PAF15-PCNA exhaustion governs the strand-specific control of DNA replication

. 2026 Jan 28 ; () : . [epub] 20260128

Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41606318
Odkazy

PubMed 41606318
DOI 10.1038/s41586-025-10011-3
PII: 10.1038/s41586-025-10011-3
Knihovny.cz E-zdroje

Eukaryotic genome replication is surveyed by the S-phase checkpoint, which coordinates sequential origin activation to prevent the exhaustion of poorly defined, rate-limiting replisome components1-3. Here we show that excessive origin firing saturates chromatin-bound proliferating cell nuclear antigen (PCNA)-a sliding clamp for DNA polymerase processivity and Okazaki fragment processing4-thereby restricting further PCNA loading and lagging-strand synthesis when checkpoint control is lost. PCNA-associated factor 15 (PAF15) emerges as a dosage-sensitive regulator of this process5-9. During unperturbed S phase, the entire soluble PAF15 pool binds to chromatin, leaving no reserve to stabilize PCNA under conditions of excessive origin activation. PAF15 binds to PCNA specifically on the lagging strand through a high-affinity PIP motif and occupies the DNA-encircling channel, protecting the clamp and associated enzymes from premature unloading by the ATAD5-RFC complex. Conversely, overexpression of PAF15 or forced redistribution to the leading strand disrupts replisome progression and induces cell death. These detrimental effects are mitigated by Timeless-Claspin, which blocks PAF15-PCNA binding on the leading strand. E2F4-mediated repression fine-tunes PAF15 expression to ensure optimal dosage and strand specificity. These findings reveal a previously unrecognized replisome constraint: when PAF15-PCNA assemblies are exhausted, the S-phase checkpoint globally restricts origin activation, linking a strand-specific rate-limiting mechanism to global replication dynamics.

Zobrazit více v PubMed

Saldivar, J. C. et al. An intrinsic S/G(2) checkpoint enforced by ATR. Science 361, 806–810 (2018). PubMed DOI PMC

Toledo, L. I. et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088–1103 (2013). PubMed DOI

Menolfi, D. et al. ATR kinase supports normal proliferation in the early S phase by preventing replication resource exhaustion. Nat. Commun. 14, 3618 (2023). PubMed DOI PMC

Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007). PubMed DOI

Emanuele, M. J., Ciccia, A., Elia, A. E. & Elledge, S. J. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. Proc. Natl Acad. Sci. USA 108, 9845–9850 (2011). PubMed DOI PMC

Povlsen, L. K. et al. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat. Cell Biol. 14, 1089–1098 (2012). PubMed DOI

Xie, C., Yao, M. & Dong, Q. Proliferating cell unclear antigen-associated factor (PAF15): a novel oncogene. Int. J. Biochem. Cell Biol. 50, 127–131 (2014). PubMed DOI

De Biasio, A. et al. Structure of p15 PubMed DOI

De March, M. et al. p15 PubMed DOI PMC

Saxena, S. & Zou, L. Hallmarks of DNA replication stress. Mol. Cell 82, 2298–2314 (2022). PubMed DOI PMC

Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017). PubMed DOI PMC

Berti, M., Cortez, D. & Lopes, M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633–651 (2020). PubMed DOI

Petersen, M. B., Chhetri, G. & Somyajit, K. Metabolic control of replisome plasticity in genome surveillance. Trends Cell Biol. 35, 880–892 (2025). PubMed DOI

Yadav, A. K. & Polasek-Sedlackova, H. Quantity and quality of minichromosome maintenance protein complexes couple replication licensing to genome integrity. Commun. Biol. 7, 167 (2024). PubMed DOI PMC

Daigh, L. H., Liu, C., Chung, M., Cimprich, K. A. & Meyer, T. Stochastic endogenous replication stress causes ATR-triggered fluctuations in CDK2 activity that dynamically adjust global DNA synthesis rates. Cell Syst. 7, 17–27 (2018). PubMed DOI PMC

Moreno, A. et al. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc. Natl Acad. Sci. USA 113, E5757–5764 (2016). PubMed DOI PMC

Spies, J. et al. 53BP1 nuclear bodies enforce replication timing at under-replicated DNA to limit heritable DNA damage. Nat. Cell Biol. 21, 487–497 (2019). PubMed DOI

