Assessment of Mitochondrial Membrane Potential in Intact and Detergent-Permeabilized Trypanosoma brucei Insect and Bloodstream Forms
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- ATP synthase, Electron transport system, Mitochondrial membrane potential, Safranine O, TMRE, Trypanosoma,
- MeSH
- detergenty farmakologie chemie MeSH
- fluorescenční barviva MeSH
- membránový potenciál mitochondrií * MeSH
- mitochondrie metabolismus MeSH
- permeabilita MeSH
- Trypanosoma brucei brucei * metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- detergenty MeSH
- fluorescenční barviva MeSH
Mitochondrial membrane potential (ΔΨm) is a critical component of the protonmotive force that drives ATP synthesis and supports essential mitochondrial functions, including metabolite transport, ion homeostasis, and protein import. In the parasitic protist Trypanosoma brucei, ΔΨm regulation is uniquely adapted across life cycle stages to meet changing metabolic demands. In the insect-stage procyclic form (PF), ΔΨm is generated by a canonical electron transport system (ETS), while in the bloodstream form (BF), where complexes III and IV are absent, ΔΨm is maintained by the reverse operation of ATP synthase, consuming ATP to pump protons. In T. brucei evansi, which lacks mitochondrial DNA, the ATP synthase is unable to translocate protons, and ΔΨm is sustained solely by electrogenic ADP/ATP exchange through the mitochondrial carrier. This chapter presents three complementary fluorescence-based methods to evaluate ΔΨm in T. brucei and T. b. evansi cells, highlighting their applicability to both intact and permeabilized parasites. We detail the use of two ΔΨm-sensitive dyes-TMRE, a cell-permeable dye suited for live-cell assays, and Safranine O, used in permeabilized preparations-and describe protocols for flow cytometry and fluorescence spectroscopy, respectively. These approaches allow robust, qualitative and semi-quantitative analysis of ΔΨm under different metabolic and experimental conditions. We address specific challenges associated with using fluorescent dyes to measure ΔΨm including issues of dye concentration, cellular permeability and potential artifacts that can affect interpretation of ΔΨm measurements.
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20(7):745–754. https://doi.org/10.1038/s41556-018-0124-1 PubMed DOI PMC
Nicholls DG, Ferguson SJ (2013) Bioenergetics, 4th edn. Academic Press, Amsterdam
Walker JE (2013) The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 41(1):1–16. https://doi.org/10.1042/BST20110773 PubMed DOI
Kuhlbrandt W (2019) Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem 88:515–549. https://doi.org/10.1146/annurev-biochem-013118-110903 PubMed DOI
Chinopoulos C, Adam-Vizi V (2010) Mitochondria as ATP consumers in cellular pathology. Biochim Biophys Acta 1802(1):221–227. https://doi.org/10.1016/j.bbadis.2009.08.008 PubMed DOI
Chinopoulos C (2011) Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett 585(9):1255–1259. https://doi.org/10.1016/j.febslet.2011.04.004 PubMed DOI
Chinopoulos C (2011) The "B space" of mitochondrial phosphorylation. J Neurosci Res 89(12):1897–1904. https://doi.org/10.1002/jnr.22659 PubMed DOI
Carroll J, Watt IN, Wright CJ, Ding S, Fearnley IM, Walker JE (2024) The inhibitor protein IF(1) from mammalian mitochondria inhibits ATP hydrolysis but not ATP synthesis by the ATP synthase complex. J Biol Chem 300(3):105690. https://doi.org/10.1016/j.jbc.2024.105690 PubMed DOI PMC
Esparza-Molto PB, Nuevo-Tapioles C, Cuezva JM (2017) Regulation of the H(+)-ATP synthase by IF1: a role in mitohormesis. Cell Mol Life Sci 74(12):2151–2166. https://doi.org/10.1007/s00018-017-2462-8 PubMed DOI PMC
Zikova A (2022) Mitochondrial adaptations throughout the Trypanosoma brucei life cycle. J Eukaryot Microbiol:e12911. https://doi.org/10.1111/jeu.12911
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K (2005) The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 24(23):4029–4040. https://doi.org/10.1038/sj.emboj.7600862 . 7600862 [pii] PubMed DOI PMC
Vercesi AE, Docampo R, Moreno SN (1992) Energization-dependent Ca2+ accumulation in Trypanosoma brucei bloodstream and procyclic trypomastigotes mitochondria. Mol Biochem Parasitol 56(2):251–257 PubMed DOI
