029. 10.3390/cells11132029 10.3390/cells11132029 PubMed DOI PMC
Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–582. 10.1038/s41586-018-0543-y 10.1038/s41586-018-0543-y PubMed DOI PMC
Carey A, Niedernhofer L, Camell C (2022) Telomeres are a life-extending gift. Nat Cell Biol 24:1449–1450. 10.1038/s41556-022-01004-9 10.1038/s41556-022-01004-9 PubMed DOI
Castellano JM, Mosher KI, Abbey RJ et al (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544:488–492. 10.1038/nature22067 10.1038/nature22067 PubMed DOI PMC
Chakravarti D, LaBella KA, DePinho RA (2021) Telomeres: history, health, and hallmarks of aging. Cell 184:306–322. 10.1016/j.cell.2020.12.028 10.1016/j.cell.2020.12.028 PubMed DOI PMC
Chen W, Kimura M, Kim S et al (2011) Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A-Biol 66:312–319. 10.1093/gerona/glq22310.1093/gerona/glq223 PubMed DOI PMC
Chen Y, Ding S, Zhang H et al (2020) Protective effects of ginsenoside Rg1 on neuronal senescence due to inhibition of NOX2 and NLRP1 inflammasome activation in SAMP8 mice. J Funct Foods 65:103713. 10.1016/j.jff.2019.10371310.1016/j.jff.2019.103713 DOI
Chien H-T, Li C-Y, Su W-H et al (2023) Multi-omics profiling of chemotactic characteristics of brain microglia and astrocytoma. Life Sci 330:121855. 10.1016/j.lfs.2023.121855 10.1016/j.lfs.2023.121855 PubMed DOI
Chinta SJ, Woods G, Demaria M et al (2018) Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep 22:930–940. 10.1016/j.celrep.2017.12.092 10.1016/j.celrep.2017.12.092 PubMed DOI PMC
Chow HM, Shi M, Cheng A et al (2019) Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 22:1806–1819. 10.1038/s41593-019-0505-1 10.1038/s41593-019-0505-1 PubMed DOI
Cohn RL, Gasek NS, Kuchel GA, Xu M (2022) The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol 33:9–17. 10.1016/j.tcb.2022.04.011 10.1016/j.tcb.2022.04.011 PubMed DOI PMC
Cruz Hernandez JC, Bracko O, Kersbergen CJ et al (2019) Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat Neurosci 22:413–420. 10.1038/s41593-018-0329-4 10.1038/s41593-018-0329-4 PubMed DOI PMC
Das MM, Svendsen CN (2015) Astrocytes show reduced support of motor neurons with aging that is accelerated in a rodent model of ALS. Neurobiol Aging 36:1130–1139. 10.1016/j.neurobiolaging.2014.09.020 10.1016/j.neurobiolaging.2014.09.020 PubMed DOI
De Nuccio C, Bernardo A, Troiano C et al (2020) NRF2 and PPAR-gamma pathways in oligodendrocyte progenitors: focus on ROS protection, mitochondrial biogenesis and promotion of cell differentiation. Int J Mol Sci 21:7216. 10.3390/ijms21197216 10.3390/ijms21197216 PubMed DOI PMC
Dehkordi SK, Walker J, Sah E et al (2021) Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. Nat Aging 1:1107–1116. 10.1038/s43587-021-00142-3 10.1038/s43587-021-00142-3 PubMed DOI PMC
Derry PJ, Hegde ML, Jackson GR et al (2020) Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer’s disease from a ferroptosis perspective. Prog Neurobiol 184:101716. 10.1016/j.pneurobio.2019.101716 10.1016/j.pneurobio.2019.101716 PubMed DOI PMC
Dorigatti AO, Riordan R, Yu Z et al (2022) Brain cellular senescence in mouse models of Alzheimer’s disease. Geroscience 44:1157–1168. 10.1007/s11357-022-00531-5 10.1007/s11357-022-00531-5 PubMed DOI PMC
Eaton SL, Wishart TM (2017) Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 28:324–337. 10.1007/s00335-017-9687-6 10.1007/s00335-017-9687-6 PubMed DOI PMC