Somyajit, K. et al. Redox-sensitive alteration of replisome architecture safeguards genome integrity. Science 358, 797–802 (2017). PubMed DOI

Moiseeva, T. et al. ATR kinase inhibition induces unscheduled origin firing through a Cdc7-dependent association between GINS and And-1. Nat. Commun. 8, 1392 (2017). PubMed DOI PMC

Baris, Y., Taylor, M. R. G., Aria, V. & Yeeles, J. T. P. Fast and efficient DNA replication with purified human proteins. Nature 606, 204–210 (2022). PubMed DOI PMC

Dovrat, D., Stodola, J. L., Burgers, P. M. & Aharoni, A. Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation. Proc. Natl Acad. Sci. USA 111, 14118–14123 (2014). PubMed DOI PMC

Okazaki, R. Molecular mechanism of DNA synthesis. Tanpakushitsu Kakusan Koso 12, 795–805 (1967). PubMed

Schermelleh, L. et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res. 35, 4301–4312 (2007). PubMed DOI PMC

Hanzlikova, H. et al. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell 71, 319–331 (2018). PubMed DOI PMC

Toledo, L., Neelsen, K. J. & Lukas, J. Replication catastrophe: when a checkpoint fails because of exhaustion. Mol. Cell 66, 735–749 (2017). PubMed DOI

Yuan, Z. et al. Mechanism of PCNA loading by Ctf18-RFC for leading-strand DNA synthesis. Science 385, eadk5901 (2024). PubMed DOI PMC

Srivastava, M. et al. Replisome dynamics and their functional relevance upon DNA damage through the PCNA interactome. Cell Rep. 25, 3869–3883 (2018). PubMed DOI PMC

Nishiyama, A. et al. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat. Commun. 11, 1222 (2020). PubMed DOI PMC

Bertolin, A. P. et al. The DNA replication checkpoint prevents PCNA/RFC depletion to protect forks from HLTF-induced collapse in human cells. Mol. Cell 85, 2474–2486 (2025). PubMed DOI

Canal, B. et al. The DNA replication checkpoint limits Okazaki fragment accumulation to protect and restart stalled forks. Mol. Cell 85, 2462–2473 (2025). PubMed DOI

Lee, K. Y., Fu, H., Aladjem, M. I. & Myung, K. ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J. Cell Biol. 200, 31–44 (2013). PubMed DOI PMC

Fenstermaker, T. K., Petruk, S., Kovermann, S. K., Brock, H. W. & Mazo, A. RNA polymerase II associates with active genes during DNA replication. Nature 620, 426–433 (2023). PubMed DOI

Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392 (2018). PubMed DOI

Petryk, N. et al. Replication landscape of the human genome. Nat. Commun. 7, 10208 (2016). PubMed DOI PMC

Wu, X. et al. Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing. Nat. Protoc. 18, 1260–1295 (2023). PubMed DOI

Hosokawa, M. et al. Oncogenic role of KIAA0101 interacting with proliferating cell nuclear antigen in pancreatic cancer. Cancer Res. 67, 2568–2576 (2007). PubMed DOI

De March, M. et al. Structural basis of human PCNA sliding on DNA. Nat. Commun. 8, 13935 (2017). PubMed DOI PMC

Maya-Mendoza, A. et al. High speed of fork progression induces DNA replication stress and genomic instability. Nature 559, 279–284 (2018). PubMed DOI

Somyajit, K. et al. Homology-directed repair protects the replicating genome from metabolic assaults. Dev. Cell 56, 461–477.e467 (2021). PubMed DOI

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024). PubMed DOI PMC

Laurence, T. A. et al. Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. J. Biol. Chem. 283, 22895–22906 (2008). PubMed DOI PMC

He, Q., Wang, F., Yao, N. Y., O’Donnell, M. E. & Li, H. Structures of the human leading strand Polepsilon-PCNA holoenzyme. Nat. Commun. 15, 7847 (2024). PubMed DOI PMC

Roske, J. J. & Yeeles, J. T. P. Structural basis for processive daughter-strand synthesis and proofreading by the human leading-strand DNA polymerase Pol ε. Nat. Struct. Mol. Biol. 31, 1921–1931 (2024). PubMed DOI PMC

Vipat, S. & Moiseeva, T. N. The TIMELESS roles in genome stability and beyond. J. Mol. Biol. 436, 168206 (2024). PubMed DOI

