BACKGROUND: Antiplatelet drugs represent the keystone in the treatment and prevention of diseases of ischemic origin, including coronary artery disease. The current palette of drugs represents efficient modalities in most cases, but their effect can be limited in certain situations or associated with specific side effects. In this study, representatives of compounds selected from series having scaffolds with known or potential antiplatelet activity were tested. These compounds were previously synthetized by us, but their biological effects have not yet been reported. OBJECTIVE: The aim of this study was to examine the antiplatelet and anticoagulation properties of selected compounds and determine their mechanism of action. METHODS: Antiplatelet activity of compounds and their mechanisms of action were evaluated using human blood by impedance aggregometry and various aggregation inducers and inhibitors and compared to appropriate standards. Cytotoxicity was tested using breast adenocarcinoma cell cultures and potential anticoagulation activity was also determined. RESULTS: In total, four of 34 compounds tested were equally or more active than the standard antiplatelet drug Acetylsalicylic Acid (ASA). In contrast to ASA, all 4 active compounds decreased platelet aggregation triggered not only by collagen, but also partly by ADP. The major mechanism of action is based on antagonism at thromboxane receptors. In higher concentrations, inhibition of thromboxane synthase was also noted. In contrast to ASA, the tested compounds did not block cyclooxygenase- 1. CONCLUSION: The most active compound, 2-amino-4-(1H-indol-3-yl)-6-nitro-4H-chromene-3- carbonitrile (2-N), which is 4-5x times more potent than ASA, is a promising compound for the development of novel antiplatelet drugs.
- MeSH
- agregace trombocytů MeSH
- Aspirin farmakologie MeSH
- heterocyklické sloučeniny * farmakologie MeSH
- inhibitory agregace trombocytů * farmakologie MeSH
- lidé MeSH
- trombocyty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Both pyridine and pyrano derivatives have been previously shown to possess biologically relevant activity. In this study, we report the incorporation of these two scaffolds into one molecule. METHODS: The designed 3,3-dimethyl-6-oxopyrano[3,4-c]pyridines were synthesized by the acylation of enamine under Stork conditions followed by condensation of formed β-diketones with 2-cyanoacetamide. The structures of these compounds were confirmed by using a wide spectrum of physico-chemical methods. Their antiplatelet, anticoagulant and vasodilatory activity together with toxicity were evaluated. KEY FINDINGS: A series of 6-oxopyrano[3,4-c]pyridines 3a-j was obtained. Four of these compounds were reported for the first time. None of the tested compounds demonstrated anticoagulant effect but 8-methyl derivative (3a) was a potent antiplatelet compound with IC50 numerically twice as low as the clinically used acetylsalicylic acid. A series of further mechanistic tests showed that 3a interferes with calcium signaling. The compound is also not toxic and in addition possesses vasodilatory activity as well. CONCLUSIONS: Compound 3a is a promising inhibitor of platelet aggregation, whose mechanism of action should be studied in detail.