Fares MB, Jagannath S, Lashuel HA (2021) Reverse engineering Lewy bodies: how far have we come and how far can we go? Nat Rev Neurosci 22:111–131. 10.1038/s41583-020-00416-6 10.1038/s41583-020-00416-6 PubMed DOI
Flynn RL, Heaphy CM (2019) Surviving telomere attrition with the MiDAS touch. Trends Genet 35:783–785. 10.1016/j.tig.2019.08.008 10.1016/j.tig.2019.08.008 PubMed DOI
Fuger P, Hefendehl JK, Veeraraghavalu K et al (2017) Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 20:1371–1376. 10.1038/nn.4631 10.1038/nn.4631 PubMed DOI
Gaikwad S, Puangmalai N, Bittar A et al (2021) Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep 36:109419. 10.1016/j.celrep.2021.109419 10.1016/j.celrep.2021.109419 PubMed DOI PMC
Gao L, Zheng W-g, Wu X-k, Du G-h, Qin X-m (2021) Baicalein delays H2O2-induced astrocytic senescence through inhibition of senescence-associated secretory phenotype (SASP), suppression of JAK2/STAT1/NF-kappa B pathway, and regulation of leucine metabolism. ACS Chem Neurosci 12:2320–2335. 10.1021/acschemneuro.1c00024 10.1021/acschemneuro.1c00024 PubMed DOI
Gogia N, Tare M, Kannan R, Singh A (2023) Editorial: protein misfolding, altered mechanisms and neurodegeneration. Front Mol Neurosci 16:1134855. 10.3389/fnmol.2023.1134855 10.3389/fnmol.2023.1134855 PubMed DOI PMC
Gonzales MM, Garbarino VR, Marques Zilli E et al (2022) Senolytic therapy to modulate the progression of Alzheimer’s disease (SToMP-AD): a pilot clinical trial. J Prev Alzheimer’s Dis 9:22–29. 10.14283/jpad.2021.62 10.14283/jpad.2021.62 PubMed DOI PMC
Gonzales MM, Garbarino VR, Kautz TF et al (2023) Senolytic therapy in mild Alzheimer’s disease: a phase 1 feasibility trial. Nat Med 29:2481–2488. 10.1038/s41591-023-02543-w 10.1038/s41591-023-02543-w PubMed DOI PMC
Granucci EJ, Griciuc A, Mueller KA et al (2019) Cromolyn sodium delays disease onset and is neuroprotective in the SOD1(G93A) Mouse Model of amyotrophic lateral sclerosis. Sci Rep-Uk 9:17728. 10.1038/s41598-019-53982-w10.1038/s41598-019-53982-w PubMed DOI PMC
Guerrero A, De Strooper B, Arancibia-Cárcamo IL (2021) Cellular senescence at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci 44:714–727. 10.1016/j.tins.2021.06.007 10.1016/j.tins.2021.06.007 PubMed DOI
Guo YF, Yu HN (2019) Leukocyte telomere length shortening and Alzheimer’s disease etiology. J Alzheimers Dis 69:881–885. 10.3233/Jad-190134 10.3233/Jad-190134 PubMed DOI
Guttenplan KA, Weigel MK, Adler DI et al (2020) Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun 11:3753. 10.1038/s41467-020-17514-9 10.1038/s41467-020-17514-9 PubMed DOI PMC
Han X, Zhang T, Liu H, Mi Y, Gou X (2020) Astrocyte senescence and Alzheimer’s disease: a review. Front Aging Neurosci 12:148. 10.3389/fnagi.2020.00148 10.3389/fnagi.2020.00148 PubMed DOI PMC
Hasselmann J, Coburn MA, England W et al (2019) Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 103(1016–1033):e10. 10.1016/j.neuron.2019.07.00210.1016/j.neuron.2019.07.002 PubMed DOI PMC
He N, Jin WL, Lok KH, Wang Y, Yin M, Wang ZJ (2013) Amyloid-beta(1–42) oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2. Cell Death Dis 4:e924. 10.1038/cddis.2013.437 10.1038/cddis.2013.437 PubMed DOI PMC
Herdy JR, Traxler L, Agarwal RK et al (2022) Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer’s disease. Cell Stem Cell 29:1637–1652. 10.1016/j.stem.2022.11.010 10.1016/j.stem.2022.11.010 PubMed DOI PMC
Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28:436–453. 10.1016/j.tcb.2018.02.001 10.1016/j.tcb.2018.02.001 PubMed DOI
Hickson LJ, Langhi Prata LGP, Bobart SA et al (2019) Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456. 10.1016/j.ebiom.2019.08.069 10.1016/j.ebiom.2019.08.069 PubMed DOI PMC
Horie K, Barthélemy NR, Sato C, Bateman RJ (2020) CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain 144:515–527. 10.1093/brain/awaa37310.1093/brain/awaa373 PubMed DOI PMC
Hou J, Cui C, Kim S, Sung C, Choi C (2018) Ginsenoside F1 suppresses astrocytic senescence-associated secretory phenotype. Chem-Biol Interact 283:75–83. 10.1016/j.cbi.2018.02.002 10.1016/j.cbi.2018.02.002 PubMed DOI
Hou Y, Dan X, Babbar M et al (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581. 10.1038/s41582-019-0244-7 10.1038/s41582-019-0244-7 PubMed DOI
Hou Y, Wei Y, Lautrup S et al (2021) NAD(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. P Natl Acad Sci USA 118:e2011226118. 10.1073/pnas.201122611810.1073/pnas.2011226118 PubMed DOI PMC
Hou J, Jeon B, Bae J et al (2022) High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture. J Ginseng Res 46:79–90. 10.1016/j.jgr.2021.04.002 10.1016/j.jgr.2021.04.002 PubMed DOI PMC
Hu Y, Fryatt GL, Ghorbani M et al (2021) Replicative senescence dictates the emergence of disease-associated microglia and contributes to Abeta pathology. Cell Rep 35:109228. 10.1016/j.celrep.2021.109228 10.1016/j.celrep.2021.109228 PubMed DOI PMC
Hu YR, Huang Y, Xing SL, Chen CA, Shen DZ, Chen JL (2022) A beta promotes CD38 expression in senescent microglia in Alzheimer’s disease. Biol Res 55:10. 10.1186/s40659-022-00379-1 10.1186/s40659-022-00379-1 PubMed DOI PMC
Iram T, Kern F, Kaur A et al (2022) Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 605:509–515. 10.1038/s41586-022-04722-0 10.1038/s41586-022-04722-0 PubMed DOI PMC
Jang H, Park Y, Jang J (2022) Serum and glucocorticoid-regulated kinase 1: structure, biological functions, and its inhibitors. Front Pharmacol 13:1036844. 10.3389/fphar.2022.1036844 10.3389/fphar.2022.1036844 PubMed DOI PMC
Jurk D, Wang C, Miwa S et al (2012) Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11:996–1004. 10.1111/j.1474-9726.2012.00870.x 10.1111/j.1474-9726.2012.00870.x PubMed DOI PMC
Kakoty V, Chandran SK, Gulati M, Goh BH, Dua K, Singh SK (2023) Senolytics: opening avenues in drug discovery to find novel therapeutics for Parkinson’s disease. Drug Discov Today 28:1–9. 10.1016/j.drudis.2023.10358210.1016/j.drudis.2023.103582 PubMed DOI
Keshavarz M, Xie K, Schaaf K, Bano D, Ehninger D (2023) Targeting the “hallmarks of aging” to slow aging and treat age-related disease: fact or fiction? Mol Psychiatry 28:242–255. 10.1038/s41380-022-01680-x 10.1038/s41380-022-01680-x PubMed DOI PMC
Koh SH, Choi SH, Jeong JH et al (2020) Telomere shortening reflecting physical aging is associated with cognitive decline and dementia conversion in mild cognitive impairment due to Alzheimer’s disease. Aging-US 12:4407–4423. 10.18632/aging.10289310.18632/aging.102893 PubMed DOI PMC
Kwon OC, Song JJ, Yang Y et al (2021) SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med 13:e13076. 10.15252/emmm.202013076 10.15252/emmm.202013076 PubMed DOI PMC
Lagoumtzi SM, Chondrogianni N (2021) Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radical Bio Med 171:169–190. 10.1016/j.freeradbiomed.2021.05.003 10.1016/j.freeradbiomed.2021.05.003 PubMed DOI
Layburn FE, Tan AYS, Mehrabi NF et al (2022) N-terminal mutant huntingtin deposition correlates with CAG repeat length and symptom onset, but not neuronal loss in Huntington’s disease. Neurobiol Dis 174:105884. 10.1016/j.nbd.2022.105884 10.1016/j.nbd.2022.105884 PubMed DOI
Lee EH, Han MH, Ha J et al (2021) Relationship between telomere shortening and age in Korean individuals with mild cognitive impairment and Alzheimer’s disease compared to that in healthy controls. Aging-US 13:2089–2100. 10.18632/aging.20220610.18632/aging.202206 PubMed DOI PMC
Li Z, Zhou D, Zhang D et al (2022) Folic acid inhibits aging-induced telomere attrition and apoptosis in astrocytes in vivo and in vitro. Cereb Cortex 32:286–297. 10.1093/cercor/bhab208 10.1093/cercor/bhab208 PubMed DOI
Limbad C, Oron TR, Alimirah F et al (2020) Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS ONE 15:e0227887. 10.1371/journal.pone.0227887 10.1371/journal.pone.0227887 PubMed DOI PMC
Liu J, Gu Y, Guo M, Ji X (2021) Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 27:869–882. 10.1111/cns.13642 10.1111/cns.13642 PubMed DOI PMC
Lu Y, Jarrahi A, Moore N et al (2023) Inflammaging, cellular senescence, and cognitive aging after traumatic brain injury. Neurobiol Dis 180:106090. 10.1016/j.nbd.2023.106090 10.1016/j.nbd.2023.106090 PubMed DOI PMC
Lv X, Wang X, Wang Y et al (2019a) Folic acid delays age-related cognitive decline in senescence-accelerated mouse prone 8: alleviating telomere attrition as a potential mechanism. Aging (albany NY) 11:10356–10373. 10.18632/aging.102461 10.18632/aging.102461 PubMed DOI PMC
Ma F, Lv X, Du Y et al (2019) Association of leukocyte telomere length with mild cognitive impairment and Alzheimer’s disease: role of folate and homocysteine. Dement Geriatr Cogn 48:56–67. 10.1159/00050195810.1159/000501958 PubMed DOI
Madrid AS, Rasmussen KL, Rode L, Frikke-Schmidt R, Nordestgaard BG, Bojesen SE (2020) Observational and genetic studies of short telomeres and Alzheimer’s disease in 67,000 and 152,000 individuals: a Mendelian randomization study. Eur J Epidemiol 35:147–156. 10.1007/s10654-019-00563-w 10.1007/s10654-019-00563-w PubMed DOI
Martinez-Cue C, Rueda N (2020) Cellular senescence in neurodegenerative diseases. Front Cell Neurosci 14:16. 10.3389/fncel.2020.00016 10.3389/fncel.2020.00016 PubMed DOI PMC
Masaldan S, Belaidi AA, Ayton S, Bush AI (2019) Cellular senescence and iron dyshomeostasis in Alzheimer’s disease. Pharmaceuticals-Base 12:93. 10.3390/ph1202009310.3390/ph12020093 PubMed DOI PMC
Mendelsohn AR, Larrick JW (2018) Cellular senescence as the key intermediate in Tau-mediated neurodegeneration. Rejuv Res 21:572–579. 10.1089/rej.2018.215510.1089/rej.2018.2155 PubMed DOI
Moiseeva V, Cisneros A, Cobos AC et al (2023) Context-dependent roles of cellular senescence in normal, aged, and disease states. Febs J 290:1161–1185. 10.1111/febs.16573 10.1111/febs.16573 PubMed DOI
Muralidharan A, Sotocinal SG, Yousefpour N et al (2022) Long-term male-specific chronic pain via telomere- and p53-mediated spinal cord cellular senescence. J Clin Invest 132:e151817. 10.1172/jci151817 10.1172/jci151817 PubMed DOI PMC