Taleva G, Husova M, Panicucci B, Hierro-Yap C, Pineda E, Biran M et al (2023) Mitochondrion of the Trypanosoma brucei long slender bloodstream form is capable of ATP production by substrate-level phosphorylation. PLoS Pathog 19(10):e1011699. https://doi.org/10.1371/journal.ppat.1011699 PubMed DOI PMC
Schnaufer A (2010) Evolution of dyskinetoplastic trypanosomes: how, and how often? Trends Parasitol 26(12):557–558. https://doi.org/10.1016/j.pt.2010.08.001 . S1471-4922(10)00172-8 [pii] PubMed DOI PMC
Dean S, Gould MK, Dewar CE, Schnaufer AC (2013) Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc Natl Acad Sci USA 110(36):14741–14746. https://doi.org/10.1073/pnas.1305404110 PubMed DOI PMC
Subrtova K, Panicucci B, Zikova A (2015) ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog 11(2):e1004660. https://doi.org/10.1371/journal.ppat.1004660 PubMed DOI PMC
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS et al (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59. https://doi.org/10.1016/j.ab.2017.07.009 PubMed DOI
Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312. https://doi.org/10.1042/BJ20110162 PubMed DOI
Kowaltowski AJ, Abdulkader F (2024) How and when to measure mitochondrial inner membrane potentials. Biophys J 123(24):4150–4157. https://doi.org/10.1016/j.bpj.2024.03.011 PubMed DOI PMC
Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 50(2):98–115. https://doi.org/10.2144/000113610 PubMed DOI PMC
Solaini G, Sgarbi G, Lenaz G, Baracca A (2007) Evaluating mitochondrial membrane potential in cells. Biosci Rep 27(1–3):11–21. https://doi.org/10.1007/s10540-007-9033-4 PubMed DOI
Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 77(2):990–994. https://doi.org/10.1073/pnas.77.2.990 PubMed DOI PMC
Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1 Pt 1):469–477. https://doi.org/10.1016/S0006-3495(99)77214-0 PubMed DOI PMC
Akerman KE, Wikstrom MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197. https://doi.org/10.1016/0014-5793(76)80434-6 PubMed DOI
Wolf DM, Segawa M, Shirihai OS, Liesa M (2020) Method for live-cell super-resolution imaging of mitochondrial cristae and quantification of submitochondrial membrane potentials. Methods Cell Biol 155:545–555. https://doi.org/10.1016/bs.mcb.2019.12.006 PubMed DOI PMC
Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST, Reichert AS et al (2019) Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J 38(22):e101056. https://doi.org/10.15252/embj.2018101056 PubMed DOI PMC
Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79(6):405–425. https://doi.org/10.1002/cyto.a.21061 PubMed DOI
Figueira TR, Melo DR, Vercesi AE, Castilho RF (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol Biol 810:103–117. https://doi.org/10.1007/978-1-61779-382-0_7 PubMed DOI
Yousif LF, Stewart KM, Kelley SO (2009) Targeting mitochondria with organelle-specific compounds: strategies and applications. Chembiochem 10(12):1939–1950. https://doi.org/10.1002/cbic.200900185 PubMed DOI
Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM (1988) Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 53(5):785–794. https://doi.org/10.1016/S0006-3495(88)83158-8 PubMed DOI PMC
Perevoshchikova IV, Sorochkina AI, Zorov DB, Antonenko YN (2009) Safranine O as a fluorescent probe for mitochondrial membrane potential studied on the single particle level and in suspension. Biochemistry (Mosc) 74(6):663–671. https://doi.org/10.1134/s000629790906011x PubMed DOI
Gnaiger E, Group MT (2020) Mitochondrial physiology. Bioenerg Commun. https://doi.org/10.26124/bec:2020-0001.v1
Kowaltowski AJ, Cosso RG, Campos CB, Fiskum G (2002) Effect of Bcl-2 overexpression on mitochondrial structure and function. J Biol Chem 277(45):42802–42807. https://doi.org/10.1074/jbc.M207765200 PubMed DOI
Hierro-Yap C, Subrtova K, Gahura O, Panicucci B, Dewar C, Chinopoulos C et al (2021) Bioenergetic consequences of FoF1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem 296:100357. https://doi.org/10.1016/j.jbc.2021.100357 PubMed DOI PMC
von Känel C, Aeschlimann S, Husová M, Oeljeklaus S, Stettler P, Schnaufer A et al (2025) TbTim20 facilitates protein import at a low membrane potential in trypanosomes lacking the mitochondrial genome. bioRxiv:2025.04.25.650624. https://doi.org/10.1101/2025.04.25.650624
Alencar MB, Girard R, Silber AM (2020) Measurement of energy states of the trypanosomatid mitochondrion. Methods Mol Biol 2116:655–671. https://doi.org/10.1007/978-1-0716-0294-2_39 PubMed DOI