Isolation and Cultivation of Diplonemids
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Axenization, Cryopreservation, Cultivation, Diplonemids, Isolation, Large-scale cultivation,
- MeSH
- buněčné kultury * metody MeSH
- kryoprezervace metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Marine diplonemids (Diplonemidae and Hemistasiidae), once considered difficult to culture, can now be introduced into stable axenic cultures and grown to high densities. This chapter provides detailed protocols on establishing clonal cultures from environmental cells, their axenization and routine maintenance, as well as instructions on mid- and large-scale cultivation, estimation of cell density, and cryopreservation of selected species.
Department of Molecular and Cellular Biology University of California Davis CA USA
Faculty of Natural Sciences Comenius University Bratislava Slovakia
Faculty of Science University of Ostrava Ostrava Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Evolutionary Biology Faculty of Biology University of Warsaw Warsaw Poland
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Kostygov AY, Karnkowska A, Votýpka J et al (2021) Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11:200407. https://doi.org/10.1098/rsob.200407 PubMed DOI PMC
Lax G, Okamoto N, Keeling PJ (2024) Phylogenomic position of eupelagonemids, abundant, and diverse deep-ocean heterotrophs. ISME J 18:wrae040. https://doi.org/10.1093/ismejo/wrae040 PubMed DOI PMC
Nerad T (1990) The life history, cytology and taxonomy of Isonema and Isonema-like flagellates. Dissertation, University of Maryland
Yabuki A, Tame A (1996) Phylogeny and reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf. J Eukaryot Microbiol 62:426–429. https://doi.org/10.1111/jeu.12191 DOI
Tashyreva D, Simpson AGB, Prokopchuk G et al (2022) Diplonemids—a review on “new” flagellates on the oceanic block. Protist 173:125868. https://doi.org/10.1016/j.protis.2022.125868 PubMed DOI
Tashyreva D, Týč J, Horák A et al (2023) Ultrastructure and 3D reconstruction of a diplonemid protist and its novel membranous organelle. MBio 14:e01921–e01923. https://doi.org/10.1128/mbio.01921-23 PubMed DOI PMC
Tashyreva D, Votýpka J, Yabuki A et al (2025) Description of new diplonemids (Diplonemea, Euglenozoa) and their endosymbionts: charting the morphological diversity of these poorly known heterotrophic flagellates. Protist 177:126090. https://doi.org/10.1016/j.protis.2025.126090 PubMed DOI
Valach M, Moreira S, Petitjean C et al (2023) Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 21:99. https://doi.org/10.1186/s12915-023-01563-9 PubMed DOI PMC
Faktorová D, Kaur B, Valach M et al (2020) Targeted integration by homologous recombination enables in situ tagging and replacement of genes in the marine microeukaryote Diplonema papillatum. Environ Microbiol 22:3660–3670. https://doi.org/10.1111/1462-2920.15130
Gawryluk RMR, del Campo J, Okamoto N et al (2016) Morphological identification and single-cell genomics of marine diplonemids. Curr Biol 26:3053–3059. https://doi.org/10.1016/j.cub.2016.09.013 PubMed DOI
Sauer JS, Simkovsky R, Moore AN et al (2021) Continuous measurements of volatile gases as detection of algae crop health. Proc Natl Acad Sci USA 118:e2106882118. https://doi.org/10.1073/pnas.2106882118 PubMed DOI PMC
Hellenbroich D, Valley U, Ryll T et al (1999) Cultivation of Tetrahymena thermophila in a 1.5-m PubMed DOI