Musi N, Valentine JM, Sickora KR et al (2018) Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17:e12840. 10.1111/acel.12840 10.1111/acel.12840 PubMed DOI PMC
Nasrabady SE, Rizvi B, Goldman JE, Brickman AM (2018) White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Com 6:22. 10.1186/s40478-018-0515-310.1186/s40478-018-0515-3 PubMed DOI PMC
Ng PY, McNeely TL, Baker DJ (2023) Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J 290:1326–1339. 10.1111/febs.16315 10.1111/febs.16315 PubMed DOI PMC
Nicaise AM, Wagstaff LJ, Willis CM et al (2019) Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc Natl Acad Sci U S A 116:9030–9039. 10.1073/pnas.1818348116 10.1073/pnas.1818348116 PubMed DOI PMC
Ogrodnik M, Evans SA, Fielder E et al (2021) Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20:e13296. 10.1111/acel.13296 10.1111/acel.13296 PubMed DOI PMC
Osaki T, Shin Y, Sivathanu V, Campisi M, Kamm RD (2018) In vitro microfluidic models for neurodegenerative disorders. Adv Healthc Mater 7:1700489. 10.1002/adhm.20170048910.1002/adhm.201700489 PubMed DOI
Paramos-de-Carvalho D, Martins I, Cristóvão AM et al (2021) Targeting senescent cells improves functional recovery after spinal cord injury. Cell Rep 36:109334. 10.1016/j.celrep.2021.109334 10.1016/j.celrep.2021.109334 PubMed DOI
Park J, Lee S-Y, Shon J et al (2019) Adalimumab improves cognitive impairment, exerts neuroprotective effects and attenuates neuroinflammation in an Aβ1–40-injected mouse model of Alzheimer’s disease. Cytotherapy 21:671–682. 10.1016/j.jcyt.2019.04.054 10.1016/j.jcyt.2019.04.054 PubMed DOI
Park JW, Roh E, Kang GM et al (2023) Circulating blood eNAMPT drives the circadian rhythms in locomotor activity and energy expenditure. Nat Commun 14:1994. 10.1038/s41467-023-37517-6 10.1038/s41467-023-37517-6 PubMed DOI PMC
Patlola SR, Donohoe G, McKernan DP (2023) The relationship between inflammatory biomarkers and cognitive dysfunction in patients with schizophrenia: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 121:110668. 10.1016/j.pnpbp.2022.110668 10.1016/j.pnpbp.2022.110668 PubMed DOI
Peng XY, Luo ZX, He S, Zhang LH, Li Y (2021) Blood-brain barrier disruption by lipopolysaccharide and sepsis-associated encephalopathy. Front Cell Infect Microbiol. 10.3389/fcimb.2021.768108 10.3389/fcimb.2021.768108 PubMed DOI PMC
Pluvinage JV, Wyss-Coray T (2020) Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat Rev Neurosci 21:93–102. 10.1038/s41583-019-0255-9 10.1038/s41583-019-0255-9 PubMed DOI
Poganik JR, Zhang B, Baht GS et al (2023) Biological age is increased by stress and restored upon recovery. Cell Metab 35:807-820.e5. 10.1016/j.cmet.2023.03.015 10.1016/j.cmet.2023.03.015 PubMed DOI PMC
Prattichizzo F, Giuliani A, Recchioni R et al (2016) Anti-TNF-α treatment modulates SASP and SASP-related microRNAs in endothelial cells and in circulating angiogenic cells. Oncotarget 7:11945–11958. 10.18632/oncotarget.7858 10.18632/oncotarget.7858 PubMed DOI PMC
Preininger MK, Kaufer D (2022) Blood-brain barrier dysfunction and astrocyte senescence as reciprocal drivers of neuropathology in aging. Int J Mol Sci. 10.3390/ijms23116217 10.3390/ijms23116217 PubMed DOI PMC
Rajesh Y, Kanneganti TD (2022) Innate immune cell death in neuroinflammation and Alzheimer’s disease. Cells 11:1885. 10.3390/cells11121885 10.3390/cells11121885 PubMed DOI PMC
