RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.
- MeSH
- Bacillus subtilis enzymologie genetika MeSH
- bakteriální proteiny metabolismus MeSH
- bakteriální RNA genetika metabolismus MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- exoribonukleasy metabolismus MeSH
- genetická transkripce MeSH
- messenger RNA genetika metabolismus MeSH
- regulace genové exprese u bakterií MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH