PAF15-PCNA exhaustion governs the strand-specific control of DNA replication
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41606318
DOI
10.1038/s41586-025-10011-3
PII: 10.1038/s41586-025-10011-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Eukaryotic genome replication is surveyed by the S-phase checkpoint, which coordinates sequential origin activation to prevent the exhaustion of poorly defined, rate-limiting replisome components1-3. Here we show that excessive origin firing saturates chromatin-bound proliferating cell nuclear antigen (PCNA)-a sliding clamp for DNA polymerase processivity and Okazaki fragment processing4-thereby restricting further PCNA loading and lagging-strand synthesis when checkpoint control is lost. PCNA-associated factor 15 (PAF15) emerges as a dosage-sensitive regulator of this process5-9. During unperturbed S phase, the entire soluble PAF15 pool binds to chromatin, leaving no reserve to stabilize PCNA under conditions of excessive origin activation. PAF15 binds to PCNA specifically on the lagging strand through a high-affinity PIP motif and occupies the DNA-encircling channel, protecting the clamp and associated enzymes from premature unloading by the ATAD5-RFC complex. Conversely, overexpression of PAF15 or forced redistribution to the leading strand disrupts replisome progression and induces cell death. These detrimental effects are mitigated by Timeless-Claspin, which blocks PAF15-PCNA binding on the leading strand. E2F4-mediated repression fine-tunes PAF15 expression to ensure optimal dosage and strand specificity. These findings reveal a previously unrecognized replisome constraint: when PAF15-PCNA assemblies are exhausted, the S-phase checkpoint globally restricts origin activation, linking a strand-specific rate-limiting mechanism to global replication dynamics.
Center for Functional Genomics and Tissue Plasticity University of Southern Denmark Odense Denmark
Department of Biochemistry and Molecular Biology University of Southern Denmark Odense Denmark
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Genome Integrity and Cancers Gustave Roussy Université Paris Saclay CNRS Villejuif France
Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Saldivar, J. C. et al. An intrinsic S/G(2) checkpoint enforced by ATR. Science 361, 806–810 (2018). PubMed DOI PMC
Toledo, L. I. et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088–1103 (2013). PubMed DOI
Menolfi, D. et al. ATR kinase supports normal proliferation in the early S phase by preventing replication resource exhaustion. Nat. Commun. 14, 3618 (2023). PubMed DOI PMC
Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007). PubMed DOI
Emanuele, M. J., Ciccia, A., Elia, A. E. & Elledge, S. J. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. Proc. Natl Acad. Sci. USA 108, 9845–9850 (2011). PubMed DOI PMC
Povlsen, L. K. et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat. Cell Biol. 14, 1089–1098 (2012). PubMed DOI
Xie, C., Yao, M. & Dong, Q. Proliferating cell unclear antigen-associated factor (PAF15): a novel oncogene. Int. J. Biochem. Cell Biol. 50, 127–131 (2014). PubMed DOI
De Biasio, A. et al. Structure of p15 PubMed DOI
De March, M. et al. p15 PubMed DOI PMC
Saxena, S. & Zou, L. Hallmarks of DNA replication stress. Mol. Cell 82, 2298–2314 (2022). PubMed DOI PMC
Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017). PubMed DOI PMC
Berti, M., Cortez, D. & Lopes, M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633–651 (2020). PubMed DOI
Petersen, M. B., Chhetri, G. & Somyajit, K. Metabolic control of replisome plasticity in genome surveillance. Trends Cell Biol. 35, 880–892 (2025). PubMed DOI
Yadav, A. K. & Polasek-Sedlackova, H. Quantity and quality of minichromosome maintenance protein complexes couple replication licensing to genome integrity. Commun. Biol. 7, 167 (2024). PubMed DOI PMC
Daigh, L. H., Liu, C., Chung, M., Cimprich, K. A. & Meyer, T. Stochastic endogenous replication stress causes ATR-triggered fluctuations in CDK2 activity that dynamically adjust global DNA synthesis rates. Cell Syst. 7, 17–27 (2018). PubMed DOI PMC