Riessland M, Kolisnyk B, Kim TW et al (2019) Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons. Cell Stem Cell 25:514-530.e8. 10.1016/j.stem.2019.08.013 10.1016/j.stem.2019.08.013 PubMed DOI PMC
Russo T, Riessland M (2022) Age-related midbrain inflammation and senescence in Parkinson’s disease. Front Aging Neurosci 14:917797. 10.3389/fnagi.2022.917797 10.3389/fnagi.2022.917797 PubMed DOI PMC
Saez-Atienzar S, Masliah E (2020) Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nat Rev Neurosci 21:433–444. 10.1038/s41583-020-0325-z 10.1038/s41583-020-0325-z PubMed DOI
Safaiyan S, Kannaiyan N, Snaidero N et al (2016) Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci 19:995–998. 10.1038/nn.4325 10.1038/nn.4325 PubMed DOI PMC
Sahu MR, Rani L, Subba R, Mondal AC (2022) Cellular senescence in the aging brain: a promising target for neurodegenerative diseases. Mech Ageing Dev 204:111675. 10.1016/j.mad.2022.111675 10.1016/j.mad.2022.111675 PubMed DOI
Schwab N, Taskina D, Leung E, Innes BT, Bader GD, Hazrati LN (2022) Neurons and glial cells acquire a senescent signature after repeated mild traumatic brain injury in a sex-dependent manner. Front Neurosci 16:1027116. 10.3389/fnins.2022.1027116 10.3389/fnins.2022.1027116 PubMed DOI PMC
Segel M, Neumann B, Hill MFE et al (2019) Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573:130–134. 10.1038/s41586-019-1484-9 10.1038/s41586-019-1484-9 PubMed DOI PMC
Sha SJ, Deutsch GK, Tian L et al (2019) Safety, tolerability, and feasibility of young plasma infusion in the plasma for Alzheimer symptom amelioration study: a randomized clinical trial. JAMA Neurol 76:35–40. 10.1001/jamaneurol.2018.3288 10.1001/jamaneurol.2018.3288 PubMed DOI PMC
Shang D, Hong Y, Xie W, Tu Z, Xu J (2020) Interleukin-1beta drives cellular senescence of rat astrocytes induced by oligomerized amyloid beta peptide and oxidative stress. Front Neurol 11:929. 10.3389/fneur.2020.00929 10.3389/fneur.2020.00929 PubMed DOI PMC
Shim HS, Horner JW, Wu C-J et al (2021) Telomerase reverse transcriptase preserves neuron survival and cognition in Alzheimer’s disease models. Nat Aging 1:1162–1174. 10.1038/s43587-021-00146-z 10.1038/s43587-021-00146-z PubMed DOI PMC
Si Z, Sun L, Wang X (2021) Evidence and perspectives of cell senescence in neurodegenerative diseases. Biomed Pharmacother 137:111327. 10.1016/j.biopha.2021.111327 10.1016/j.biopha.2021.111327 PubMed DOI
Simmnacher K, Krach F, Schneider Y et al (2020) Unique signatures of stress-induced senescent human astrocytes. Exp Neurol 334:113466. 10.1016/j.expneurol.2020.113466 10.1016/j.expneurol.2020.113466 PubMed DOI
Skowronska-Krawczyk D, Zhao L, Zhu J et al (2015) P16INK4a upregulation mediated by SIX6 defines retinal ganglion cell pathogenesis in glaucoma. Mol Cell 59:931–940. 10.1016/j.molcel.2015.07.027 10.1016/j.molcel.2015.07.027 PubMed DOI PMC
Soto C, Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21:1332–1340. 10.1038/s41593-018-0235-9 10.1038/s41593-018-0235-9 PubMed DOI PMC
Spilsbury A, Miwa S, Attems J, Saretzki G (2015) The role of telomerase protein TERT in Alzheimer’s disease and in tau-related pathology in vitro. J Neurosci 35:1659–1674. 10.1523/Jneurosci.2925-14.2015 10.1523/Jneurosci.2925-14.2015 PubMed DOI PMC
Spitzer SO, Sitnikov S, Kamen Y et al (2019) Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101:459–471. 10.1016/j.neuron.2018.12.020 10.1016/j.neuron.2018.12.020 PubMed DOI PMC