Inoue, A. et al. A small molecule inhibitor of monoubiquitinated proliferating cell nuclear antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin. J. Biol. Chem. 289, 7109–7120 (2014). PubMed DOI PMC

Yang, C. C. et al. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat. Commun. 7, 12135 (2016). PubMed DOI PMC

Andrs, M. et al. Excessive reactive oxygen species induce transcription-dependent replication stress. Nat. Commun. 14, 1791 (2023). PubMed DOI PMC

Sebastian, R. et al. Mechanism for local attenuation of DNA replication at double-strand breaks. Nature 639, 1084–1092 (2025). PubMed DOI

Westhorpe, R., Roske, J. J. & Yeeles, J. T. P. Mechanisms controlling replication fork stalling and collapse at topoisomerase 1 cleavage complexes. Mol. Cell 84, 3469–3481 (2024). PubMed DOI PMC

Konagaya, Y., Rosenthal, D., Ratnayeke, N., Fan, Y. & Meyer, T. An intermediate Rb–E2F activity state safeguards proliferation commitment. Nature 631, 424–431 (2024). PubMed DOI PMC

Chang, C. N., Feng, M. J., Chen, Y. L., Yuan, R. H. & Jeng, Y. M. p15 PubMed DOI PMC

Pennycook, B. R. et al. E2F-dependent transcription determines replication capacity and S phase length. Nat. Commun. 11, 3503 (2020). PubMed DOI PMC

Ruiz-Albor, A. et al. Reconstitution of DNMT1 complex with hemimethylated DNA, doubly monoubiquitinated PAF15, and PCNA for structural analysis. Int. J. Biol. Macromol. 319, 145401 (2025). PubMed DOI

Jacob, F. & Brenner, S. On the regulation of DNA synthesis in bacteria: the hypothesis of the replicon. C. R. Hebd. Seances Acad. Sci. 256, 298–300 (1963). PubMed

Walter, J. & Newport, J. W. Regulation of replicon size in Xenopus egg extracts. Science 275, 993–995 (1997). PubMed DOI

Collart, C., Allen, G. E., Bradshaw, C. R., Smith, J. C. & Zegerman, P. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341, 893–896 (2013). PubMed DOI PMC

Vaitsiankova, A. et al. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol. 29, 329–338 (2022). PubMed DOI PMC

MacDougall, C. A., Byun, T. S., Van, C., Yee, M. C. & Cimprich, K. A. The structural determinants of checkpoint activation. Genes Dev. 21, 898–903 (2007). PubMed DOI PMC

Sedlackova, H. et al. Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature 587, 297–302 (2020). PubMed DOI

Ercilla, A. et al. Physiological tolerance to ssDNA enables strand uncoupling during DNA replication. Cell Rep. 30, 2416–2429 (2020). PubMed DOI

Ochs, F. et al. 53BP1 fosters fidelity of homology-directed DNA repair. Nat. Struct. Mol. Biol. 23, 714–721 (2016). PubMed DOI

Batth, T. S. et al. Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation. Mol. Cell. Proteomics 18, 1027–1035 (2019). PubMed DOI PMC

Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed DOI

Blair, K. et al. Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing. Nat. Commun. 13, 7833 (2022). PubMed DOI PMC

Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018). PubMed DOI

Elfmann, C. & Stulke, J. PAE viewer: a webserver for the interactive visualization of the predicted aligned error for multimer structure predictions and crosslinks. Nucleic Acids Res. 51, W404–W410 (2023). PubMed DOI PMC

Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012). DOI

Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. Science 362, eaav1898 (2018). PubMed DOI PMC

Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019). PubMed DOI PMC

Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021). PubMed DOI PMC

Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018). PubMed DOI PMC

Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021). PubMed DOI PMC

Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019). PubMed DOI PMC

Germain, P. L., Lun, A., Garcia Meixide, C., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res 10, 979 (2021). PubMed DOI

Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). PubMed DOI PMC

Xu, C. et al. Automatic cell-type harmonization and integration across Human Cell Atlas datasets. Cell 186, 5876–5891 (2023). PubMed DOI

Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016). PubMed DOI

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020). PubMed DOI PMC

Ginestet, C. ggplot2: elegant graphics for data analysis. J. R. Stat. Soc. A 174, 245–245 (2011). DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...