Moreno, A. et al. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc. Natl Acad. Sci. USA 113, E5757–5764 (2016). PubMed DOI PMC
Spies, J. et al. 53BP1 nuclear bodies enforce replication timing at under-replicated DNA to limit heritable DNA damage. Nat. Cell Biol. 21, 487–497 (2019). PubMed DOI
Somyajit, K. et al. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science 358, 797–802 (2017). PubMed DOI
Moiseeva, T. et al. ATR kinase inhibition induces unscheduled origin firing through a Cdc7-dependent association between GINS and And-1. Nat. Commun. 8, 1392 (2017). PubMed DOI PMC
Baris, Y., Taylor, M. R. G., Aria, V. & Yeeles, J. T. P. Fast and efficient DNA replication with purified human proteins. Nature 606, 204–210 (2022). PubMed DOI PMC
Dovrat, D., Stodola, J. L., Burgers, P. M. & Aharoni, A. Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation. Proc. Natl Acad. Sci. USA 111, 14118–14123 (2014). PubMed DOI PMC
Okazaki, R. Molecular mechanism of DNA synthesis. Tanpakushitsu Kakusan Koso 12, 795–805 (1967). PubMed
Schermelleh, L. et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res. 35, 4301–4312 (2007). PubMed DOI PMC
Hanzlikova, H. et al. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell 71, 319–331 (2018). PubMed DOI PMC
Toledo, L., Neelsen, K. J. & Lukas, J. Replication catastrophe: when a checkpoint fails because of exhaustion. Mol. Cell 66, 735–749 (2017). PubMed DOI
Yuan, Z. et al. Mechanism of PCNA loading by Ctf18-RFC for leading-strand DNA synthesis. Science 385, eadk5901 (2024). PubMed DOI PMC
Srivastava, M. et al. Replisome dynamics and their functional relevance upon DNA damage through the PCNA interactome. Cell Rep. 25, 3869–3883 (2018). PubMed DOI PMC
Nishiyama, A. et al. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat. Commun. 11, 1222 (2020). PubMed DOI PMC
Bertolin, A. P. et al. The DNA replication checkpoint prevents PCNA/RFC depletion to protect forks from HLTF-induced collapse in human cells. Mol. Cell 85, 2474–2486 (2025). PubMed DOI
Canal, B. et al. The DNA replication checkpoint limits Okazaki fragment accumulation to protect and restart stalled forks. Mol. Cell 85, 2462–2473 (2025). PubMed DOI
Lee, K. Y., Fu, H., Aladjem, M. I. & Myung, K. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J. Cell Biol. 200, 31–44 (2013). PubMed DOI PMC
Fenstermaker, T. K., Petruk, S., Kovermann, S. K., Brock, H. W. & Mazo, A. RNA polymerase II associates with active genes during DNA replication. Nature 620, 426–433 (2023). PubMed DOI
Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392 (2018). PubMed DOI
Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016). PubMed DOI PMC
Wu, X. et al. Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing. Nat. Protoc. 18, 1260–1295 (2023). PubMed DOI
Hosokawa, M. et al. Oncogenic role of KIAA0101 interacting with proliferating cell nuclear antigen in pancreatic cancer. Cancer Res. 67, 2568–2576 (2007). PubMed DOI
De March, M. et al. Structural basis of human PCNA sliding on DNA. Nat. Commun. 8, 13935 (2017). PubMed DOI PMC
Maya-Mendoza, A. et al. High speed of fork progression induces DNA replication stress and genomic instability. Nature 559, 279–284 (2018). PubMed DOI
Somyajit, K. et al. Homology-directed repair protects the replicating genome from metabolic assaults. Dev. Cell 56, 461–477.e467 (2021). PubMed DOI
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024). PubMed DOI PMC
Laurence, T. A. et al. Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. J. Biol. Chem. 283, 22895–22906 (2008). PubMed DOI PMC
He, Q., Wang, F., Yao, N. Y., O’Donnell, M. E. & Li, H. Structures of the human leading strand Polepsilon-PCNA holoenzyme. Nat. Commun. 15, 7847 (2024). PubMed DOI PMC
Roske, J. J. & Yeeles, J. T. P. Structural basis for processive daughter-strand synthesis and proofreading by the human leading-strand DNA polymerase Pol ε. Nat. Struct. Mol. Biol. 31, 1921–1931 (2024). PubMed DOI PMC
Vipat, S. & Moiseeva, T. N. The TIMELESS roles in genome stability and beyond. J. Mol. Biol. 436, 168206 (2024). PubMed DOI