Sun JK, Wu D, Wong GC et al (2023) Chronic alcohol metabolism results in DNA repair infidelity and cell cycle-induced senescence in neurons. Aging Cell 22:e13772. 10.1111/acel.13772 10.1111/acel.13772 PubMed DOI PMC
Taddei RN, Sanchez-Mico MV, Bonnar O et al (2022) Changes in glial cell phenotypes precede overt neurofibrillary tangle formation, correlate with markers of cortical cell damage, and predict cognitive status of individuals at Braak III-IV stages. Acta Neuropathol Com 10:72. 10.1186/s40478-022-01370-310.1186/s40478-022-01370-3 PubMed DOI PMC
Tracy TE, Madero-Pérez J, Swaney DL et al (2022) Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell 185:712-728.e14. 10.1016/j.cell.2021.12.041 10.1016/j.cell.2021.12.041 PubMed DOI PMC
Traxler L, Lucciola R, Herdy JR, Jones JR, Mertens J, Gage FH (2023) Neural cell state shifts and fate loss in ageing and age-related diseases. Nat Rev Neurol 19:434–443. 10.1038/s41582-023-00815-0 10.1038/s41582-023-00815-0 PubMed DOI PMC
Trias E, Beilby PR, Kovacs M et al (2019) Emergence of microglia bearing senescence markers during paralysis progression in a rat model of inherited ALS. Front Aging Neurosci 11:42. 10.3389/fnagi.2019.00042 10.3389/fnagi.2019.00042 PubMed DOI PMC
Tun X, Wang EJ, Gao Z, Lundberg K, Xu R, Hu D (2023) Integrin β3-mediated cell senescence associates with gut inflammation and intestinal degeneration in models of Alzheimer’s disease. Int J Mol Sci 24:5697. 10.3390/ijms24065697 10.3390/ijms24065697 PubMed DOI PMC
Van Skike CE, Jahrling JB, Olson AB et al (2018) Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer’s disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 314:H693-h703. 10.1152/ajpheart.00570.2017 10.1152/ajpheart.00570.2017 PubMed DOI PMC
Vanzulli I, Papanikolaou M, De-La-Rocha IC et al (2020) Disruption of oligodendrocyte progenitor cells is an early sign of pathology in the triple transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 94:130–139. 10.1016/j.neurobiolaging.2020.05.016 10.1016/j.neurobiolaging.2020.05.016 PubMed DOI PMC
Vijaya AK, Iešmantaitė M, Mela V, Baltriukienė D, Burokas A (2023) Microglia isolation from aging mice for cell culture: a beginner’s guide. Front Cell Neurosci 17:1082180. 10.3389/fncel.2023.1082180 10.3389/fncel.2023.1082180 PubMed DOI PMC
Vogels T, Murgoci AN, Hromadka T (2019) Intersection of pathological tau and microglia at the synapse. Acta Neuropathol Com 7:109. 10.1186/s40478-019-0754-y10.1186/s40478-019-0754-y PubMed DOI PMC
Wan W, Cao L, Kalionis B, Murthi P, Xia S, Guan Y (2019) Iron deposition leads to hyperphosphorylation of tau and disruption of insulin signaling. Front Neurol 10:607. 10.3389/fneur.2019.00607 10.3389/fneur.2019.00607 PubMed DOI PMC
Wang F, Yang YJ, Yang N et al (2018) Enhancing oligodendrocyte myelination rescues synaptic loss and improves functional recovery after chronic hypoxia. Neuron 99(689–701):e5. 10.1016/j.neuron.2018.07.01710.1016/j.neuron.2018.07.017 PubMed DOI PMC
Wang DX, Dong ZJ, Deng SX et al (2023) GDF11 slows excitatory neuronal senescence and brain ageing by repressing p21. Nat Commun 14:7476. 10.1038/s41467-023-43292-1 10.1038/s41467-023-43292-1 PubMed DOI PMC
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S (2017) Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 74:3769–3787. 10.1007/s00018-017-2550-9 10.1007/s00018-017-2550-9 PubMed DOI PMC