Inoue, A. et al. A small molecule inhibitor of monoubiquitinated proliferating cell nuclear antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin. J. Biol. Chem. 289, 7109–7120 (2014). PubMed DOI PMC
Yang, C. C. et al. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat. Commun. 7, 12135 (2016). PubMed DOI PMC
Andrs, M. et al. Excessive reactive oxygen species induce transcription-dependent replication stress. Nat. Commun. 14, 1791 (2023). PubMed DOI PMC
Sebastian, R. et al. Mechanism for local attenuation of DNA replication at double-strand breaks. Nature 639, 1084–1092 (2025). PubMed DOI
Westhorpe, R., Roske, J. J. & Yeeles, J. T. P. Mechanisms controlling replication fork stalling and collapse at topoisomerase 1 cleavage complexes. Mol. Cell 84, 3469–3481 (2024). PubMed DOI PMC
Konagaya, Y., Rosenthal, D., Ratnayeke, N., Fan, Y. & Meyer, T. An intermediate Rb–E2F activity state safeguards proliferation commitment. Nature 631, 424–431 (2024). PubMed DOI PMC
Chang, C. N., Feng, M. J., Chen, Y. L., Yuan, R. H. & Jeng, Y. M. p15 PubMed DOI PMC
Pennycook, B. R. et al. E2F-dependent transcription determines replication capacity and S phase length. Nat. Commun. 11, 3503 (2020). PubMed DOI PMC
Ruiz-Albor, A. et al. Reconstitution of DNMT1 complex with hemimethylated DNA, doubly monoubiquitinated PAF15, and PCNA for structural analysis. Int. J. Biol. Macromol. 319, 145401 (2025). PubMed DOI
Jacob, F. & Brenner, S. On the regulation of DNA synthesis in bacteria: the hypothesis of the replicon. C. R. Hebd. Seances Acad. Sci. 256, 298–300 (1963). PubMed
Walter, J. & Newport, J. W. Regulation of replicon size in Xenopus egg extracts. Science 275, 993–995 (1997). PubMed DOI
Collart, C., Allen, G. E., Bradshaw, C. R., Smith, J. C. & Zegerman, P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341, 893–896 (2013). PubMed DOI PMC
Vaitsiankova, A. et al. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol. 29, 329–338 (2022). PubMed DOI PMC
MacDougall, C. A., Byun, T. S., Van, C., Yee, M. C. & Cimprich, K. A. The structural determinants of checkpoint activation. Genes Dev. 21, 898–903 (2007). PubMed DOI PMC
Sedlackova, H. et al. Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature 587, 297–302 (2020). PubMed DOI
Ercilla, A. et al. Physiological tolerance to ssDNA enables strand uncoupling during DNA replication. Cell Rep. 30, 2416–2429 (2020). PubMed DOI
Ochs, F. et al. 53BP1 fosters fidelity of homology-directed DNA repair. Nat. Struct. Mol. Biol. 23, 714–721 (2016). PubMed DOI
Batth, T. S. et al. Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation. Mol. Cell. Proteomics 18, 1027–1035 (2019). PubMed DOI PMC
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed DOI
Blair, K. et al. Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing. Nat. Commun. 13, 7833 (2022). PubMed DOI PMC
Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018). PubMed DOI
Elfmann, C. & Stulke, J. PAE viewer: a webserver for the interactive visualization of the predicted aligned error for multimer structure predictions and crosslinks. Nucleic Acids Res. 51, W404–W410 (2023). PubMed DOI PMC
Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012). DOI
Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. Science 362, eaav1898 (2018). PubMed DOI PMC
Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019). PubMed DOI PMC
Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021). PubMed DOI PMC
Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018). PubMed DOI PMC
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021). PubMed DOI PMC
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019). PubMed DOI PMC
Germain, P. L., Lun, A., Garcia Meixide, C., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res 10, 979 (2021). PubMed DOI
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). PubMed DOI PMC
Xu, C. et al. Automatic cell-type harmonization and integration across Human Cell Atlas datasets. Cell 186, 5876–5891 (2023). PubMed DOI
Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016). PubMed DOI
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020). PubMed DOI PMC
Ginestet, C. ggplot2: elegant graphics for data analysis. J. R. Stat. Soc. A 174, 245–245 (2011). DOI