Whittemore K, Derevyanko A, Martinez P et al (2019) Telomerase gene therapy ameliorates the effects of neurodegeneration associated to short telomeres in mice. Aging-US 11:2916–2948. 10.18632/aging.10198210.18632/aging.101982 PubMed DOI PMC
Wissler Gerdes EO, Zhu Y, Weigand BM et al (2020) Cellular senescence in aging and age-related diseases: implications for neurodegenerative diseases. Int Rev Neurobiol 155:203–234. 10.1016/bs.irn.2020.03.019 10.1016/bs.irn.2020.03.019 PubMed DOI PMC
Wu Q, You L, Nepovimova E et al (2022) Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol 15:77. 10.1186/s13045-022-01292-6 10.1186/s13045-022-01292-6 PubMed DOI PMC
Xu P, Wang M, Song WM et al (2022) The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Mol Neurodegener 17:5. 10.1186/s13024-021-00507-7 10.1186/s13024-021-00507-7 PubMed DOI PMC
Yoon Y-S, You JS, Kim T-K et al (2022) Senescence and impaired DNA damage responses in alpha-synucleinopathy models. Exp Mol Med 54:115–128. 10.1038/s12276-022-00727-x 10.1038/s12276-022-00727-x PubMed DOI PMC
Yoshida M, Satoh A, Lin JB et al (2019) Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab 30(329–342):e5. 10.1016/j.cmet.2019.05.01510.1016/j.cmet.2019.05.015 PubMed DOI PMC
Zhang Y, Zhao LL, Wu ZX, Chen XX, Ma T (2017) Galantamine alleviates senescence of U87 cells induced by beta-amyloid through decreasing ROS production. Neurosci Lett 653:183–188. 10.1016/j.neulet.2017.05.055 10.1016/j.neulet.2017.05.055 PubMed DOI
Zhang P, Kishimoto Y, Grammatikakis I et al (2019a) Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci 22:719–728. 10.1038/s41593-019-0372-9 10.1038/s41593-019-0372-9 PubMed DOI PMC
Zhang Z, Yang X, Song YQ, Tu J (2021) Autophagy in Alzheimer’s disease pathogenesis: therapeutic potential and future perspectives. Ageing Res Rev 72:101464. 10.1016/j.arr.2021.101464 10.1016/j.arr.2021.101464 PubMed DOI
Zhang JJ, Chen KC, Zhou Y et al (2022) Evaluating the effects of mitochondrial autophagy flux on ginsenoside Rg2 for delaying D-galactose induced brain aging in mice. Phytomedicine. 10.1016/j.phymed.2022.154341 10.1016/j.phymed.2022.154341 PubMed DOI
Zhang B, Lee DE, Trapp A et al (2023a) Multi-omic rejuvenation and life span extension on exposure to youthful circulation. Nat Aging. 10.1038/s43587-023-00451-9 10.1038/s43587-023-00451-9 PubMed DOI PMC
Zhang W, Xiao D, Mao Q, Xia H (2023b) Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 8:267. 10.1038/s41392-023-01486-5 10.1038/s41392-023-01486-5 PubMed DOI PMC
Zhao YA, Xin YG, Meng S, He ZY, Hu WY (2019) Neurofilament light chain protein in neurodegenerative dementia: a systematic review and network meta-analysis. Neurosci Biobehav Rev 102:123–138. 10.1016/j.neubiorev.2019.04.014 10.1016/j.neubiorev.2019.04.014 PubMed DOI
Zhao Y, Jaber VR, Pogue AI, Sharfman NM, Taylor C, Lukiw WJ (2022) Lipopolysaccharides (LPSs) as potent neurotoxic glycolipids in Alzheimer’s disease (AD). Int J Mol Sci 23:12671. 10.3390/ijms232012671 10.3390/ijms232012671 PubMed DOI PMC
Zhou Y, Su YJ, Li SY et al (2022) Molecular landscapes of human hippocampal immature neurons across lifespan. Nature 607:527–533. 10.1038/s41586-022-04912-w 10.1038/s41586-022-04912-w PubMed DOI PMC
Heavy metals: toxicity and human health effects